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The log law of the wall, joining the inner, near-wall mean velocity profile (MVP)
in wall-bounded turbulent flows to the outer region, has been a permanent fixture of
turbulence research for over hundred years, but there is still no general agreement on the
value of the prefactor, the inverse of the Kármán ‘constant’ κ , or on its universality. The
choice diagnostic tool to locate logarithmic parts of the MVP is to look for regions where
the indicator function Ξ (equal to the wall-normal coordinate y+ times the mean velocity
derivative dU+/dy+) is constant. In pressure-driven flows, however, such as channel
and pipe flows, Ξ is significantly affected by a term proportional to the wall-normal
coordinate, of order O(Re−1

τ ) in the inner expansion, but moving up across the overlap
to the leading O(1) in the outer expansion. Here we show that, due to this linear overlap
term, Reτ values well beyond 105 are required to produce one decade of near constant
Ξ in channels and pipes. The problem is resolved by considering the common part of
the inner asymptotic expansion carried to O(Re−1

τ ), and the leading order of the outer
expansion. This common part contains a superposition of the log law and a linear term
S0 y+Re−1

τ , and corresponds to the linear part of Ξ , which, in channel and pipe, is
concealed up to y+ ≈ 500–1000 by terms of the inner expansion. A new and robust method
is devised to simultaneously determine κ and S0 in pressure-driven flows at currently
accessible Reτ values, yielding κ values which are consistent with the κ values deduced
from the Reynolds number dependence of centreline velocities. A comparison with the
zero-pressure-gradient turbulent boundary layer, further clarifies the issues and improves
our understanding.
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1. Introduction

In the following, the standard non-dimensionalization is adopted, with the ‘inner’ or
viscous length scale �̂ ≡ (ν̂/ûτ ), where ûτ ≡ (τ̂w/ρ̂)1/2, ρ̂ and ν̂ are the friction velocity,
density and dynamic viscosity, respectively, with hats denoting dimensional quantities.
The resulting non-dimensional mean velocity is U+ ≡ (Û/ûτ ), and the inner and outer
wall-normal coordinates are y+ = ŷ/�̂ and Y = y+/Reτ , respectively, with Reτ ≡ L̂/�̂ the
friction Reynolds number and L̂ the outer length scale such as channel half-width, pipe
radius or boundary layer thickness.

1.1. The log law and matched asymptotic expansions
The log law for the mean velocity in wall-bounded turbulent flows goes back to the
celebrated work of von Kármán (1934) and Millikan (1938) and is firmly rooted in the
framework of matched asymptotic expansions (MAE) (see for example Kevorkian & Cole
(1981), Wilcox (1995) and Panton (2005)), where it represents a key term of the overlap
layer between the inner and outer mean velocity expansions, U+

in( y+) and U+
out(Y). Its

traditional form is κ−1 ln y+, with κ the Kármán ‘constant’, or rather parameter, as its flow
dependence is confirmed by the present work.

By definition, this logarithm is, within the overlap, common to both the leading-order
inner and outer expansions, where it takes the form κ−1[ln Y + ln Reτ ]. Hence, κ can be
equally well determined from U+( y+) or U+(Y), but the choice is not as trivial as it
seems. The matching also involves some subtleties, which may not be so well known.

(i) For the asymptotic matching of inner and outer expansions, the term κ−1 ln Reτ in
the outer expansion has to be treated as an O(1) term, according to the principle of
‘block matching’, which has been introduced in MAE by Crighton & Leppington
(1973) to handle terms containing powers of the logarithm of the small parameter
ε. Thereby, all the terms proportional to εn(ln ε)m are regrouped into the same
‘block order’ n, and have to be treated simultaneously for the matching. This
general concept was developed to treat MAE problems in two-dimensional acoustics,
where logarithms and powers of logarithms abound and ε is typically the ratio of
acoustic wavelength to distance from the source. This concept has actually been
used for a long time by the turbulent boundary layer community without being
formalized. To match inner and outer expansions of the mean velocity profile (MVP)
across the overlap, κ−1 ln y+ in the inner expansion has always been identified with
κ−1 ln Y + κ−1 ln Reτ in the outer expansion, where ln Reτ has been treated as an
O(1) term. Obviously, there is no match in the inner expansion for κ−1 ln Reτ alone.

(ii) Furthermore, if the outer expansion is of the well accepted form κ−1[ln Y + ln Reτ ]
plus an O(1) function of Y (see for example Coles (1956)), plus terms of order
O(Re−1

τ ) and higher, the leading-order centreline velocity in channels and pipes
is κ−1 ln Reτ plus a constant, as discussed in Nagib et al. (2019) and Monkewitz
(2021), for instance. This equality of overlap and centreline κ could only be
relaxed, if the outer expansion contained an additional O(1) term proportional to
[exp(−const./Y) ln Reτ ], which becomes transcendentally small for Y → 0 (see for
example Wilcox (1995), for a discussion of transcendentally small terms). Lacking
any evidence for such a term, the κ values extracted from overlap profiles and from
the Reτ dependence of the centreline velocity must be identical!
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Locating the MVP overlap

1.2. The role of the additional linear term in the channel and pipe MVP overlap
Traditionally, the MVP overlap in all wall-bounded turbulent flows has been associated
with a purely logarithmic region, readily identified with the logarithmic-indicator function

Ξ ≡ y+ dU+

dy+ ≡ Y
dU+

dY
, (1.1)

which is constant whenever U+ is a linear function of ln y+. It is noted, however,
that an interval of constant Ξ is not automatically an inner–outer overlap, as there are
additional requirements in MAE. Specifically, the centre of the overlap has to scale on
the intermediate variable ( y+Y)1/2, and its extent has to expand with Reτ . In technical
MAE terms, looking for a region of constant Ξ , i.e. a simple log law, amounts to
consider the basic (1Oinner/1Oouter) common part or overlap. Here and in the following,
‘(nOinner/mOouter) overlap’, is a shorthand for an overlap constructed from an inner
asymptotic expansion of nth order and its outer counterpart of mth order.

The problems with this traditional approach stem from additional terms in the overlap
region, discussed early on by Yajnik (1970) and Afzal & Yajnik (1973), among others. Of
particular relevance is the linear term S0 y+/Reτ in the U+ overlap profile of channels
and pipes, which represents an O(Re−1

τ ) correction of the innerscaled indicator function
Ξ( y+), as discussed for instance by Jiménez & Moser (2007), Lee & Moser (2015,
§ 3.1) and Luchini (2017), who has argued that the coefficient S0 of this linear term
S0 y+/Reτ is proportional to the pressure gradient (see Appendix C for a review of this
issue). As this linear term is of higher order in the inner expansion, it is not included
in the (1Oinner/1Oouter) MVP overlap, despite moving up to O(1) in the outer-scaled
indicator function Ξ(Y). This follows formally from the overlap description in terms of the
intermediate variable η = y+Re−1/2

τ = Y Re+1/2
τ , where the linear term S0 y+/Reτ ≡ S0Y

is of order O(Re−1/2
τ ) relative to the O(1) log law.

However, at the Reynolds numbers where data are available, the basic (1Oinner/1Oouter)
overlap to determine κ is not very helpful in the presence of an additional linear overlap
term S0 y+/Reτ , such as in channels and pipes, where the overlap indicator function takes
the form

ΞOL = 1
κ

+ S0 y+

Reτ

+ H.O.T. ≡ 1
κ

+ S0Y + H.O.T., (1.2)

where H.O.T. designates higher-order linear terms considered only for the channel in § 2.
Ignoring the linear contribution to the overlap ΞOL in (1.2) has been the main reason

for the lack of agreement on κ values. The example of figure 1 shows, that determining κ

with an error below 1 % from a region of sufficiently constant ΞOL, extending from, say,
y+ = 103 to 104, requires a very large Reynolds number of Reτ ≈ (106κS0). Note that the
reason for considering only the region of y+ ≥ 103 in figure 1 is the ‘hump’ or ‘bulge’ of
Ξ below y+ ≈ 103 on top of the linear overlap (1.2), which will be discussed in the next
§ 2.

The problem of the non-negligible linear term in the overlap of channels and pipes
is resolved by moving to the (2Oinner/1Oouter) overlap, which includes the linear term
S0 y+/Reτ ≡ S0Y , because it is present in both the limit y+ → ∞ of the inner expansion
carried to the order O(Re−1

τ ), U+
in( y+ � 1) ∼ κ−1 ln y+ + B0 + B1/Reτ + S0 y+/Reτ

(see (2.3)), and in the limit Y → 0 of the leading-order outer expansion U+
out(Y 	 1) ∼

κ−1[ln Y + ln Reτ ] + B0 + S0Y . This (2Oinner/1Oouter) overlap corresponds to the linear
outer-scaled indicator function ΞOL = κ−1 + S0Y (1.2), which, up to y+ ≈ 103, is ‘buried’

967 A15-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.448


P. Monkewitz and H. Nagib

0.2

0.1

–0.1
103 104 105 106

0

Ξ
0
L
 –

 (
1
/κ

re
f)

y+

Figure 1. Illustration of the effect of the linear term S0 y+/Reτ on the estimate of κ−1 from the overlap ΞOL
(1.2) with (red) − − −, − · −·, − · · −, κ errors of −1 %, −2 % and −3 % relative to κref = 0.417. Linear
deviations S0 y+/Reτ from the baseline log law for Reτ = 104, 105, 106 and 107 (increasingly dark blue) with
S0 = 1.15 (—) and S0 = 2.5 (· · ·); (red) •, locations where the linear terms with S0 = 1.15 induce a −1 %
error of κ .

under an innerscaled ‘hump’ or ‘bulge’, further discussed in § 2 and clearly visible in
figure 3 for channel direct numerical simulations (DNS) beyond a Reτ of around 4000
and, less pronounced, in figure 5 for pipe DNS. This supports the conclusion of Monkewitz
(2021) about the ‘late start’ of the channel overlap.

Beyond y+ ≈ 103, the linear overlap [κ−1 + S0Y] of ΞOL becomes clearly visible in
these figures and is seen to extend to Y ≈ 0.4–0.5.

From the above outer-scaled form (1.2) of the overlap ΞOL it follows conclusively,
that the ‘humps’ of Ξ on top of the linear overlap, seen in all the channel and pipe
profiles below a y+ of roughly 103, belong to the inner expansion. Consequently, the short
horizontal or near-horizontal parts of Ξ within these ‘humps’, seen for instance in Lee &
Moser (2015, figure 3), as well as in figures 3 and 5 of the present paper, are not overlap
log laws, but locally logarithmic or nearly logarithmic regions of the inner expansion.

The interpretation of the indicator function Ξ is further complicated by a surprisingly
large variability between different channel DNS, and even more so between pipe DNS.
This variability has different sources, such as domain size, computational scheme,
convergence of computation and grid spacing. The particular effect of grid spacing in
the outer flow region is highlighted in Appendix B. The analysis suggests that there is a
critical grid spacing 
y+ of 3 to 4, which, when exceeded towards the centreline, leads
to a decrease of the effective Reτ in the central flow region (see figures 3 and 12 of
Appendix B).

1.3. Outline of the paper
The purpose of this paper is to clarify both the location, extent and the functional
form of the inner–outer overlap in channels and pipes, and to propose a novel robust
method to extract κ from MVPs in pressure-driven flows. A comparison with the
zero-pressure-gradient turbulent boundary layer (ZPG TBL) further clarifies the issues.
The paper is organized as follows.

(i) In § 2, an improved outer fit of the mean velocity derivative in channels is developed
from DNS, with additional details provided in Appendix A. The resulting outer fit of
the indicator function Ξ is compared with different channel DNS and the variability
of the results is correlated with the different choices of computational grid spacing.
The superposition of log law and linear term in the overlap is supported by the
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experimental data of Zanoun, Durst & Nagib (2003) and Schultz & Flack (2013)
obtained in channels of aspect ratio ≈ 8. The simultaneous determination of the
two overlap parameters κ and S0 is performed with a new robust method, presented
in figure 4 and believed more discriminating than the iterative method of Luchini
(2018).

(ii) Section 3 then presents an analysis of three pipe flow DNS by El Khoury et al.
(2013), Pirozzoli et al. (2021) and Yao et al. (2023), which show considerable
differences of Ξ(Y). On the other hand, the Ξ for the Superpipe data of Zagarola
& Smits (1998), McKeon (2003) and Bailey et al. (2013) are found to be very
consistent, and the new method for the determination of overlap parameters yields
κ = 0.433 and S0 = 2.5 for the coefficient of the linear term.

(iii) In the brief § 4, the findings for channel and pipe flow are contrasted with the ZPG
TBL. The experimental data from three independent sources reveal that the TBL
indicator function also features a linear part of a significantly higher slope than in
channels and pipes, with the crucial difference that this linear part only starts in the
outer region at Y = 0.11, and therefore does not belong to the overlap.

(iv) The final § 5 summarizes the main results and closes with observations on the
universality, or rather non-universality, of the so-called canonical turbulent flows:
channel flow, pipe flow and ZPG TBL.

Three appendices complete the paper: Appendix A provides more details on the fit of
the channel MVP, used in § 2; Appendix B discusses the likely effect of grid spacing on
the results of channel and pipe DNS; Appendix C, finally reviews different approaches,
including the one by Luchini (2017), to take into account the effect of pressure gradient on
MVP overlap profiles.

2. The outer expansion and the overlap of the indicator function in channels

To prepare for the analysis of the channel indicator function, the outer mean velocity
fit of Monkewitz (2021, (3.6)) is improved and simplified, while maintaining its basic
ingredients. The differences with Monkewitz (2021) are that the fitting is started with the
mean velocity derivative, the κ is slightly modified to 0.417, and the O(Re−1

τ ) contribution
to dU+/dY is simplified,

dU+

dY

∣∣∣∣
channel out

= 1
κY

+
[

S0 + 1
Reτ

S1

]
−

[
1
κ

+ S0 + 1
Reτ

S1

]
dW
dY

(2.1)

with

κ = 0.417, S0 = 1.15, S1 = 380 and
dW
dY

= ln{exp[11(Y − 0.73)] + 1}
ln{exp[11(1 − 0.73)] + 1} ,

(2.2a–d)

U+|channel out = ln Y
κ

+ ln Reτ

κ
+

[
S0 + S1

Reτ

]
Y +

[
B0 + B1

Reτ

]

−
[

1
κ

+ S0 + S1

Reτ

]
W(Y), (2.3)

with B0 = 5.45, B1 = −250. (2.4)

Starting with the velocity derivative has the advantage that, for the correct κ , the term
dU+

DNS/dY − (κY)−1 becomes locally constant in the overlap region, irrespective of the
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Figure 2. Successive approximations of mean velocity derivative dU+
DNS/dY for eight channel DNS: − · −

(grey), Reτ = 934 (del Alamo et al. 2004); − − − (grey), Reτ = 1001 (Lee & Moser 2015); — (grey),
Reτ = 1995 (Lee & Moser 2015); — (dark orange), Reτ = 3986 (Yamamoto & Tsuji 2018); — (yellow),
Reτ = 4079 (Bernardini, Pirozzoli & Orlandi 2014); — (red), Reτ = 5186 (Lee & Moser 2015); — (violet),
Reτ = 8000 (Yamamoto & Tsuji 2018); — (light grey), Reτ = 10049 (Hoyas et al. 2022). (a) Graph of
dU+

DNS/dY − (0.417Y)−1; (b) profiles in (a) minus constant (1.15 + 380 Re−1
τ ) , • • • (blue), wake fit [κ−1 +

1.15 + 380 Re−1
τ ](dW/dY) (2.1), (2.2a–d); (c) profiles in (b) minus wake fit.

value of S0 in (2.1). This is clearly seen in figure 2(a), where (dU+
DNS/dY) − (κY)−1 is

constant in the range 0.2 � Y � 0.45 for κ = 0.417 and Reynolds numbers beyond around
2 000.

The choice of κ = 0.417 fits the profile of Lee & Moser (2015) for Reτ = 5186,
considered among the most reliable, particularly well and is within the estimated range
of uncertainty for the κ values deduced from centreline velocities in Monkewitz (2017,
figure 8) and Monkewitz (2021, figure 6). The only profile in figure 2, which is not well
fitted by κ = 0.417, is the Reτ = 10 049 profile of Hoyas et al. (2022). Possible reasons for
this discrepancy are discussed in Appendix B.

In a second step from figure 2(a) to figure 2(b), the constants in (2.1), [1.15 + 380 Re−1
τ ],

are subtracted, showing that the O(Re−1
τ ) correction consistently reduces the spread

between profiles of different Reτ . In the last step from figures 2(b) to 2(c), the derivative
[κ−1 + 1.15 + 380 Re−1

τ ](dW/dY) of the wake profile is subtracted, demonstrating the
quality of the outer fit (2.1), (2.2a–d).

How much one can be led astray when deducing Kármán ‘constants’ from an
inappropriate region of the indicator function (1.1) is demonstrated with figure 3, which
compares the outer fit of Ξ , obtained from (2.1), (2.2a–d), with the ΞDNS of the six highest
Reτ cases of figure 2.

As already stated in the introduction, the outer expansion of Ξ contains the complete
(2Oinner/1Oouter) overlap (1.2), consisting of log law plus the linear term. Therefore,
the near-wall deviations of the ΞDNS from their linear outer fits, i.e. the ‘humps’ or
‘bulges’ on top of the linear fits in figure 3(a), seen for y+ � 103 necessarily belong to
the inner expansion and not to the overlap. In particular the short, near-horizontal portions
of Ξ within these ‘humps’, seen around y+ of 500 in figure 3(a), are not related to the
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2.2

2.4

2.6
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3.0

3.2

1/0.38

1/0.40

1/0.42

1/0.44

0 2 × 103 4 × 103 6 × 103

2.2

2.4

2.6

2.8

3.0

3.2

0 0.2 0.4 0.6

Y

y+

0.8 1.0

Ξ

Ξ∞

κ

(a)

(b)

Figure 3. Channel indicator functions Ξ from DNS for the six highest Reτ cases of figure 2 (Reτ = 1995
and up). Same colour scheme as in figure 2. (a) Lines and symbols: —, total Ξ versus y+; • • •, linear
overlap fits [κ−1 + (S0 + S1 Re−1

τ )Y] ; - - -, complete outer fits of Ξ for Reτ = 4079 and up (2.1), (2.2a–d);
— (blue), (1/0.417); � (green), y+ = 1200 marking the approximate start of the overlap; � (red), Y = 0.45
marking the approximate end of the overlap. Note that for the lowest Reτ = 1995, the overlap ends before
it starts. (b) Indicator functions in (a), corrected for finite Reτ effects according to (2.1), (2.2a–d), i.e.
Ξ∞ = Ξ − S1Y[1 − dW/dY]/Reτ , versus outer Y; • • • (blue), leading-order linear fit (1/0.417) + 1.15Y;
grey band, variation of linear fit for 0.407 ≤ κ ≤ 0.427.

overlap log law, but correspond to limited, approximately logarithmic inner regions (see
also Monkewitz (2021, figure 12)).

The widespread association in the literature of these inner, nearly horizontal portions
of Ξ with the inner–outer overlap has fuelled years of controversy about the differences
between κ values determined from these features and from the Reτ -dependence of the
centreline velocity, discussed in the introductory § 1. In addition, it has led many authors
to place the overlap layer in channels and pipes too close to the wall. To just cite a carefully
documented example, Lee & Moser (2015, table 2 and figure 3) estimated, for Reτ = 5186,
a κ between 0.384 and 0.387 from the near-wall ‘hump’ of Ξ , tantalizingly close to the
well established κ of 0.384 for ZPG TBLs, reported by Monkewitz, Chauhan & Nagib
(2007) and Nagib & Chauhan (2008), but significantly different from the centreline κ

values for the same data, shown in figure 8 of Monkewitz (2017), for instance.
Figure 3(a) also shows the boundaries of the (2Oinner/1Oouter) overlap, defined as

the locations, where the difference between ΞDNS and the linear overlap fit [κ−1 + (S0 +
S1 Re−1

τ )Y] – the dotted lines in figure 3(a) – falls below a set value, taken here as 0.02.
This choice results in an overlap starting at y+

� 1200 and ending at Y � 0.45, shown
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by green and red squares in figure 3. Note, that with the above criterion, the overlap for
Reτ = 1995 ends before it starts, which means that inner and outer expansions are not yet
sufficiently separated to reveal the functional form of the overlap.

In figure 3(b), the O(Re−1
τ ) contributions to the Ξ of figure 3(a), fitted by S1Y[1 −

dW/dY]/Reτ (see (2.1), (2.2a–d)), have been subtracted to approximate the infinite
Reynolds number limit Ξ∞ of Ξ . What is somewhat surprising in this figure 3(b) are
the remaining rather large differences between the Ξ∞ values. The usual explanation is
that, in terms of y+, Ξ is the product of a small and a large number. However, this is not
so in terms of Y , which means that in current DNS practice, the outer part of the flow
receives less, and possibly not enough attention compared with the near-wall part. Besides
the size of the ‘computational box’ and the numerical scheme, the computational grid is a
likely prominent culprit. This hypothesis is examined in Appendix B.

Confirmation for the above analysis of the channel overlap, as reflected by the Ξ values
obtained from DNS, is sought from experiments. Recognizing that experimental channels
have a finite aspect ratio and a flow development region, one has to assume or hope that
they provide MVPs that are reasonably close to those from DNS. Incidentally, channel
DNS also use spanwise periodic boxes to approximate the infinite aspect ratio, with
their width typically a small multiple of π times the channel half-height, and the effect
of ‘quantizing’ the average aspect ratio of streamwise rolls has, to the present authors
knowledge, not yet been fully explored.

The data sets for this comparison are the experimental data of Zanoun et al. (2003), who
used hotwires combined with the oil film technique to determine the wall skin friction, and
of Schultz & Flack (2013), who used laser Doppler anemometry. These data were obtained
in channels of aspect ratio around 8, comparable to the computational box aspect ratios of
the DNS in figure 3. Their analysis is shown in figure 4. Figure 4(a) and figure 4(b) show
Ξ∞, equal to the full Ξ from experiment minus the Re−1

τ corrections in (2.1), (2.2a–d)
versus Y , and an enlarged view of the wall region versus log y+, respectively. In figure 4(a),
Ξ∞ shows considerable scatter due to the differentiation of experimental MVPs, but the
linear trend is obvious between Y ≈ 0.2 and ≈ 0.5 with a slope of S0 = 1.1, slightly
less than the slope of 1.15 educed from channel DNS. Figure 4(b) shows the near-wall
behaviour of Ξ∞ and clearly reveals the ‘hump’ on top of the linear fit 1.1Y in the data
of Zanoun et al. (2003), between y+ ≈ 100 and close to 103, similar to the ‘humps’ in the
DNS of figure 3. However, for unknown reasons, the data of Schultz & Flack (2013) lack
such a ‘hump’.

Figure 4(c) is the ‘lynch pin’ of the data analysis, demonstrating that, after removing
the linear overlap term, a clear log law [(1/0.417) ln Reτ + 5.5] emerges up to Y ≈ 0.5 .
The ‘hump’ below Y ≈ 103 Re−1

τ , seen in figure 4(b) for the data of Zanoun et al. (2003),
corresponds in figure 4(c) to the data which start to fall below the log law fit, i.e. onto a
slope of higher κ−1.

At first sight, one might think that figure 4(c) contains no new information, since κ is
already used in the linear fit of Ξ∞. However, only the slope of Ξ∞ is used and, when
subtracting [κ−1 ln Reτ ] from U+corr, a wrong κ only produces vertical Reτ -dependent
shifts of the data sets, without affecting their logarithmic slope. Hence, this new method to
determine the best fit κ in the presence of a linear overlap term is both robust and reliable.
This assessment is supported by the uncertainty estimates in § 1 of the supplementary
material is available at https://doi.org/10.1017/jfm.2023.448, and will be confirmed by the
analogous analysis of the Superpipe data in the next § 3.
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Figure 4. Indicator function Ξ∞(Y) and U+∞(Y) minus the linear part of the overlap for two channel/duct
experiments. The subscript ‘∞’ indicates that all data are corrected for finite Reynolds number effects with the
Re−1

τ corrections in (2.1)–(2.4). Hot wire data of Zanoun et al. (2003): + (black), Reτ = 1167, 1543, 1851; �
(grey), Reτ = 2155, 2573, 2888; � (blue), Reτ = 3046, 3386, 3698, 3903; • (dark blue), Reτ = 4040, 4605,
4783. The laser Doppler anemometry data of Schultz & Flack (2013): ♦ (red, increasing size), Reτ = 1010,
1956, 4048, 5895. (a) Graph of Ξ∞(Y): — (green), linear fit (1/0.417) + 1.1Y (note that the fitted S0 = 1.1
is slightly reduced relative to the best DNS fit in (2.2a–d)). (b) Blowup of Ξ∞ versus y+, with linear fits
[(1/0.417) + 1.1 y+/Reτ ] for Reτ = 1167 and 5895. (c) Corrected U+∞(Y) minus linear fit [(1/0.417) ln Reτ +
1.1 Y]; - - - (green), resulting log law [(1/0.417) ln Y + 5.5].

3. The overlap of the indicator function in pipes

Starting again with DNS indicator functions for pipe flow, figure 5 has the same general
shape as for the channel, with a rather clear linear region at higher Reτ , but a slope of
approximately twice the slope seen in figure 3 for the channel. In contrast to the channel
DNS, where the leading-order overlap of Ξ∞ is quite well fitted by the leading-order fit
(1/0.417) + 1.15Y for of all but one profile of figure 3(b), the Ξ values for the pipe in
figure 5 show more substantial differences between the DNS. One likely reason is the
difference of computational schemes – finite differences for the profiles of Pirozzoli et al.
(2021) and spectral elements for those of El Khoury et al. (2013) and Yao et al. (2023).
In addition, the handling of the centreline grid singularity and the order of the numerical
scheme may also have contributed to these differences.
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2.0
0 0.2 0.4 0.6 0.8 1.0

(1/0.425) + 2.75Y
(1/0.385) + 1.95Y

Y

Ξ

Figure 5. Indicator functions Ξ for selected pipe DNS (not corrected for finite Reτ ): — (yellow), Reτ = 999
of El Khoury et al. (2013); − · ·−, − · −, — (violet), Reτ = 1976, 3028 and 6019 of Pirozzoli et al. (2021);
— (red), Reτ = 5197 of Yao et al. (2023); • • • (violet), linear fit (1/0.385) + 1.95Y of Reτ = 6019 profile;
• • • (pink), linear fit (1/0.425) + 2.75Y of Reτ = 5197 profile.

As seen in figure 5, the linear portion of the data of Pirozzoli et al. (2021) for Reτ = 6019
is quite well fitted by [(1/0.385) + 1.95Y], while the most recent data of Yao et al. (2023)
are better fitted by [(1/0.425) + 2.75Y] in the range 0.2 ≤ Y ≤ 0.5 (see also figure 12
in Appendix B). These discrepancies between pipe DNS are clearly more serious than
in channels and do not allow us to determine a pipe κ from the DNS results with any
confidence.

As a consequence, no attempt has been made to determine finite Reynolds number
corrections for pipe MVPs, analogous to those in (2.1)–(2.4) for the channel. Hence, the
functional form of the pipe overlap and centreline velocities in terms of the outer variable
Y simplify to

U+|pipe OL = ln Y
κ

+ ln Reτ

κ
+ B0 + S0Y, (3.1)

U+|pipe CL = ln Reτ

κ
+ B0 + S0 + W(Y = 1), (3.2)

where W(Y) is the pipe wake function.
Turning to experiments, we focus on the Superpipe data (Zagarola & Smits 1998;

McKeon 2003; Bailey et al. 2013) that are probably the most scrutinized experimental data
in turbulence history. Starting with the centreline, the Superpipe data are the only recent
data set which cover nearly two decades of high Reynolds numbers (≥104), allowing a
rather reliable estimate of κ from the Reτ dependence of centreline velocity. While the
near-wall Pitot data have been the object of numerous challenges and corrections (see
for instance Vinuesa & Nagib (2016)), the centreline velocities have remained virtually
unaffected and allows κ to be determined from U+

CL(Reτ ) (3.2). In Monkewitz (2017,
figure 4) the quality of the fit with the original κ = 0.436 of Zagarola & Smits (1998)
was found to be comparable to the one with κ = 0.42, deduced by McKeon (2003), but
the comparative study of Nagib et al. (2019) suggests, that the pipe centreline κ is closer
to the original κ = 0.436 of Zagarola & Smits (1998) than to 0.42.

Since pipe flow is pressure driven like channel flow, it is natural to use the methodology
of § 2 to determine the pipe overlap parameters κ and S0 in (3.1). The Superpipe data,
corrected according to Bailey et al. (2013), are shown in figure 6 in the same format as the
channel data in figure 4, but without subtracting finite Reynolds number corrections from
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Figure 6. Indicator function Ξ(Y) and U+(Y) minus linear part of overlap (3.1) for the Superpipe data of
McKeon (2003) and Bailey et al. (2013): + (black), Reτ < 5.103; � (grey), 5.103 < Reτ < 104; � (blue),
104 < Reτ < 5.104; • (red), 5.104 < Reτ < 2.105; � (purple), 2.105 < Reτ < 5.3 105. (a) Graph of Ξ(Y): —
(green), linear fit (1/0.433) + 2.5Y . (b) Blowup of Ξ versus y+, with linear fits [(1/0.433) + 2.5 y+/Reτ ] for
Reτ = 2000, 25 000 and 250 000. (c) Graph of U+(Y) − [(1/0.433) ln Reτ + 2.5Y]; - - - (green), resulting log
law (1/0.433) ln Y + 5.8.

the data. The indicator function Ξ , shown in panel (a) of the figure, has a clear linear part,
well fitted by [(1/0.433) + 2.5Y], which extends to Y � 0.45. The enlarged view of Ξ in
figure 6(b) versus y+ shows again the ‘hump’ of Ξ between y+ ≈ 102 and approximately
103, similar to the ‘hump’ in one set of experimental channel profiles and in all channel
and pipe Ξ values from DNS.

The scatter of Ξ in figure 6(a) is again relatively large, due to the differentiation of
experimental data, and the uncertainty of the intercept is estimated at [0.433 ± 0.03]−1.
However, as already made clear in § 2, only the slope S0 of Ξ is needed to determine κ

from the logarithmic slope in figure 6(c). This last figure shows a remarkable data collapse
onto the log law [(1/0.433) ln Y + 5.9] over approximately half the pipe radius, with an
estimated uncertainty in κ of ±0.01. Furthermore, no Reynolds number trend of the linear
slope S0 can be detected over the entire range of the Superpipe Reynolds numbers! A more
detailed uncertainty analysis can be found in § 2 of the supplementary material.
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Figure 7. The ZPG TBL Indicator function Ξ(Y) (top) and U+(Y) minus log law [(1/0.384) ln y+ + 4.17]
(bottom): • (yellow, dark yellow, red, dark red), data of Samie et al. (2018) for Reτ = 6, 10, 14.5 and 20 × 103;
• (light blue, blue, dark blue), data of Österlund (1999) for Reτ = 5.5, 6.6 and 7.9 × 103; • • • (increasingly
dark green), data of Nagib et al. (2007) for Reτ = 12.6, 16 and 22.5 × 103 (for this last set, the log law constant
has been increased from 4.17 to 4.32). Fits: — (light blue), Ξ = 1/0.384; — (light green), linear part Ξ =
(1/0.384) + 7.7(Y − 0.11) for 0.11 � Y � 0.45; — (lavender), full fit of Ξ (4.1), (4.2); - - - (light green), fit
7.7[Y − 0.11 − 0.11 ln(Y/0.11)] corresponding to the linear part of Ξ . - - - (lavender), full fit of U+ – log law
(numerical integration of (4.1), (4.2)).

The alternative approach of first determining κ from the centreline velocity (3.2) has
recently been made possible by an upgrade of the CICLoPE pipe (see Nagib et al. (2019),
for a description of the facility) in which reliable hotwire MVPs are available. Knowing κ ,
L0 and B0 can thus be obtained by a linear fit to the overlap MVP (3.1) minus the log law.

Significantly, the slope of the linear overlap term, obtained from the Superpipe profiles
of this section, is roughly twice the slope in the channel overlap profile. This supports
the basic finding of Luchini (2017), that, for sufficiently small pressure gradients, S0 is
proportional to the pressure gradient parameter β ≡ −(L̂/τ̂w)(dp̂/dx̂), equal to 1 and 2
for channels and pipes, respectively. His dimensional analysis was, however, unnecessarily
constrained, as discussed in Appendix C.

4. Comparison with the outer MVP in the ZPG TBL

According to Luchini (2017), the ZPG TBL is the only one of the three ‘canonical’ flows
considered in the present paper, in which the overlap is a pure log law without a linear
component. However, as opposed to channel and pipe flow, the ZPG TBL is slightly
non-parallel. The result is, as argued by Spalart (1988), that the mean advection term
behaves like a non-zero pressure gradient term. It is not clear how this affects the overlap,
but if a linear overlap term should result, it is too small to be seen in the top part of
figure 7, which shows Ξ obtained from the three experimental data sets of Samie et al.
(2018), Österlund (1999) and Nagib, Chauhan & Monkewitz (2007) (note that for the latter
two data sets, the Reτ values have been rescaled to match the definition of boundary layer
thickness by Samie et al.).

The striking difference to figures 4(a) and 6(a) is the clean (within experimental scatter)
overlap log law, with the widely accepted best fit κ = 0.384 of Monkewitz et al. (2007),
which ends abruptly at the outer wall distance of Y = 0.11.

The next part of Ξ(Y) in figure 7, between Y = 0.11 and �0.45 is linear, with a large
slope of 7.7. As this linear part starts at a fixed outer location, it has nothing to do with the
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overlap and its physical origin is different. One likely candidate is the entrainment of free
stream fluid into the boundary layer, as discussed by Chauhan et al. (2014a) and Chauhan,
Philip & Marusic (2014b), for instance. The part of Ξ beyond Y � 0.45 represents the
transition to the free stream where Ξ = 0.

Both logarithmic overlap and linear part of Ξ are seen in the bottom part of figure 7
to provide, upon integration, an excellent outer fit of the MVP up to Y � 0.45. As the
clear division of the outer Ξ into constant and linear parts appears more physical than the
classical wake formulation of Coles (1956), the following full outer fit is proposed:

Ξ(Y)|outer fit =
{

1
κ

+ Λ(Y − Ybreak)H(Y − Ybreak)

} {
1 − Y

dW
dY

}
with H the Heaviside function, κ = 0.384, Λ = 7.7, Ybreak = 0.11

⎫⎪⎬
⎪⎭ (4.1)

and

Y
dW
dY

=
{

1
19

ln
[
1 + exp

(
19 (Y − 0.59)

)] − 1
15

ln
[
1 + 2 exp

(
15 (Y − 0.92)

)]}

×
{

0.92 − 0.59 − ln 2
15

}−1

(4.2)

where Y is defined as in Samie et al. (2018). Equations (4.1), (4.2), upon numerical
integration, yields an excellent outer fit of the MVP in ZPG TBLs, as demonstrated by
the dashed lavender curve in the lower part of figure 7.

5. Conclusions

The main conclusion of the present study is that the overlap of the MVP in channels, pipes
and ZPG TBLs is not universal. This non-universality includes the overlap parameters, as
well as the start or end locations. This non-universality should, however, not come as a
surprise, as the MVP overlap provides the transition between the near-universal part of
the profile in the inner, near-wall region and the geometry-dependent outer part of the
profile. How close to universal the inner parts of the MVP in ZPG TBLs, channels and
pipes really are, still remains to be investigated more thoroughly. At any rate, they could
only be strictly universal in the limit of Reτ → ∞, since the Taylor expansion of U+ about
the wall contains the higher-order term β(2 Reτ )

−1( y+)2 which depends on the pressure
gradient parameter β (see for example Monkewitz (2021, § 3.3)).

Specific results of the present analysis are as follows.

(i) The overlap in channels and pipes does not start until y+
� O(103), as already

discussed by Monkewitz (2021). This follows from the outer expansion of the
indicator function Ξ which must contain the overlap and, for small Y , is a simple
linear function of Y .

(ii) The (1Oinner/1Oouter) overlap of the MVP, i.e. the pure log law, is not useful in
channel and pipe flow, since extreme Reynolds numbers are required to reveal it over
an extended interval of y+.

(iii) To remedy this problem, which is specific to channel and pipe flow, and more
generally to flows with streamwise pressure gradient, one has to resort to the
(2Oinner/1Oouter) overlap, which contains, in addition to the log law, the linear
term S0( y+/Reτ ) ≡ S0Y (see also the discussion in § 1). This (2Oinner/1Oouter)
overlap is clearly seen in channels and pipes for Reτ � 5.103 and extends from
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Figure 8. Dependence of the overlap parameters κ (a) and the slope of the linear term S0 (b) on the pressure
gradient parameter β ≡ −(L̂/τ̂w)(dp̂/dx̂), equal to 1 and 2 for channel and pipe. Blue vertical bars, range of
values deduced from the DNS of figures 3 and 5; red � , baseline fits of the experimental data of figures 7
(ZPG TBL), 4 (channel) and 6 (pipe) with uncertainty estimates elaborated in the supplementary material.
- - - (grey), tentative linear fits.

y+ ≈ 103 to Y ≈ 0.5 with its centre located at the intermediate variable ( y+Y)1/2 ≈
20–25.

(iv) Based on these findings, a new and robust method has been developed to
simultaneously extract κ and S0 from the MVP of pressure-driven flows at currently
accessible Reτ values. This new method yields κ values, which are consistent with
the κ values deduced from the leading-order Reynolds number dependence ln Reτ /κ

of centreline velocities by Nagib et al. (2019), Monkewitz (2017) and Monkewitz
(2021), for instance. As discussed in § 3, it is also possible to first determine κ from
the Reτ dependence of the centreline velocity (3.2), to subtract the log law from the
overlap velocity (3.1), and to obtain L0 and B0 by a linear fit to the remainder. The
present estimates for the dependence of these parameters on the pressure gradient
parameter β ≡ −(L̂/τ̂w)(dp̂/dx̂), equal to 1 and 2 for channel and pipe, are reflected
in figure 8.

(v) As opposed to channel and pipe flows, the outer expansions of Ξ and U+ in the
ZPG TBL feature a clear logarithmic overlap with κ = 0.384, which ends at Y =
0.11 (using the definition of Samie et al. (2018) for the boundary layer thickness).
Beyond the overlap, a linear part of the outer Ξ has been identified in the interval
Y ∈ [0.11, 0.45], followed by the transition to the free stream. A new outer fit with
these features has been presented in § 4.

(vi) Regarding DNS, more higher-quality channel and pipe DNS at Reτ values around
104 with an increased attention to the accuracy of the outer part of the flow are
required to narrow down the values of the overlap parameters in channel and pipe
flows and to fully clarify their asymptotic structure. Increasing the accuracy of
MVPs should have priority over attempts to reach new record Reynolds numbers.
It may also be interesting to perform DNS of high Reynolds number flows situated
somewhere between channel and pipe flow, i.e. in rectangular or elliptic ducts of
different aspect ratio, similar to the simulations of Vinuesa, Schlatter & Nagib (2018)
at low Reτ values.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.448.

Acknowledgements. We are grateful to K. Sreenivasan for the valuable discussions on several points of this
manuscript, to R. Vinuesa for sharing his expertise in DNS, which is reflected in the discussion in Appendix B,
and to J. Yao for providing figure 5 of Yao et al. (2023) in numerical form.
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Figure 9. Contributions of order O(Re−1
τ ) to the channel dU+/dY , taken from figure 4(b) of Monkewitz

(2021): • • • (blue), new fit (2.1), (2.2a–d); · · · (black), previous fit in Monkewitz (2021).
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Figure 10. The DNS mean velocity for the channel DNS of figure 2, minus the outer fit (2.3), (2.4). Same
colour scheme as in figure 2.
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Appendix A. Additional information on the outer expansion of the channel MVP in
§ 2

In § 2, the step from figures 2(a) to 2(b) involved the subtraction of contributions of
O(Re−1

τ ). In Monkewitz (2021), this higher-order correction for the velocity derivative was
modelled by a sin (πY) function, reproduced here in figure 9. This fit has been simplified
in (2.1). The simplified O(Re−1

τ ) fit is seen in figure 9 to be equivalent to the previous
one, except for Y � 0.2 where it cannot be deduced from DNS at currently available Reτ

values.
To further validate the present outer expansion of the channel mean velocity, the MVPs

of the channel DNS used in figure 2 minus the outer fit (2.3), (2.4) are shown in figure 10
to collapse rather well, although individual profiles could obviously be better fitted with
slight adjustments of the parameters. For Reτ values beyond 103, the differences between
DNS and the outer fit are below 0.5 % of centreline velocities, all the way to the inner
boundary of the overlap. The latter can be estimated from figure 10 to be around y+ ≈ 103

(corresponding to Y ≈ 0.15 for the Reynolds numbers in this figure), in accord with the
conclusions of Monkewitz (2021). The outer limit of the overlap is seen in figure 2 to
be located at Y � 0.4–0.45, with the exact value depending on the maximum deviation
allowed between overlap and full profile.
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Figure 11. Grid spacing 
y+ of different channel DNS (right vertical axis) versus y+ compared with two
indicator functions of Yamamoto & Tsuji (2018) (left axis). Left axis: — (orange), Ξ(Reτ = 3986); · · · (light
brown), linear fit (1/0.424) + 1.2Y; - - - (light brown), fit (1/0.395) + 0.65Y; • (light brown), switch between
the two linear fits at y+

� 1300. — (red), Ξ(Reτ = 8000); · · · (dark red), linear fit (1/0.424) + 1.3Y; - - -
(dark red), fit (1/0.405) + 0.85Y; • (dark red), switch between the two linear fits at y+

� 1900. Right axis:
grid spacing for Reτ = 3986 (thick orange dashes) and 8000 (thick red dashes) of Yamamoto & Tsuji (2018)
with location of the change of linear slope of Ξ indicated by bullets. Comparison grid spacings shown for
Reτ = 934 (del Alamo et al. 2004, short green dashes), 1001 (Lee & Moser 2015, long green dashes), 1995 (Lee
& Moser 2015, short blue dashes), 2004 (Hoyas & Jiménez 2006, long blue dashes), 4079 (Bernardini et al.
2014, long violet dashes), 4179 (Lozano-Durán & Jiménez 2014), 5186 (Lee & Moser 2015, pink solid line),
10046 (Hoyas et al. 2022, pink dashes).

Appendix B. Exploring the effect of DNS grid spacing on indicator functions

The differences between the indicator functions from different DNS, seen in figure 3,
are rather large, even after subtracting Re−1

τ corrections in figure 3(b), and call for an
explanation. Here, a correlation with the grid spacing is explored in figure 11, which shows
the distribution of grid spacing 
y+ over the channel half-height for a number of channel
DNS, together with two indicator functions of Yamamoto & Tsuji (2018).

What is striking in figure 11 is the rapid increase of 
y+, reaching 2 already at
y+ = 100, and reaching 10–15 on the centreline. The exceptions are the two DNS of
Yamamoto & Tsuji (2018), where this increase is delayed to y+ ≈ 103. In the group of
DNS without those of Yamamoto & Tsuji, the DNS of Lee & Moser (2015) for Reτ = 5186
has the smallest 
y+ values, while those of Hoyas et al. (2022) for Reτ = 10 049 are
approximately twice as large, which has probably contributed to the ‘untypical’ Ξ for this
case in figure 3.

Unfortunately, the two DNS of Yamamoto & Tsuji (2018) have the largest 
y+ values
close to the wall and use a second-order scheme, which possibly plays a role. Nevertheless,
the distribution of 
y+ values may contribute to the explanation for the scatter in
figure 3(b). In figure 11 the Ξ of these two DNS clearly change slope in the part that
is linear in other DNS. The location of these slope changes, marked in the figure by large
dots, correlates quite well with the location where the respective 
y+ reach a value of
around 4.

A similar phenomenon can be observed in pipe DNS, as demonstrated for example by
the indicator function Ξ of Yao et al. (2023) for Reτ = 5197 in figure 5, shown below in
enlarged form as figure 12. This figure clearly demonstrates a significant change of the
slope of Ξ at Y � 0.29, where the grid spacing 
y+ reaches a value of around 7.
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3.2

3.4

3.6

3.8

0 0.1 0.2 0.3

Y
0.4 0.5

Overall fit of figure 4: 

(1/0.425) + 2.75Y     

Fit for low Y: 

(1/0.408) + 2.34Y

Fit for high Y: 

(1/0.443) + 3.00Y

Ξ

Figure 12. Detail of Ξ(Y) [(red) —] for the pipe DNS of Yao et al. (2023, figure 5) at Reτ = 5197. Lines:
(black) · · · , uncertainty estimates given by Yao et al.; (pink) • • •, overall fit (1/0.425) + 2.75Y of figure 5;
(green) - - -, best fit (1/0.408) + 2.34Y for Y ∈ [0.1, 0.29]; (blue) − · −, best fit (1/0.443) + 3.00Y for Y ∈
[0.29, 0.45].

As the slope of the linear part S0Y of Ξ is proportional to Re−1
τ in a graph of Ξ versus

y+ (see (2.1)), the steepening of the linear part of Ξ in figures 3 and 12 corresponds
to a decrease of the effective Reynolds number. This phenomenon is well known from
the numerical integration of simpler equations, such as the diffusion equation, where
an exaggerated rapid increase of the integration step results in a solution corresponding
to a higher diffusivity. This suggests, that the grid spacing in the outer flow contributes
significantly to the large differences in figures 3 and 12, and should probably be limited
to 
y+ � 3–4. However, the fidelity of a DNS to the true Navier–Stokes solution is also
influenced by a number of other factors, such as statistical convergence (see for instance
Vinuesa et al. (2016)), the order of the numerical scheme, the computational box size, and
the ratio of 
ŷ to the Kolmogorov length, so that further investigations are clearly called
for.

Appendix C. The effect of pressure gradient on the overlap profile – Lucchini’s
analysis and beyond

The result of Luchini (2017), that, for sufficiently small pressure gradients, the coefficient
S0 of the linear term in the MVP overlap is proportional to the pressure gradient parameter
β ≡ −(L̂/τ̂w)(dp̂/dx̂), which equals 1 and 2 for channels and pipes, respectively, can be
justified in different ways.

One possibility is to use the streamwise mean momentum equation

d
dy+

[
Reτ νT

dU+

dy+

]
+ β

Reτ

= 0 (C1)

with a scaled eddy viscosity Reτ νT . Integrating (C1) once, and switching to the outer
coordinate Y yields

νT
dU+

dY
= −βY − K. (C2)
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Integrating (C2) once more with the simple (negative) turbulent viscosity νT = −�Y yields

U+(Y) = β

�
Y + K

�
ln Y + C, (C3)

where �, K and C may depend on β and are simply related to the overlap part of the mean
velocity derivative in (2.1), (2.2a–d) and of the mean velocity in (2.3). In other words,
(C3) is perfectly suited to describe all ‘canonical’ overlap profiles.

As seen below, it is more general than the overlap derived by Luchini (2017), who
used dimensional analysis for the derivation of the β-dependence of the overlap profile.
However, he excluded the channel half-width or pipe radius from the list of variables for
the application of the Buckingham Π theorem, while implicitly keeping the hydraulic
diameter, which is inversely proportional to the pressure gradient. This resulted in
a universal κ , coveted by generations of fluid mechanicians, but not consistent with
experimental evidence (see for example Nagib & Chauhan (2008), Monkewitz (2017) and
Monkewitz (2021)).

Completing Lucchini’s list of variables with the channel half-width or the pipe radius
L̂ to {Ûy, ŷ, ûτ , p̂x, L̂, ρ̂}, one readily obtains the functional relation Π1 = f (Π2, Π3)
between the three non-dimensional Π values:

Π1 = ŷ Ûy

ûτ

, Π2 = −L̂ p̂x

τ̂w
≡ β, Π3 = β ŷ

L̂
. (C4a–c)

Linearizing Π1 = f (Π2, Π3) around β = 0 yields Π1 = κ−1 + BΠ2 + CΠ3 + O(β2).
With L̂ ûτ ν̂−1 ≡ Reτ , this relation integrates to the non-dimensional overlap profile

U+
overlap = 1

κ0 + κ1β
ln( y+) + [B0 + B1β] + β

Reτ

[
C0 y++C1

] + O(β2). (C5)

One readily identifies βC0 in (C5) with the coefficient S0 in (2.1) and (2.2a–d).
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