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SUPERRESOLUTION RATES IN PROKHOROV METRIC 

P. DOUKHAN AND F. GAMBOA 

ABSTRACT. Consider the problem of recovering a probability measure supported 
by a compact subset U of Rm when the available measurements concern only some 
of its O-moments (<X> being an Rk valued continuous function on U). When the true 
O-moment c lies on the boundary of the convex hull of O(CT), generalizing the results 
of [10], we construct a small set Ra,6(e) such that any probability measure /x satisfying 
|| Ju<S>(x)dfi(x) — c\\ < e is almost concentrated on Ra,6(e)- When O is a pointwise 
T-system (extension of r-systems), the study of the set Raj(e) l e a ds t 0 m e evaluation 
of the Prokhorov radius of the set {/x: || Jv 0(JC) dfi(x) — c\\ < e}. 

1. Introduction. Let a be a probability measure supported by a compact subset U 
of Rm. The measure a may model scientifically interesting objects (e.g. an electronic 
density in a crystallographic problem [19]). Suppose we only obtain a finite number of 
noisy generalized O-moments of a: 

(1) c^=Ju^(x)da(x)+C 

Here, O is a given Unvalued function on U and £ is a (possibly random) perturbation 
of magnitude e. Typically, in applied areas O is a trigonometrical system [19]. A re­
construction method ^ is a mapping that associates to each cf> a probability measure 
^HSc^) whose O-moments are close to c£>. In different applications ([13], [19]) it has 
been observed that, for particular a, any reasonable reconstruction method %^ leads to a 
probability measure f^(c^) which is very close to a. This is the so-called superresolution 
phenomenon. 

Motivated by this previous work, the aim of this paper is to give, when superresolution 
occurs, and for small magnitudes e, precise rates on the distance between a and %{(£) 
(for any method !^J. Our answers will deepen and broaden the partial information 
about superresolution scattered about the literature. In [12] the phenomenon is studied 
qualitatively whereas in [11] numerical examples are given. In [5], [7] and [6], rates 
are given in the case where U is a discrete set and for trigonometrical systems. In [8] 
and [17], the rates given concern the Markov problem (i.e. there is an extra restriction 
involving bounds on the reconstructed measure [15]). 

First of all, let us describe more precisely the mathematical background of the problem. 
The convex hull 9C of the hypersurface O(tT) is also the range over probability measures 
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on Uof the O-moments: 

P(U) := {probability measures on U}. 

For c G *K there exist only two possibilities for the set 5(c, 0), of probability measures 
whose O-moments are c: 

1) c G % (the interior of 3Q, the set 5(c, 0) contains absolutely continuous measures 
with respect to P, the uniform probability on U. Moreover, there exists a continuous 
density / such that the probability measure fP lies in 5(c, 0) and VJC G U, f(x) > 
0. Generally speaking, 5(c, 0) contains measures that may be very different, {e.g. if 
U = [0,27r], A: = 1,0(x) = cosx, c = 0 thenP,fi* andS^ lie in 5(c, 0)). 

2) c G d % (the boundary of 5Q, the set 5(c, 0) contains only singular measures 
(with respect to P). Moreover, the support of any member of 5(c, 0) lies in the zero set 
of a particular nonnegative (1,0)-polynomial (that is on {JC G U : (a, 0(JC)) + 1 = 0 } , 
for some particular vector a of R* such that VJC G U: (a, 0(x)) + 1 > 0). 

In the second case we will say that c is weakly determined. In this paper we focus on 
weakly determined points. For such a point c and e > 0, we study the size of the set 

(2) S(c,e) := {/i € P(C7): | j ^ * ( * )< * * *« - c|| < e}. 

An interesting case is when 5(c, 0) reduces to a singleton. It is in this case that su-
perresolution occurs, and we say that c is strongly determined. Indeed, the knowledge 
of c suffices to reconstruct the unique element ac of 5(c, 0). This notion is connected 
with Korovkin Theorems (see [1], Chapter 2). Now, if a strongly determined point c is 
corrupted by a small perturbation of magnitude e and if/x is a probability measure with 
this corrupted O-moment; how far is /x from ac? First, we have to specify a measure of 
the size of 5(c, e). We will use in this paper the Prokhorov distance [20]. Recall that for 
/i, v G P(U) the Prokhorov distance between // and i/, 7r(/i, V), is defined as the smallest 
77 > 0 satisfying 11(A) < viA7*) + rj for any closed subset A of £/, where ^ denotes the 
77-neighborhood of A (A11 = {x G U: rf(x, a) < 77, for some a eA}). 

In [3], Anastassiou calculates, in the case of the real line for Q>(x) = (x, x2) and £ G R, 
the Prokhorov radius 7re of 5((£, £2X e) > where the Prokhorov radius is defined by 

(3) ?re := sup ?r(/i, <7C) 
/i€5(c,e) 

(here 5(c,0) = {crc} = {8^}, in the same frame the Levy radius is calculated in [2]). 
Anastassiou obtains the exact asymptotic Const-e* for 7re. Our main result is a gen­
eralization of the behavior found by Anastassiou (see Corollary 4.2): if O is smooth 
pointwise T-system (see Section 3.2) then in most cases TT€ = 0(e 3) and e 3 = 0(ire). The 
main difficulty in extending Anastassiou's result (only concerned with one point mass 
measures) is to specify the behavior of masses repartitions at each x/s neighborhood 
for any /x G 5(c, e) where JCI, . . . , x\ denote ac's masses. The whole paper is devoted to 
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provide a suitable framework (pointwise ^-systems and superconcentration notions) in 
order to achieve this goal. 

The paper is organized as follows: in Section 2, we introduce our main notations 
and assumptions, we then locate, when c is a weakly determined point, the support of 
any measure lying in 5(c, e). Roughly speaking, for small e any such measure is almost 
concentrated on a same small P-measure set Raj(e) ( s e e Theorem 2.3). In Section 2.3 
rates of concentration depending on the regularity on O are calculated. This improves the 
previous rates given in [10]. In Section 3, we first introduce in subsection 3.2 a suitable 
extension of the notion of T-systems while subsection 3.3 introduces a notion of strong 
superconcentration yielding an extension of the weak superconcentration theorem of 
Section 2 in terms of metric size (instead of P-measure size) of the set Ra,8(e)' Using the 
set Raj(e) yields upper bounds for ire. Finally, in Section 4, we provide lower bounds for 
7r€ directly. 

2. Support of weakly determined points. 

2.1. Assumptions and notations In the paper, U is assumed to be a compact subset of 
Rm with non empty interior; when it is not specified, the induced topology of Rm on U 
is used (e.g. U is open for this topology). We assume throughout the paper that (1, <D) is 
pseudo-Haar, that is: 

(4) V(a,OGHw\{0}, P({xeU:(a,Q>(x)) = Z}) = 0. 

Here, (•, •) is the scalar product on Rk, || • || = ̂ /(-,-) will be the usual Euclidean norm on 
Rk or Rm and #(£, r) will denote the open ball centered at £ and with radius r. For a £ Rk, 
we set ga(x) := (a, 0(x)) + 1, ga is the normalized (1,0)-polynomial constructed with 
a. We define for c, a € Rk and 6 > 0 the following sets: 

!P+ := {a <E R* : ga(x) > 0, VJC G U}, 

# + ( c ) : = { a e # + , ( a , c ) + l = 0 } , 

Raj'-={xeU:ga(x)<8}. 

It is well known (see [15], Chapter III) that a point c € Rk is weakly determined if 
and only if for all a G 2+, (a, c) + 1 is nonnegative and &+(c) is non empty. An other 
characterization of weakly determined points is developed in [9] and [16]. 

2.2. Weak superconcentration theorem 

LEMMA 2.1. Ifc is weakly determined then for any a E 3+(c) and 8 > 0 

sup M(*^)<jlMI, 

where Rc
a^ denotes the complement ofRaj relative to U. 
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PROOF OF LEMMA 2.1. Let d G B(c, e) and a G <P+(c\ then 

l + (a,d) = (a,d-c)<\\a\\\\d-c\\<e\\al 

so that for \i G 5(c, e), Suga(x)v(dx) < e\\a\\. This integral of a nonnegative function 
yields the result using the Markov inequality on the set Rc

ab = {x G U: ga(x) >8}. m 

Define for 8 > 0, e > 0 and a G R* 

(5) M«,e):=inf{^||a||+Fa©}. 

LEMMA 2.2. For eacA e > 0 there exists 8(e) > 0 such that hF(cx,e) = {g^||a|| + 

Fa(8(efj}, moreover lim€—o+
 AF(<*, e) = 0. 

PROOF OF LEMMA 2.2. As (1,0) is pseudo-Haar, Fa(8) decreases to 0 with 8. Since 
| increases to infinity as 8 decreases to 0, we obtain the first point. Choose now 8(e) 
with 8(e)Fa(8(e)) = e||a||, then hF(a,e) < 2Fa(8(e)), moreover 8(e) > e\\a\\ since 
Fa{8(efj < 1. Assume now that 8(e) is bounded below by some constant q > 0, 
uniformly with respect to e: the monotonicity of Fa implies 8(e)Fa(q) < e||a||; now 
Fa(q) > 0 yields a contradiction. So 8(e) converges to 0 with e, and the lemma follows. • 

The following weak superconcentration inequality is now a consequence of the pre­
vious Lemmas 2.1 and 2.2: 

THEOREM 2.3. Assume that c is weakly determined and let a G 2+(c), then 

(6) P(Ram)+ SUP ^ e ) ) < W a , c ) . 
/i€5(c,e) 

REMARK. Note that the previous result implies in turn, 

lims\ipRaMe)=Ra,0. 
e->0+ 

2.3. Rates of weak superconcentration 

DEFINITION2.4. Let 0,CO > 0. A nonnegative function/ on U is called (Co,0)-
weakly concentrated, if for t > 0 small enough: 

(7) P(Atf))<Q>A. 

with At(f) := {x G £/: /(JC) < f}. If Co is not explicit, we will only say that the function 
/ is 0-weakly concentrated. 
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EXAMPLES. 1) Denote v = ^BJffi\ where g is the Lebesgue measure on Rm. Let 
h be a positive continuous function on U and xo G int(U). Then the function/(x) := 
||JC — xo\\meh(x), is (Co, 0)-weakly concentrated for any Co > v[h(xo)]~~e. 

2) Let / be (C„ 0/)-weakly concentrated on Ut in Rmi (i =1,2). Define/ on t/i x I/2 

by/(*b*2) : = / i (* i ) +fi(xi) if*/ G £/;, / = 1,2, then, setting 0 - 1 := 0Jl +0^"1 , / is 
(CiC2,0)-weakly concentrated on f/i x I/2 (indeed, At(f) C ^ ( / i ) x At(f2))\ e.g., if 
(0,0) G Int U C IR2, then/fa, *2) •= |*i \°l + |*2|

02 is (4,0)-weakly concentrated on U. 
3) Le t /be (Co, 0)-weakly concentrated on U. Then,/i(jt,j>) :=/(x), x G t/,j> G Kis 

also (Co, 0)-weakly concentrated on U x V whatever V is. 
4) On U = [-1,1], set/(x) := ( - x f l ^ o + (x^ ' l^o with 0 < u < J < 1, then, for 

Co > 1 , / is (Co, u/)-weakly concentrated and o;-H6lderian. The u;-weak concentration 
condition is not identical to the cj-Holderian condition. 

The main example we shall use in the sequel is given in the frame of the following 
lemma. 

LEMMA 2.5. Letf be a nonnegative C1-function on Usuch that the zero set off, 

Z(f):={xeU:f(x) = 0}, 

has a finite cardinality p, and is not included in d U (boundary of U for the usual 
topology). Assume that the m x m symmetric matrix C^fix) is nondegeneratedfor all 
x in Z(f) and let rj be the minimum on Z(f) of the smallest eigenvalue ofLPf. Then, if 
Co > vp(-)^,fis (Co, ^)-weakly concentrated. 

PROOF OF LEMMA 2.5. A Taylor expansion writes, for y G U and x G Z(f) 

(8) f(y) = Df(x)(y - x) + ^ / ( x ) ( y -x,y-x) + o(\\x - y\\2). 

Any x in Z(f) is a minimum of/ on U hence Df(x)(y — x) > 0 and now as D^fix) is 
positive, there exists s(x) > 0 such that if \ > -

(9) VyeunBfasfrJ), f(y) > xlWI2. 

Z(f) is a finite subset {x\,..., xp} of U, so 

(10) Z ( / ) C K : = U B(xhs(Xi))-
\<i<p 

(At(f)) is a family of compact subsets of U such that f]t>o^t(f) = Z{f) and increasing 
with t > 0. Now a compactness argument proves that for t small enough At(f) C V. Use 
the previous points (9) and (10) yields 

(11) At(f)C U B(xh 
\<i<p V 

which implies setting Co = v\^ the (C0, ^)-weak concentration of/ • 
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We are now in position to precise the rate of weak superconcentration, through trivial 
calculations, according to the weak concentration of ga (where a G !P+(c)), this is the 
aim of the next Theorem. 

THEOREM 2.6. Assume that 
1) c is weakly determined. 
2) There exists a G &+(c) and positive real constants 0, Q such that ga is (Co, 9)-

weakly concentrated. 
LetC := (0||a||C£)^(l + ±), then setting <5F(e) := ( ^ f 1 ) * yields, fore small enough, 

the following bound 

P(RaMe))+ sup ii(R?aMe))<Ce&. 

EXAMPLES. 1) Set U = [0,1] and let c be a weakly determined point. Assume that 
there exists a G 2+(c) with ga satisfying assumptions of Lemma 2.5. This is true for 
example if O is analytic and g^ does not vanish on Rayo {£ {0,1}. Then, ga is 2-weakly 
concentrated and the weak superconcentration rate has order e 3. Note, that this improves 
on previous results of Gamboa and Gassiat ([10]) where the rate obtained was ex for any 
A < | . 

2) Let U := [0,1] and 0(JC) := (JC, x2). Here, the sets of weakly and strongly determined 
points coincide (see Section 3.2) and are given by: 

d9C={(cuc2)eR2 : 0 < c i < l ,c 2 =c?, orc2 = ci}, 

if ci f 0,1 and Q ^ c\ the previous theorem provides the weak superconcentration rate 
e5. For c\ - 0, note that a := (1,0) lies in 2+(c), for this choice of a, ga is 1-weakly 
concentrated, so that the weak superconcentration rate becomes e?. 

REMARK. Notice that if we know some to > 0 such that inequality (7) holds for any 
t < to, then the conclusions of Theorem 2.6 hold for 8p{e) < to. For example, that is true 
if for some a G &+(c) a uniform bound on the third derivative of ga is known. 

3. Upper bounds for the Prokhorov radius. 

3.1. The Prokhorov metric The Prokhorov distance is the metric of the weak topology 
on P(t/), we refer to [20] for the general properties of this distance. When U C Rk is 
compact and for a single delta measure 5^, £ G U, we have that for any \i G P(£/), 

(12) TT(M^) = inf{r > 0 : /x(#(£, r) H U) > 1 - r). 

The following lemma will be useful in the sequel. 

LEMMA 3.1. Let /i/,(T, G ¥(U) be probability measures on U and £; G [0,1] for 
i = 1,...,/? with £1 + • • • + £p = 1 then, 

a) ?r(£iMi + 0 -£i)M2,0-i)<£i+7r(/i2,<7i). 
^ TT(£IMI + • • • + ipVp, Ci^i + • • • + *>>) < max(7r(/ii, a i ) , . . . , 7r(/ip, apj). 
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c) Assume that a\, 02 are discrete probability measures: 

°i :=P\SXl + ••• +P&, 

where x\, . . . x/ G £/, xt ^Xj ifi fj. Then, 

T^ua2)<e:= -(\p\ - q\\ + • • • + \pi - qt\). 

Moreover, equality holds ife < min/^ d(x^Xj). 

PROOF OF LEMMA 3.1. a) If 7 > ir(n2,v\), any closed subset A of U satisfies 

Vi{A) < 7 + oiiA1) hence the result follows by noticing that 

Vim + 0 -ZMiA) < Ci +/x2(^) < Ci +7 + a1(^
7). 

b) Let 7 > max(7r(/ii, a i ) , . . . , ^(/x^, 0^)), any closed subset^ of U satisfies 

^i{A)<l + ai{A1\ i = l , . . . , p . 

The result follows by considering the adequate convex combination of the previous 
inequalities. 

c) First note that e = max^^ ^ Yljipt — qd> The first point follows from the 
definition of 7r. For equality, consider J attaining e in the previous equality then the 
closed setv4 := {x* : i G J} has the property a2(A

e) = (72(A) if e < min,y7d(x^Xj). This 
allows to conclude to the reverse inequality. • 

3.2. Pointwise T-systems Assume first that U = [0,1]. Following [14] and [15], we say 
that O is a T-system, if any nonzero polynomial constructed with (1,0) has at most k 
roots. An equivalent condition is that the determinant 

(13) det 

/ 1 1 -. . 1 \ 
Oi(x0) ®i(*i) ••• Q>i(xk) 

\<D*(x0) $*(*i) •'• * * ( * * ) / 

does not vanish for any pairwise distinct xo, . . . ,x#. A 7-system possesses the nice 
property that any weakly determined point c is also strongly determined. 

More generally, we say that O is a pointwise T-system at some weakly determined 
point c G R* if 

1) There exist an integer 0 < / < k, pairwise distinct points xi, . . . ,x/ G U and 
constants/?i, . . . , / ? /> 0 with/?i + • • • +/?/ = 1 such that 

(14) (JC = p\8Xl + • • • +Pl8Xl G 5 ( c , 0) . 

2) There exists a G 3+(c) such that Ra,o = {x i , . . . , x/}. 
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In the sequel, the set of vectors a such that 2) holds is denoted by 2+(c). 

3) The following matrix has rank / (fall rank) 

(15) 

/ 1 1 . . . 1 \ 

$>i(xx) Oi(x2) •• ®\(xi) 

\<&k(xX) 0*(X2) • ' • * * ( * / ) / 

It is clear that a T-system is a pointwise T-system at any determined point. As 

we shall see in Section 4.2 the pointwise T-system assumption is sufficient for a weakly 

determined point to be strongly determined. Notice that condition 2) implies the necessary 

and sufficient assumption in order that the Korovkin Theorem for measures holds (see 

[1] Theorem 2.2.4. p. 92). 

3.3. Strong superconcentration An alternative to the function defined in (5) may be 

worked out under the pointwise T-system assumption. Define for 8 > 0, e > 0 and 

aeRk 

Ga(8):= sup inf \\x-y\\. 
xeRaJ>y£Ro<fi 

Ma^):=inf{ | l |a | | + Ga(«)}. 

LEMMA 3.2. Assume that O is a pointwise T-system at c. Let a G 3+(c) and 0 < £ < 
\ m m ^ ^ x / ||x, - xy||. LetBSJ := B(xj, 0 HRai8, (j = 1 , . . . , I). 

1) Ford > 0 small enough, (B^J)J=\...I is a partition ofRaj. 

2) For 8 > 0 small enough, 

Ga(8) = max sup ||JC — jcy||. 

3) l i m ^ Ga(8) = 0. 

4) Forj = 1 , . . . , / , Xj lies in the interior ofB^j. 

Thus, Ga(8) is the maximal radius of the clusters of the set Raj. The previous lemma 

may be seen as a Morse Theorem (see for example [18]). It is global while the classical 

Morse Theorem is local and it is general in the sense that we do not require second order 

differentiability. 

PROOF OF LEMMA 3.2. 1) The set Raj n (|jj=i B°{XJ, Q) is compact and decreases 

to the empty set as 8 decreases to 0. So that, there exists 8(Q > 0 such that, Raj C 

Uj=i B(xji 0 a s s o o n as 5 < 5(0. 
2) Let x G Raf then i n ^ a 0 \\x - y\\ = m i n ^ / ^ \\x - y\\ = \\x - Xj\\ for some 

j G { 1 , . . •, / } . Therefore, 

Ga(8)= sup inf ||JC — y\\ < max sup \\x — Xj\\. 
xeRai8y€R«fi J=h~,ixeBgj 
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From previous inequality, Ga(8) < £ whenever 8 < <$(£), so that we may write Ga(8) = 
||JC — JC/II for somey G { 1 , . . . , /} and x G B$j, which implies the reverse inequality. 

3) Follows from 2). 
4) For 8 > 0 andy = 1 • • • /, xj lies in the set {x G U: g(x) < £, ||x — Xj\\ < £} which 

is open and contained in B^j. m 

The previous set function yields a natural counterpart of Lemma 2.2. 

LEMMA 3.3. Assume that O isapointwise T-system at c and let a G &+(c). Then, for 
each e > 0 there exists 8(e) > 0 such that hG(cx^e) = {/jfedMI + Ga(8(e))}t moreover 
lim6_*o+ hG(a, e) = 0 

In order to precise 8(e), we first define an analogue of weak concentration adapted to 
the present framework. 

DEFINITION 3.4. Let 0 > 0 and C0 > 0. A nonnegative function/ on U is called 
(Co, 0)-strongly concentrated, if for t > 0 small enough: 

(16) Gf(At(fj) < Cot* 

where we set G/(A) = s u p ^ inf^z^ ||JC — y\\. If Q is not explicit, we say tha t / is 
0-strongly concentrated. 

EXAMPLES. 1) Going back to the examples of Section 2.2. In example 1 ) , / is 
(Co, m0)-strongly concentrated for any C0 > Wk. Whereas, in example 2), for strongly 
concentrated functions f\Ji,f is (max(Ci, C2), min(#i, #2))-strongly concentrated on 
U\ x U2, e.g.,f(x\,X2) := \x\\01 + |JC21̂ 2 is (l,min(di,02))-strongly concentrated on U 
whenever (0,0) G Int U C R2. 

2) L e t / be a nonnegative function on U = [0,1] such that Z(f) is finite and is 
not a subset of {0,1}, t hen / is 0-strongly concentrated if and only if it is 0-weakly 
concentrated. Indeed, the Lebesgue measure of an interval is its length. 

The following lemma is simple to prove (see Lemma 2.5). It leads to our main example 
in the sequel. 

LEMMA 3.5. Under the assumptions of Lemma 2.5, let Co > / - (i\ is defined in 

Lemma 2.5). Then,f is (Co, 2)-strongly concentrated. 

Now, we provide the strong counterpart of Theorem 2.6. 

THEOREM 3.6. Assume that 
1) d> is apointwise T-system ate G d $C 
2) There exists a G 5+(c) and positive real constants 0 and Co such that ga is 

(Co, 0)-strongly concentrated. 
LetC:= (0||a||C$)^(l + i), then setting 8G(e) := (e-^)& yields, fore small enough, 

the following bound 

Ga(8G(e))+ sup n(Rc
aMe))<C-e&. 

fieS(c,e) 
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3.4. Main theorems Our main result follows. 

THEOREM 3.7. Let <D be an u-Holderian (0 < UJ < I) pointwise T-system at some 
point c G d %. Assume that ga is 0-strongly concentrated for some a G 2+(c). Then, c is 
strongly determined, and there exists a > 0 such that for e > eo > 0 small enough 

(17) 7 r € < a - e * . 

REMARKS. 1) In this result it is enough for O to be a;-H6lderian at the neighborhood 
ofRa,o. 

2) The value of eo involved in the conclusion of Theorem 3.7 is not simple to exhibit in 
our general frame. Indeed, the proof of Lemma 3.2 uses a compactness argument which 
is not constructive. In order to precise eo, we should first obtain an alternative explicit 
Lemma. Assumptions for such a result imply a very strong knowledge of the level sur­
faces of ga for some a G &+(c). However, explicit superconcentration constants may be 
obtained; for example, on the 1-dimensional torus let <D(x) = (cos JC, sin JC, cos 2JC, sin 2JC). 
Let £ G]0, TT], we set c = ±(1 + cos £, sin £, 1 + cos 2£, sin20 then 5(c, 0) = {\(S0 + ^ ) } . 
Here, 2+(c) reduces to a singleton a^ such that \ < ||a^|| < 3. After a few calculations 
we obtain that for e < eo = ^ 

Ga(8G(ej) + sup tfRi )< * c i . 
neS(c,e) C5 

Following the lines of the proof of Theorem 3.7 yields ire < 28(£5 + £~)e3 for e < eo. 
A forthcoming work will be devoted to evaluate explicitly the constants eo and a in 

(17) for the special case of trigonometric functions. 

PROOF OF THEOREM 3.7. From Lemma 3.2, Ra^G(e) = Uj=i B6G(e)j (for small e) and 
Xj G lnt{BsG(ey)9j

 = 1, • • •, /• Theorem 3.6 states that for some constant Co > 0 only 
depending on <D and c: 

(18) sup \\x-xj\\ < Ga(8G(ej) < C0 • e ^ . 
xeBwy 

(19) M ( ^ G ( f ) ) < C o - e ^ forMe5(c,e). 

Any probability measure /i G «5(c, e) may be decomposed as a convex combination of 
probability measures v and /i' with respective supports included in Ra^^RaM^) 

(20) /i = Ai/ + ( l - A ) / / , 

with A := /i(i%,Mc)). 
Using Lemma 3.1 .a) yields 

(21) 7r(/i, ac) < A + 7r(//, ac) < Co • e^r + TIV,<rc). 

Set 
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and let 
CJ' := fif(B6Giell)8Xl + • • • + ii\B6G{€y%n 

where /// is a probability measure with support in BsG(ey- Triangular inequality gives 

(22) 7r(//, ac) < 7r(//, a') + 7r(a', oc). 

Now, it follows from Lemma 3.1. b), and equations (18), (12) that for some constant C\: 

(23) -Kia1, cr') < max ir(uh SXi) < C{ • e&. 

Uniformly with respect to /i E 5(c, e), from relation (19) we obtain, for small enough 
^ > 0 , / i ( ^ , M £ ) ) < i . Hence, 

(24) \AB5G(e)j) - KBSaiey)\ < MKMe)) < 2C<> ' ^ ' 

Use now Lemma 3.1. c) leads with (24) to 

(25) 7r(</, ae) < ^ £ W(B6G(ey) -Pj\ < \ £ | M ( % W ) "Pyl + / • G> • e * . 
2y=i 2/=i 

Let now Z be the linear operator Rl —> R* defined for r G Rl by Zr = £J=1 rjQ>(xj)9 from 
the pointwise T-system assumption (see Section 3.2 matrix (15)), there exists a constant 
C2 > 0 with 
(26) VrGRMHI <C2 | |2>||. 

Set now/7 = (pj), q = (M(^G(OI/)) • Then, c = Lp and since /x G 5(c, e), || / O<//i — c|| < e. 
Now, by the triangular inequality 

(27) | [Odfi - Lq\\ < | / OrfJ + E l L (<*>« - *(*y)) ^W||. 

As $ is o;-Holderian, using relation (19) there exists C3 > 0 with 

(28) J/ d,^||<C3.A 

(29) 1 / (0(x)-0(xj))dKx)\\ < C3/i(5Me)5/)( sup | | x - x y | | r 

Collecting inequalities (18), (27), (28) and (29) leads with (25) and (26) to the existence 
of a constant C4 with: 
(30) 7 r ( a > c ) < C 4 - e ^ . 

Now, using (21), (22), (23) and (30) leads, for a constant a > 0, to 

(31) 7r ( /* , t f c )<f l . e* . 
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COROLLARY 3.8. Under the assumptions of Theorem 3.7, ifac is a Dirac mass at 
point x\ then 
(32) 7 r e < a - e ^ . 

COROLLARY 3.9. Assume that <D is a T-system onU - [0,1]. Let c be a determined 
point. Assume that there exist a G &+(c) and 6 > 0 such that ga is 0-strongly concen­
trated. Then, ifQ> is uj-Holderian there exists a constant a > 0 such that for e > 0 small 
enough (17) holds. 

PROOF OF COROLLARY 3.8. Only notice that here a' = oc = 8Xl and use inequalities 
(18)-(24) to conclude. 

REMARKS. 1) Lemma 3.5 provides a sufficient condition for 2-strong concentration. 
2) Anastassiou ([3]) considers the set up of Corollary 3.8 in the special case 0(JC) := 

fojc2), hence 0 = 2. He obtains the exact asymptotic C • e* for the Prokhorov radius. 
Now, Corollary 3.8 gives the decay rate for this particular case. 

3) Theorem 3.7 applies for the following classical T-systems: 

(33) <D(x) = (cosJC, s in*, . . . , COS/?JC, sinpx), (k = 2/), U = [0,2ir] 

(34) 0>(x) = ( x , x 2 , . . . , A l /= [0 , l ] . 

In the case (33) 0 = 2, u = 1 and the Prokhorov rate bound is 0(e?). Whereas in the case 
(34), the Prokhorov rate bound can be 0(e 5) or 0(e 2) (the second bound holds whether 
the support of ac is a subset of {0,1}). 

4) A non trivial example in m dimensions is the following. Set U = [—7r, 7r]m 

and ^(x 1 , . . . ,y") := (cos*1 , . . . , COSJC7"), then the point c = ( 1 , . . . , 1) is such that 
5(c, 0) = {80} and now a = (; j j , . . . , ^) G 2+(c) yields an upper bound for the Prokhorov 
radius with the rate 0(e3). 

4. Lower bounds for the Prokhorov radius. The main theorem of this section 
involves the following assumption: 

A(x, u) 3w0, K > 0, Vw, |uI < wo => ||0(JC + w) + <D(JC - w) - 20(JC)|| < 2AT|W|a;. 

Notice that this assumption holds for 0 < u) < 1 if O is cj-Holderian and for 1 < UJ < 2 
whenever Or is (u — 1)-H6lderian. This condition is usually called a Zygmund condition 
(see [4], p. 52). 

THEOREM 4.1. Letc£ 9£ such that: 
1) crc := Ej=1 PjSXj lies in 5(c, 0) with p\ f 0, 
2) A(x\, J) holds for some u>0, 
3) x\ lies in the interior ofU (for the standard topology on Rm). 

Then, there exist a > 0, CQ > 0 such that e < eo implies: 

7r(/x, ac) > a • e1+w, for some \i G 5(c, e). 
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Using Theorems 3.7,4.1 and Lemma 2.5 yields: 

COROLLARY 4.2. Assume that O is C2 on U. Assume that O is apointwise T-system 
at c and that the support ofoc is not a subset ofd U. If there exists a G &+(c) such that 
Lfiga has full rank on Ra$. Then, there exist to, A > 0 such that: 

A~l -e* <7re <Ae^ if e <e0. 

Replacing now Lemma 2.5 by a general assumption implies: 

COROLLARY 4.3. Assume that O is u-Holderian. Moreover, assume that O fulfills 
assumptions of Corollary 3.8 and Theorem 3.7, with 6 = u. Then, there exist to, A > 0 
such that: 

A~x • e ^ < 7Te <A - c~l ife < CQ. 

PROOF OF THEOREM 4.1. Set/z := Ajzi+(1 —A>rc with/ii := s**^ ,x+ :=x\+ue^9 

x~ := x\ — ue~i, u € Rm \\u\\ = 1 and A := K~l • e~K For e small enough, x+,x~ both 
lie in U. Now, assumption A{x\,uS) ensures that \i lies in 5(c, e) as soon as e is small 
enough. Therefore, 7r(/i, ac) > infEe with 

£ £ :={ />0 :a c ({x 1 })< / i ({x 1 } / ) + 4 . 

But, as 7r(/x, ac) vanishes with e, we may assume that t < min,yi |JCI — JC/|. Thus 

Ee = j / > 0 : ^({x!}) < MI({^I}")
 + {}• 

This leads to the conclusion with a = min(^-, 1). • 

EXAMPLE AND REMARK. 1) Any smooth T-system on U = [0,1] such as trigono­
metric or polynomial system provides the exact rate e* (as soon as the support of ac is 
not a subset of {0,1}). 

2) In the case of an a;-H6lderian function O with u < 1 the previous lower bound 
and the upper bound of Section 3 do not have the same rates. It seems reasonable to think 
that the main hole is on the upper bound but the method used here does not seem to be 
improvable up to such rates. 
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