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GENERIC DIFFERENTIABILITY OF
LOCALLY LIPSCHITZ FUNCTIONS ON PRODUCT SPACES

J.R. GILES

Although it is known that locally Lipschitz functions are densely differentiable on
certain classes of Banach spaces, it is a minimality condition on the subdifferen-
tial mapping of the function which enables us to guarantee that the set of points
of differentiability is a residual set. We characterise such minimality by a quasi
continuity property of the Dini derivatives of the function and derive sufficiency
conditions for the generic differentiability of locally Lipschitz functions on a prod-
uct space.

1. INTRODUCTION

A real valued function ij) on an open subset A of a normed linear space X is locally
Lipschitz if for each XQ £ A there exists a KQ > 0 and So > 0 such that

\1>{X) - rl>(y)\ ^ K0\\x-y\\ for all x,y £ B{x0; 60).

The function ij) is Gateaux differentiable at x £ A in the direction y £ X if

r il>{x + \y) i/){x)
= hm ^ '-

exists and is Gateaux differentiable at x £ A if it is Gateaux differentiable at x in all
directions y £ X and i>'{x) is a continuous linear functional on X. The function if)
is Frechet differentiable at x £ A if it is Gateaux differentiable at x and the limit is
approached uniformly for all y £ S(X). A Banach space X is said to be smoothable
if there exists an equivalent norm on X which is Gateaux differentiable everywhere
except at the origin. A Banach space X is an Aaplund space if every continuous convex
function on an open convex subset of X is Frechet differentiable on a residual subset
of its domain.

The determination of differentiability properties of locally Lipschitz functions is
particularly important for applications in optimisation. The differentiability of a locally
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488 J.R. Giles [2]

Lipschitz function ij) on an open subset A of a normed linear space X is studied using
the Clarke directional derivative

u(x)(y) km sup i r̂  —,0/ M \ ri>u(x)(y) = km sup
z-tx A

A-.0+

at each x S A in the direction y £ X and ^"(^Xl/) ls a continuous sublinear functional
in y. The Clarke subdifferential

di/>°(x) = {f£X*: f(y) ^ i>\x)(y) for all y 6 * }

at each a; £ A, is a non-empty weak* compact convex set.

The key result generalising the classical Rademacher Theorem from Euclidean to

Banach spaces was given by David Preiss, [14].

PREISS ' THEOREM. A locally Lipschitz function ip on an open subset A of a

smoothable (Asplund) space is Gateaux (Frechet) differentiable on a dense subset t)

of A and the Clarke subdifferential is generated by the Gateaux (Frechet) derivatives;

that is, given x £ A

: z e B(x; r)flD}.
r>0

However, the set of points of differentiability need not be a residual subset of the domain
and this can inhibit our analysis.

A set-valued mapping $ from a topological space A into subsets of a linear topo-
logical space X is upper semi-continuous at a G A if given an open subset W of X

such that $(a) Q W there exists an open neighbourhood U of a such that $(U) C W.

When $ is upper semi-continuous on A and $(a) is convex and compact for each
a E. A we call $ a cusco on A. We say that $ is a minimal cusco on A if its graph
does not contain the graph of any other cusco with the same domain.

For a locally Lipschitz function tj) on an open subset A oi a normed linear space
X, the Clarke subdifferential mapping x H-> dif>°(x) is a weak* cusco on A but is not
in general a minimal weak* cusco.

A locally Lipschitz function ij) on an open subset A of a normed linear space X

is said to be strictly differentiable at x 6 A in the direction y £ X if

A—0+

exists and is said to be strictly differentiable at x if it is strictly differentiate at x in all
directions y £ X. Further, ij> is said to be uniformly strictly differentiable at x if this

https://doi.org/10.1017/S0004972700014969 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014969


[3] Locally Lipschitz functions 489

limit is approached uniformly for all y £ S(X). Obviously, if ij> is strictly differentiable

at x £ A then ij> is Gateaux differentiable at x. Further, if tp is uniformly strictly

differentiable at x 6 A then tj} is Frechet differentiable at x.

Clearly, i}> is strictly differentiable at x £ A if and only if dif)°(x) is singleton. But

also, ij> is uniformly strictly differentiable at x £ A if and only if dij}°{x) is singleton

and the subdifferential mapping x i-» dij)°{x) is norm upper semi-continuous at x, [5,

p.374]. With certain minimal weak* cuscos we can associate significant residual subsets

of the domain.

PROPOSITION 1 . 1 . Consider a minimal weak* cusco $ from a Baire space A

into subsets of the dual X* of a Banach space X .

(i) If X is smoothable then $ is single—valued on a residual .subset of A,

[15].

(ii) If X is Asplund then <f is single—valued and norm upper semi—continuous

at the points of a residual subset of A, [12, p.106].

The implications for differentiability of locally Lipschitz functions are immediate.

COROLLARY 1 . 2 . A locally Lipschitz function tj) on an open subset A of a

smoothable (Asplund) space X is strictly (uniformly strictly) differentiable on a residual

subset of A if the subdifferential mapping x i—> dip°(x) on A is minimal.

To establish this minimality for the subdifferential mapping can be a problem so
there is considerable value in determining properties sufficient to guarantee it. Some
work has already been done in this area, [1, 2, 3] and more recently [11].

Here we give a characterisation of minimality for the subdifferential mapping using
quasi continuity and provide two sufficiency conditions for minimality on a product
space. This in turn enables us to deduce sufficiency conditions for the generic differen-
tiability of locally Lipschitz functions on a product space.

2. A CHARACTERISATION OF MINIMAL SUBDIFFERENTIAL MAPPINGS

The minimality of a cusco has the following useful characterisation, [8, p.252].

LEMMA 2 . 1 . A cusco $ from a topological space A into subsets of a separated

locally convex X is a minimal cusco if and only if for any open set U in A and open

half-space W in X where #( t / ) fl W ^ 0, tAere exists a non-empty open set V C U

such that ${V) C W.

PROOF: Suppose that $ is a minimal cusco on A and for an open set U C A

and open half-space W we have $(U) f l f / i If there exists a n o g U such that
$(a) C W then by the upper semi-continuity of $ there exists a non-empty open
neighbourhood V of o such that $(V) C W. If not, then $(a) D C(W) ^ 0 for every
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a E U. Consider the set-valued mapping \P from A into subsets of X where

(a) n C(W) for a £ U= j
Then f is a cusco on A whose graph is contained in that of $. But this contradicts
the minimality of $

Conversely, suppose that $ is a cusco which is not minimal. Then there exists a
cusco \P whose graph is contained in that of $ but for some ao € A there exists an
a?o £ 3?(ao) \ ^(oo)- Since \P(ao) is convex and compact there exist disjoint open half
spaces W\ and W2 such that \t(a0) C W\, and a;0 £ W2. Since * is upper semi-
continuous at ao there exists an open neighbourhood U of ao such that ^l{U) C Wi.
But then 9(U) f W 2 ^ 0 and *(a) n C(W2) ^ 0 for all a e U. D

The minimality of a weak* cusco can be characterised by the minimality of associ-
ated cuscos into subsets of the real numbers, [11, Proposition 1.4].

LEMMA 2 . 2 . Consider a weak* cusco $ from a topological space A into subsets
of X* the dual of a Banach space X . Then $ is a minimal weak* cusco if and only
if for each x 6 S(X) the set-valued mapping Tx from A into subsets of M. where
a i—» 1*3(0) = x ($(a)) is a minimal cusco.

PROOF: Suppose that $ is a minimal weak* cusco on A. Given x £ S(X) it is
easy to see that Tx is a cusco; we show that Tx is minimal. Given a £ R and an
open set U in A such that TX{U) D (a,00) ^ 0 then for some a £ U and / £ $(a)
we have x(f) > a. Consider W the open half-space, W = {/ £ X* : f(x) > a } . Now
$(Z7) D W 7̂  0. But since $ is a minimal weak* cusco, from Lemma 2.1 there exists a
non-empty open set V C U such that $(V) C W. That is, x ($(0)) > a for all a £ V
which implies that TX(V) C (a, 00). A similar argument applies for subsets of M. of the
form (—00,a) and we conclude from Lemma 2.1 that Tx is a minimal cusco on A.

Conversely, suppose that $ is not a minimal weak* cusco on A. Then there
exists a weak* cusco $ on /I whose graph is strictly contained in that of $ . So
there exists an ao £ A such that \P(ao) ^ $(ao) and an xo £ S(X) such that max
xo (3>(ao)) > maxzo (\P(ao)). Now consider the two set-valued mappings Txo and SXo

from A into subsets of E where a H-> TXQ(a) = x0 ($(a)) and a H-» SXo(a) = x0 (\P(a)).
Clearly, Sxo(a) C Txo(a) for all a e A. However, max 5IO(ao) = maxio($(so)) <
max So (^(°o)) = maxTxo(ao) so 5IO(ao) ^ TIO(ao) and we conclude that TXQ is not
a minimal cusco on A. u

For a locally Lipschitz function ip on an open subset A of a normed linear space
X, the upper Dini derivative of rj> at x £ A in the direction y £ X is

/+/• v A r V"(a: +Ay) - ^ ( z )
V1 (z)(y) = hmsup —1 -i i-i

A—0+ A
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and the lower Dini derivative of ijj at x £ A in the direction y £ X is

== lunurf - i ^ s-A

An equivalent formulation for the sub differential of ip at x £ A is

0V°(z) = { / £ * * : -(-V0°(z)(2/) < /(y) < tf°(z)(y) for all y

and we note that

-{-if) {x)(y) = hminf - i f '-.
A-.0+ A

It is convenient to express the Clarke directional derivatives in terms of the direc-
tional and Dini derivatives, [7, p.837].

LEMMA 2 . 3 . Consider a locally Lipschitz {unction tp on an open subset A of a
normed linear space X. Given y G X and x £ A,

= Umsup V+

where Dy is the set of points in A where -0 is Gateaux differentiable in the direction

y-

PROOF: Clearly, ij>0(x)(y) ^ limsupV'+(2)(j/) Js h'msup'0'(z)(2/). But also, given

e > 0, in any neighbourhood of x there exists a zo £ A and Ao > 0 such that
zo + Aoy £ -4 and

Consider V1 restricted to the interval [zo>zo+Aoy]. Since ij) is locally Lipschitz it follows
from Lebesgue's Differentiation Theorem that there exists a 0 ̂  Ai ^ Ao such that

So limsup'0+(z)(j/) ^ ]im sup ip'(z)(y) ^ ^"(^JCv) a n ( l o u r ^IS^ result follows.

Now for aU z £ A and v £ X, _(_^)°(as)(y) = -^°(x)(-») and ^~
+ . So -(-0)°(x)(y) = -limsup^'(a)(-») = liminf ^'(z)(»). But also

= - l imsup(—0)'(z)(y) = -l imsup(-V>)+(z)(y) = liminf V>
i 2 » r
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From Preiss' Theorem we see that for a locally Lipschitz function on an open
subset of a smoothable (Asplund) space the subdifferential is generated by the dense
set of derivatives of the function and so in this case we have a tighter result.

LEMMA 2 . 4 . Consider a locally Lipschitz function rp on an open subset A of a
smoothable (Asplund) space X. Given y £ X and x £ A,

= \imsup-ip+(z)(y)

=Kmin£ t'{z){y) =liminf tf

where D is the set of points where if) is Gateaux (Frechet) differentiate on A.

Consider a real valued function <f> on a topological space A. Now <f> is said to be
quasi upper semi-continuous at CLQ £ A if given e > 0 and an open neighbourhood U
of oo, there exists a non-empty open set V C U such that <j>{a) < <J>{O.Q) + e for all
a £ V, and is said to be quasi lower semi-continuous at ao £ A if — (j> is quasi upper
semi-continuous at ao. The function <f> is said to be quasi continuous at ao £ A if
given e > 0 and an open neighbourhood U of ao, there exists a non-empty open set
V C U such that

<j>{a0) - e < <j){a) < 4>{a0) + e for all a £ V,

If <j> is quasi upper semi continuous on a Baire space A then <f> is continuous on a
residual subset of A, [4, p.369].

We now present our characterisation for minimality of the Clarke sub differential
mapping in terms of quasi-continuity. The result is similar to that given in [11, Theorem
2.14].

THEOREM 2 . 5 . For a locally Lipschitz function rf> on an open subset A of a
normed iinear space X, the following are equivalent.

(i) the Clarke subdifferential mapping x H-> dip°(x) is a minimal weak* cusco
on A,

(ii) for each y £ X, ip+(x)(y) is quasi upper semi-continuous on A,
(iii) for each y £ X, ip~(x)(y) is quasi lower semi-continuous on A,
(iv) for each y £ X, ip'(x)(y) is quasi upper semi-continuous on Dy,
(v) for each y £ X, ip'(x)(y) is quasi lower semi-continuous on Dy ,

where Dy is the set of points in A where ifi is Gateaux differentiate in the direction

y-

PROOF: (i) => (ii) Given x £ A and e > 0 and any neighbourhood U of x there
exists a non-empty open set V C. U such that

+ e) for all z £ V.
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Then for each z' £ V there exists an open neighbourhood V' of z' where V C V such
that

^+{z){y) < -(-i>)°(x)(y) + e < i>+{x)(y) + e for all z £ V;

that is, ip+{x)(y) is quasi upper semi-continuous on A.

(i) => (iii) Given x £ A and e > 0 and any neighbourhood U of x there exists a

non-empty open set V C U such that

-(-tf )"(*)(»), tf°(*)(y)] Q (r(*)(y)-e,°°) for all z e v.

Then as in (i) => (ii) we deduce that ip~(x){y) is quasi lower semi—continuous on A.

(ii) =>• (iv) and (iii) =J> (v). It follows from Lebesgue's Differentiation Theorem

that Dy is dense in A and so we have these results.

(iv) <=> (v) Given x 6 Dy, ij)'(x){y) = —ip'(x)(—y). So ^>'(z)(— y) is quasi upper

semi-continuous on Dy if and only if i>'{x){y) is quasi lower semi-continuous on Dy.

(iv) => (i) Given x £ A and e > 0 and any neighbourhood U of x, by Lemma 2.3

there exists an x' £ U D Dy such that

Since ip'(x)(y) is quasi upper semi-continuous at x', there exists a non-empty open

set V C U such that

i>\z)(y) < V-'(x')(y) + | for all z £ V n Dv.

But then

2

So
r n / _ \

for all z G V.

Now tf°(:c)(-y) = (-^)°(*)(») and - ( - 0 ) ° ( x ) ( - y ) = - ^ ° (x ) (» ) . So applying our
results to — y £ X and x £ A and neighbourhood U of x there exists a non-empty
open set V C. U such that

that is,

[-*"(*)(»).(-tf)°(*)(»)] C (-oo,-^0(*)(») + e) for aU z £ V.

So

[ ° ] - e .oo ) for aU z £ V.
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We conclude that the Clarke sub differential mapping x H-> dij)°(x) is a minimal weak*
cusco on A. U

Using Lemma 2.4 we have a tighter result for a locally Lipschitz function on an
open subset of a smoothable (Asplund) space.

THEOREM 2 . 6 . For a locally Lipschitz function if) on an open subset A of a

smoothable (Asplund) space X, the Clarke sub differential mapping x i—> dij)°(x) is a

minimal weak* cusco on A if and only if for each y £ X, if>'(x)(y) is quasi upper semi-

continuous on D, the set of points in A where if) is Gateaux (Frechet) differentiate.

The proof in one direction follows from Theorem 2.5 (i) => (iv). In the other
direction it is similar to Theorem 2.5 (iv) =>• (i) but using Lemma 2.4.

A locally Lipschitz function i(> on an open subset A of a normed linear space X

is strictly differentiable at x G A in the direction y 6 X if and only if ij)+(x)(y) is
continuous at x [7, p.837]. Using the fact that, given a; 6 A, if>+{x)(y) is continuous
in y, [6, p.207] and the generic continuity of quasi upper semi-continuous functions,
we can make the following deduction.

COROLLARY 2 . 7 . For a locally Lipschitz function ip on an open subset A of a

separable Banach space X, if the subdifferential mapping x <—» di/)°(x) is minimal then

if) is strictly differentiable on a residual subset of A.

We should note that such a result is not true for non-separable spaces. On
£oo the semi-norm p defined for x = {xi,X2,... , z n , . . . } by p{x) — hmsup|xn | ,
has a minimal subdifferential mapping x H-> dp(x), but p is nowhere Gateaux dif-
ferentiable, [12, p.13]. Further, the converse of Corollary 2.7 does not hold in
general. Pompeiu [13], has given an example of a real valued differentiable func-
tion tf> with a bounded non-negative derivative on an interval (a, b) where the sets
{x G (a, 6) : ip'{x) = 0} and {x G (a, b) : i/;'(x) > 0} are both dense in (o,6). Clearly at
each point of {x G (a, b) : ip'(x) > 0}, if)' is not quasi lower semi-continuous and so the
subdifferential mapping x t—• dip°(x) is not minimal. However, since if> is differentiable
on (a, b), if} is strictly differentiable on a residual subset of (a, 6), [6, p.210].

At this stage it is worth noting that a real valued differentiable function ij) on an
interval (a, b) with derivative ij>' continuous almost everywhere, has ip' quasi continuous
on (a,6), [9, p.974], and so has a minimal subdifferential mapping x i—» dip°(x). On
the other hand there exists a real-valued function ij) on (a, b) with bounded derivative
which is quasi continuous on (a, 6) but where the derivative is discontinuous on a set
of positive measure, [9, p.975].

A locally Lipschitz function ^ on an open subset A of a normed linear space X

is said to be pseudo-regular at x G A in the direction y G X if i>+(x)(y) = if)°(x)(y)

and pseudo-regular at x if it is pseudo-regular at x in all directions y G X. Since
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= limsup/0+(z)(y), it follows that ip is pseudo—regular at x £ A in the
z—>x

direction y £ X if and only if ^+(a;)(j/) is upper semi-continuous at x, [7, p.836]. So
we can make the following deduction, [11, Theorem 2.5].

COROLLARY 2 . 8 . A locally Lipschitz function ij) which is pseudo-regular on
an open subset A of a normed linear space X, has a minimal sub differential mapping
x i-> dtfi°(x) on A.

3 MINIMAL SUBDIFFERENTIAL MAPPINGS ON PRODUCT SPACES

Given topological spaces X, Y and Z and a function 0 from X x. Y into Z, we
define for p 6 X, the function #p from Y into Z where

0p{y) = 0{p,y)

and for q £ Y, the function 5, from X into Z where

0q(x) = 0(x,q).

The following lemma relates separate and joint quasi continuity modelled on the proof
of a similar result, [10, p.39].

LEMMA 3 . 1 . Consider a real valued function 0 on X x Y where X is a Baire
space and Y is second countable. If 0X is quasi upper semi—continuous on Y for all
x £ X and 0y is both quasi upper and quasi lower semi—continuous on X for all y £ Y
then 0 is quasi upper semi-continuous on X x Y.

PROOF: Suppose that 0 is not quasi upper semi-continuous at (p,q) £ X x Y.
Then there is an r > 0 and a neighbourhood U x V of (p, q) such that in every
non-empty open subset of U x V there exists an (x,y) such that

0(x,y)>0{p,q) + r.

Since 0q is quasi upper semi—continuous at p, there exists a non-empty open set E C.U
such that

0(x,q) < 0{p,q) + \ for all x £ E.

Consider V a countable base for Y and {Vn : n £ N} those elements from V contained
in V. For each n £ N, write

An = [x £ E : 0{x,y) < 0(x,q) + T- for all y £ Vn} .
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Consider x G E. Since 9X is quasi upper semi-continuous at g there exists a non-
empty open set F C V such that 0(x,y) < 0(x,q)+r/3 for all y G F. But there exists

oo

A; G N such that Vk C F. So x G Ak and E = \JAn.
1

Consider E' a non-empty open subset of E and n G N. Then .E' x Vn C tf x Vn

and there is a (x',y') e E' x Vn such that fl(x',j/') ^ 0(p,g) + r. Since 0yi is quasi
lower semi-continuous at x', there exists a non-empty open set E" C E' such that

0(s,2/') > 0(x',y') - \ for all x G £".
o

For x G £" ,

0(x,y') > 0(x',y') -T-> 6(p,q) + y > $(x,q) + | .

But since y' £ Vn then x g An and so E" fl 4 n = 0. Therefore, An is nowhere dense
and E is of first Baire category. This contradicts the fact that X is a Baire space. D

This Lemma with Theorem 2.5 gives an improved sufficiency theorem for minimal
subdifFerential mappings of locally Lipschitz functions on certain product spaces.

THEOREM 3 . 2 . Consider a locally Lipschitz function ij> on a product space X x
Y where X and Y are Banach spaces and Y is separable. The subdifFerential mapping

(x,y) i—> di/)°(x,y) is minimal on X x Y if given (u,v) G X x Y, for each p G X,

ip+(p,y)(u,v) is quasi upper semi-continuous on Y and for each q €Y, tp+(x,q)(u,v)

is both quasi upper and quasi lower semi-continuous on X.

From Theorem 3.2 and Proposition 1.1 we can deduce the following generic differ-
entiability properties of locally Lipschitz functions on a product space.

COROLLARY 3 . 3 . Consider a locally Lipschitz function ij> a product space X x

Y where X and Y are Banach spaces and Y is separable and ip satisfies the hypothesis

of Theorem 3.2.

(i) If X is smoothable, then r/j is strictly differentiate on a residual subset

ofXxY.

(ii) If X is Asplund and Y has separable dual, then ij> is uniformly strictly

differentiate on a residual subset of X xY.

PROOF:

(i) If X is smoothable and Y is separable, then Y is smoothable and so
X x Y is smoothable.

(ii) If X is Asplund and Y has separable dual, then closed separable sub-
spaces o f l x K have separable duals and X x Y is Asplund, [12, p.32].

Our result now follows from Proposition 1.1 and Corollary 1.2. u
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Theorem 3.2 provides a test for minimality for locally Lipschitz functions on a
product space using the behaviour of associated functions on each of the component
spaces. Our other theorem gives a similar result using the behaviour of derivatives in
component directions.

THEOREM 3 . 4 . Consider a locally Lipschitz function ip on an open subset A of

a smoothable (Asplund) product space X x Y where X and Y are Banach spaces.

The subdifferential mapping (x,y) i-» &ip°[x,y) is minimal on A if one of ip'(x,y)(u,0)

and ip'(x,y)(0,v) is upper semi-continuous on D and the other is quasi upper semi-

continuous on D where D is the set of points in A where tp is Gateaux (Frechet)

differentiate.

PROOF: Given {u,v) £ X x Y and {x,y) G D then

i]>'{x,y){u,v) = TJ,'(x,y){u,0) + r(,'(x,y)(0,v).

It follows that ip'(x,y)(u,v) is quasi upper semi-continuous on D and Theorem 2.6
gives our result. U

In particular, ip satisfies the hypothesis of this theorem when rp is pseudo-regular
on X x Y, in directions (u,0) and (0,1;), [6, p.837]. So Theorem 3.4 can be considered
to be a generalisation of Corollary 2.8.

From Theorem 3.4 and Proposition 1.1 we can deduce generic differentiability prop-
erties.

COROLLARY 3 . 5 . A locally Lipschitz function ip on an open subset A of a

smoothable (Asplund) product space X xY where X and Y are Banach spaces and ip

satisfies the hypothesis of Theorem 3.4, has ip strictly (uniformly strictly) differentiable

on a residual subset of A.

It is a classical result that a real valued locally Lipschitz function on Euclidean space
with continuous partial derivatives at a point is strictly differentiable at the point. A
proof of this follows from the more general local result.

THEOREM 3 . 6 . Consider a locally Lipschitz function ip on an open subset A

of a a product space X x Y where X and Y are normed linear spaces. If ip is

strictly differentiable at (xo,yo) in both directions (u,0) and (0,i>) then ip is strictly

differentiable at (xo,yo)-

PROOF: Consider / £ dip°(xo,yo)- Since ip is strictly differentiable at («O)2/o) in
directions (u,0) and (0,u) then

O) a n d / ( , )

So f(u,v) = ip°(xo,yo){u,v) and we conclude that dip°(xo,yo) is singleton.
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