AN ASYMPTOTIC ESTIMATE FOR THE BERNOULLI AND EULER NUMBERS

by DAVID J. LEEMING

1. Introduction. We derive here simple asymptotic estimates for both the Euler and Bernoulli numbers. The derivations follow easily from known results, but I am unable to find them elsewhere in the literature. C. Jordan [1, p. 245 and p. 303] gives some related inequalities. Other properties of these two classical sets of numbers may be found in [1], [3] and [4].

2. The Bernoulli case. It is well known (see e.g. [2]) that the Fourier series expansion of $B_{2k}(x)$, the Bernoulli polynomial of degree 2k is

(1)
$$B_{2k}(x) = \frac{(-1)^{k+1} 2(2k)!}{(2\pi)^{2k}} \sum_{n=1}^{\infty} \frac{\cos 2n\pi x}{n^{2k}} \qquad (k = 1, 2, \ldots)$$

valid for $0 \le x \le 1$. Setting $x = \frac{1}{4}$ in (1) yields

$$B_{2k}(\frac{1}{4}) = \frac{(-1)^{k+1}2(2k)!}{(4\pi)^{2k}} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2k}}$$

Hence,

(2)
$$|B_{2k}(\frac{1}{4})| \sim \frac{2(2k)!}{(4\pi)^{2k}} \quad (k \to \infty)$$

Using Stirling's formula and the known result (see, e.g. [4], p. 22) $B_{2k}(\frac{1}{4}) = -2^{-2k}(1-2^{1-2k})B_{2k}$ we get

(3)
$$|B_{2k}(\frac{1}{4})| \sim 4\sqrt{\pi k} \left(\frac{k}{2\pi e}\right)^{2k} \qquad (k \to \infty)$$

(Note that the coefficient $\sqrt{8\pi k}$ appearing in [2], p. 537 is incorrect and should read $4\sqrt{\pi k}$).

Taking the 2kth root in (3) yields

(4)
$$|B_{2k}|^{1/2k} \sim \frac{k}{\pi e} \qquad (k \to \infty).$$

A short table helps to illustrate the rate at which the two quantities are

Received by the editors May 24, 1976.

approaching each other. Let $S_k = |B_{2k}|^{1/2k}$ and $T_k = k/\pi e$

S _k	T _k	S_k/T_k
0.77258	0.58550	1.31952
1.36829	1.17100	1.16848
1.96175	1.75649	1.11685
2.55351	2.34199	1.09031
3.14414	2.92749	1.07401
3.73399	3.51299	1.06291
	Sk 0.77258 1.36829 1.96175 2.55351 3.14414 3.73399	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

3. The Euler case. The Fourier series expansion of $B_{2k+1}(x)$, the Bernoulli polynomial of degree 2k+1 is

(5)
$$B_{2k+1}(x) = \frac{(-1)^{k+1}2(2k+1)!}{(2\pi)^{2k+1}} \sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n^{2k+1}} \qquad (k=1,2,\ldots)$$

valid for $0 \le x \le 1$. Setting $x = \frac{1}{4}$ in (5) yields

(6)
$$B_{2k+1}(\frac{1}{4}) = \frac{(-1)^k 2(2k+1)!}{(2\pi)^{2k+1}} \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^{2k+1}}$$

Therefore,

(7)
$$|B_{2k+1}(\frac{1}{4})| \sim \frac{2(2k+1)!}{(2\pi)^{2k+1}} \quad (k \to \infty).$$

It is known (see e.g. [4], p. 29) that

(8)
$$B_{2k+1}(\frac{1}{4}) = \frac{-(2k+1)E_{2k}}{4^{2k+1}}$$

Therefore, from (7) and (8) we get

(9)
$$|E_{2k}| \sim \frac{2^{2k+2}(2k)!}{\pi^{2k+1}} \quad (k \to \infty)$$

Using Stirling's formula in (9) we have

(10)
$$|E_{2k}| \sim \frac{8\sqrt{k}}{\sqrt{\pi}} \left(\frac{4k}{\pi e}\right)^{2k} \qquad (k \to \infty)$$

Taking the 2kth root in (10) yields

(11)
$$|E_{2k}|^{1/2k} \sim \frac{4k}{\pi e} \qquad (k \to \infty)$$

A second short table here illustrates the rate at which these two quantities are

1977]

ASYMPTOTIC ESTIMATES

k	w _k	Уĸ	w _k /y _k
5	2.95357	2.34199	1.26133
10	5.35096	4.68399	1.14239
15	7.73128	7.02598	1.10038
20	10.0994	9.36797	1.07807
25	12.4635	11.7100	1.06435
30	14.8240	14.0520	1.05494

approaching each other. Let $w_k = |E_{2k}|^{1/2k}$ and $y_k = 4k/\pi e$.

References

1. C. Jordan, Calculus of Finite Differences, Chelsea, NY, 1965.

2. D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, American Math. Monthly, 47 (1940) 533-538.

3. L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan, London, 1951.

4. N. E. Nörlund, Vorlesungen Über Differenzenrechnung, Chelsea, NY, 1954.

Dept of Math. University of Victoria,

VICTORIA, B.C., CANADA