EQUIVALENT CONDITIONS OF A TREE MAP WITH ZERO TOPOLOGICAL ENTROPY

Taixiang Sun, Mingde Xie and Jinfeng Zhao

Let $f: T \rightarrow T$ be a tree map with n end-points, $S A P(f)$ the set of strongly almost periodic points of f and $C R(f)$ the set of chain recurrent points of f. Write $E(f, T)$ $=\left\{x\right.$: there exists a sequence $\left\{k_{i}\right\}$ with $2 \leqslant k_{i} \leqslant n$ such that $\left.\lim _{i \rightarrow \infty} f^{k_{1} k_{2} \ldots k_{i}}(x)=x\right\}$ and $g=\left.f\right|_{C R(f)}$. In this paper, we show that the following three statements are equivalent:
(1) f has zero topological entropy.
(2) $S A P(f) \subset E(f, T)$.
(3) Map $\omega_{g}: x \rightarrow \omega(x, g)$ is continuous at p for every periodic point p of f.

1. Introduction

Throughout this paper let \mathbf{N} be the set of all natural numbers. Write $\mathbf{Z}^{+}=\mathbf{N} \cup\{0\}$, $\mathbf{N}_{n}=\{1,2, \ldots, n\}$ and $\mathbf{Z}_{n}=\{0\} \cup \mathbf{N}_{n}$ for any $n \in \mathbf{N}$. Let T be a tree (that is, an one-dimensional compact connected branched manifold without cycles). A subtree of T is a subset of T, which is a tree itself. For any $x \in T$, denote by $V(x)$ the number of connected components of $T-\{x\} . D(T)=\{x \in T: V(x) \geqslant 3\}$ is called the set of branched points of T and $E(T)=\{x \in T: V(x)=1\}$ is called the set of end points of T. Let $N E(T)$ denote the number of end points of T. For any $A \subset T$, we use \bar{A}, \dot{A} and $[A]$ to denote the closure of A, the interior of A and the smallest subtree of T containing A, respectively. For any $x, y \in T$, we shall use $[x, y]$ to denote $[\{x, y\}]$. Define $(x, y]=[x, y]-\{x\}$ and $(x, y)=(x, y]-\{y\}$. For any $x \in T$ and any $\varepsilon>0$, write $B(x, \varepsilon)=\{y \in T: d(x, y)<\varepsilon\}$.

Let $C^{0}(T)$ be the set of all continuous maps from T to T. For any $f \in C^{0}(T)$ and any $x \in T$, the set of fixed points of f, the set of m-periodic points of f, the ω-limit set of x, the set of recurrent points of f, the set of chain recurrent points of f, the topological entropy of f will be denoted by

$$
F(f), P_{m}(f), \omega(x, f), R(f), C R(f), h(f)
$$

Received 26th September, 2006
Project supported by NSFC (10461001,10361001) and NFSGX 0447004.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.
respectively. Write $O(x, f)=\left\{f^{k}(x): k \in \mathbf{Z}^{+}\right\}, E(f, T)=\{x:$ there exists a sequence $\left\{k_{i}\right\}$ with $2 \leqslant k_{i} \leqslant N E(T)$ such that $\left.\lim _{i \rightarrow \infty} f^{k_{1} k_{2} \ldots k_{i}}(x)=x\right\}$ and $P(f)=\bigcup_{m=1}^{\infty} P_{m}(f)$. Let the metric space $K(T)=\{A \subset T: A$ is closed $\}$ with the Hausdorff metric H

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

Definition 1: ([1]) Let $f \in C^{0}(T), x, y \in T$ and $\varepsilon>0$. A finite sequence $\left\{x_{i}\right\}_{i=0}^{m}(m \geqslant 1)$ in T is called an ε-chain (under f) from x to y if $x_{0}=x, x_{m}=y$
 chain from x to $y . C E(x, f)=\{y: x \xrightarrow{c h, f} y$ and $y \xrightarrow{c h, f} x\}$ is called the set of chain equivalent points of x.

The dynamics of a tree map, particularly equivalent conditions which a tree map has zero topological entropy, have been studied intensively in the recent years $[2,3,4]$. In $[\mathbf{5}, \mathbf{6}]$ we obtained the following theorem.

Theorem A. Let $f \in C^{0}(T)$ and $N E(T)=n$. Then the following five statements are equivalent:
(1) $h(f)>0$.
(2) there exist $m \in \mathbf{N}$ and $x \in C R(f)$ such that $C E(x, f) \cap F\left(f^{m}\right) \neq \emptyset$ and $\left[C E\left(x, f^{m}\right)\right]-\bigcup_{i=1}^{n} P_{i}\left(f^{m}\right) \neq \emptyset$.
(3) there exist $m \in \mathbf{N}, p \in F\left(f^{m}\right)$ and $s \in C R(f)-\bigcup_{i=1}^{n} P_{i}\left(f^{m}\right)$ such that $s \xrightarrow{c h, f} p$.
(4) $\left.f\right|_{P(f)}$ is not equicontinuous.
(5) there exist $x \in C R(f)-P(f)$ such that $\omega(x, f)$ is a finite set.

In this paper we shall continue to study topological entropy of a tree map. Our aim is to find new equivalent conditions of a tree map with zero topological entropy. Our main result is the following theorem.

Theorem 1. Let $f \in C^{0}(T)$ and $g=\left.f\right|_{C R(f)}$. Then the following three statements are equivalent:
(1) $h(f)=0$.
(2) $S A P(f) \subset E(f, T)$.
(3) Map $\omega_{g}: x \rightarrow \omega(x, g)$ is continuous at p for every $p \in P(f)$.

2. Proof of Theorem 1

In this section we shall give the proof of Theorem 1. To do this we need the following definition and known results.

Definition 2: ([6]) Let $f \in C^{0}(T)$ and M is a closed subset of T with $f(M) \subset M$. M is called divisible if there exist a non-degenerate proper subtree A of T and mutually
disjoint subsets

$$
B_{1}\left(=B_{l+1}\right), B_{2}, \ldots, B_{l}(2 \leqslant l \leqslant N E(T))
$$

of $\overline{T-A}$ with $M \subset \bigcup_{i=1}^{l} B_{i}$ such that
(i) For every $i \in \mathbf{N}_{l}, B_{i}$ is the union of some connected components of $\overline{T-A}$.
(ii) For every $i \in \mathbf{N}_{l}, f\left(B_{i} \cap M\right)=B_{i+1} \cap M$.

Lemma 1. ([3, 6, 7]) Let $f \in C^{0}(T), p \in P(f)$ and $N E(T)=n$. Then
(1) $\overline{P(f)}=\overline{R(f)}$.
(2) If $h(f)=0$, then $\omega(x, f)$ is divisible for each $x \in T$.
(3) If $h(f)=0$, then there exist $2 \leqslant i_{1}, i_{2}, \ldots, i_{k} \leqslant n$ such that $f^{i_{1} i_{2} \ldots i_{k}}(p)=p$.

For $f \in C^{0}(T)$ and any subtree S of T, let $r_{S}: T \rightarrow S$ denote the natural retraction from T to S and $g_{S}=\left.r_{S} \circ f\right|_{S}$.

Lemma 2. ([8]) If $h(f)=0$, then $h\left(g_{S}\right)=0$.
Proposition 1. Let $f \in C^{0}(T)$. If $h(f)=0$, then $S A P(f) \subset E(f, T)$.
Proof: Suppose $h(f)=0$ and $x \in S A P(f)$.
If $x \in P(f)$, then it follows from Lemma 1 that there exist $2 \leqslant i_{1}, i_{2}, \ldots, i_{k} \leqslant n$ such that $f^{i_{1} i_{2} \ldots i_{k}}(x)=x$. Hence $\lim _{s \rightarrow \infty} f^{i_{1} i_{2} \ldots i_{k} 2^{s}}(x)=x$, which implies $x \in E(f, T)$.

If $x \notin P(f)$, then by theorem A , we know that $\omega(x, f)$ is an infinite set. Let $S=[\omega(x, f)], m=N E(S)$ and $g=g_{S}$, then $\omega(x, g)=\omega(x, f)$ and $h(g)=0$. Now we show the proposition by induction on m.
(1) If $m=2$. As g is an interval map, it follows from [9, Proposition VI.19] that $x=\lim _{s \rightarrow \infty} g^{2^{s}}(x)=\lim _{s \rightarrow \infty} f^{2^{s}}(x)$. Hence $x \in E(f, T)$.
(2) Suppose that the proposition holds for $2 \leqslant m \leqslant k$. We need only to prove the proposition still holds for $m=k+1$.

Since $h(g)=0$, it follows from Lemma 1 that there exist a non-degenerate proper subtree A of S and mutually disjoint subsets

$$
B_{1}\left(=B_{l+1}\right), B_{2}, \ldots, B_{l}(2 \leqslant l \leqslant k+1)
$$

of S such that
(i) $x \in B_{1}$ and $\omega(x, f) \subset \overline{S-A}=\bigcup_{i=1}^{l} B_{i}$.
(ii) For every $i \in \mathbf{N}_{l}, B_{i}$ is the union of some connected components of $\overline{S-A}$.
(iii) For every $i \in \mathrm{~N}_{l}, f\left(B_{i} \cap \omega(x, f)\right)=B_{i+1} \cap \omega(x, f)$.

Case 1. If

$$
N E\left(\left[B_{1} \cap \omega(x, f)\right]\right) \leqslant k
$$

then

$$
B_{1} \cap \omega(x, f)=\omega\left(x, f^{l}\right)
$$

and $h\left(f^{l}\right)=0$. By inductive hypothesis, we know that there exists a sequence $\left\{k_{i}\right\}$ with $2 \leqslant k_{i} \leqslant k$ such that $\lim _{s \rightarrow \infty} f^{l k_{1} k_{2} \ldots k_{s}}(x)=x$. Thus $x \in E(f, T)$.
Case 2. If

$$
N E\left(\left[B_{1} \cap \omega(x, f)\right]\right)=k+1
$$

then $l=2$,

$$
N E\left(\left[B_{2} \cap \omega(x, f)\right]\right)=2
$$

and $B_{2} \cap \omega(x, f)=\omega\left(f(x), f^{2}\right)$. Let $S_{1}=\left[\omega\left(f(x), f^{2}\right)\right]$ and $g_{1}=g_{S_{1}}$, then

$$
\omega\left(f(x), g_{1}\right)=\omega\left(f(x), f^{2}\right)
$$

and g_{1} is an interval map. By [9, Lemma VI.14], we know that for any $t \in \mathbf{N}$, there exist mutually disjoint closed subintervals $C_{1}^{t}, C_{2}^{t}, \ldots, C_{2^{t}}^{t}$ of S_{1} such that
(i) $\omega\left(f(x), g_{1}\right) \subset \bigcup_{i=1}^{2^{t}} C_{i}^{t}$.
(ii) $C_{i+1}^{t} \subset\left[C_{i}^{t} \cup C_{i+2}^{t}\right]$ for any $i \in \mathbf{N}_{2^{t}-2}$.
(iii) $\quad g_{1}^{2^{t}}\left(C_{2 j-1}^{t} \cap \omega\left(f(x), g_{1}\right)\right)=C_{2 j}^{t} \cap \omega\left(f(x), g_{1}\right)$ and $g_{1}^{2^{t}}\left(C_{2 j}^{t} \cap \omega\left(f(x), g_{1}\right)\right)$ $=C_{2 j-1}^{t} \cap \omega\left(f(x), g_{1}\right)$ for any $j \in \mathbf{N}_{2^{t-1}}$.
(iv) $C_{2 j-1}^{t} \cup C_{2 j}^{t} \subset C_{j}^{t-1}$ for any $j \in \mathrm{~N}_{2^{t-1}}$.

It is easy to see that for any $t \in \mathbf{N}$,

$$
B_{1} \cap \omega(x, f)=\bigcup_{i=1}^{2^{t}} f\left(C_{i}^{t} \cap \omega\left(f(x), f^{2}\right)\right)
$$

and for any $i, j \in \mathbf{N}_{2^{t}}(i \neq j)$,

$$
f\left(C_{i}^{t} \cap \omega\left(f(x), f^{2}\right)\right) \cap f\left(C_{j}^{t} \cap \omega\left(f(x), f^{2}\right)\right)=\emptyset
$$

Choose $i_{t} \in \mathbf{N}_{2^{t}}$ such that

$$
x \in M_{t}(x)=f\left(C_{i_{t}}^{t} \cap \omega\left(f(x), f^{2}\right)\right)
$$

Put $M(x)=\bigcap_{t=1}^{\infty} M_{t}(x)$, then $M_{1}(x) \supset M_{2}(x) \supset \cdots$ and $x \in M(x)$.
Claim 1. $z \xrightarrow{\text { ch,f }} u$ for any $u \in[M(x)]$ and any $z \in \omega(x, f)$.
Proof of Claim 1: Take $B_{2}=C_{j_{0}}^{0} \supset C_{j_{1}}^{1} \supset C_{j_{2}}^{2} \supset \cdots$ such that

$$
\operatorname{diam}\left(C_{j_{t}}^{t}\right) \leqslant \operatorname{diam} \frac{\left(C_{j_{t-1}}^{t-1}\right)}{2}(t \in \mathbf{N})
$$

then $\bigcap_{t=1}^{\infty} C_{j_{t}}^{t}=\{w\} \in \omega(x, f)$.

For any $\varepsilon>0$, there exists $\delta>0$ such that $d(f(x), f(y))<\varepsilon$ whenever $d(x, y)<\delta$ with $x, y \in T$. Since $M(x)=\bigcap_{t=1}^{\infty} M_{t}(x)$ and $\bigcap_{t=1}^{\infty} C_{j_{t}}^{t}=\{w\}$, we may choose $s, t \in \mathbf{N}$ such that $C_{j_{t}}^{t} \subset B(w, \delta)$ and $f^{s}\left(C_{j_{t}}^{t}\right) \supset[M(x)]$. Thus, for any $u \in[M(x)]$ there exists $v \in C_{j_{t}}^{t}$ such that $f^{s}(v)=u$, therefore $w, f(v), f^{2}(v), \ldots, f^{s}(v)$ is an ε chain from w to u, which implies $z_{\xrightarrow{c h, f}}^{w^{c h, f}} u$ for any $z \in \omega(x, f)$. Claim 1 is proven.

By Claim 1 and theorem A , we obtain the following.
Claim 2. $[M(x)] \cap P(f)=\emptyset$.
Claim 3. $M(x)=\{x\}$.
Proof of Claim 3: Assume on that contrary that $M(x)-\{x\} \neq \emptyset$. Let y $\in M(x)-\{x\}$, then $y \in R(f)$ since $M(x)$ is a closed subset and $\omega(x, f)$ is a minimal set, it follows from Lemma 1 and Claim 2 that $x, y \in \partial([M(x)])$.

Let

$$
\varepsilon=\min \{d(u, v) / 3: u, v \in \partial([M(x)]), u \neq v\}
$$

then $M(x) \subset M_{t}(x) \subset B(M(x), \varepsilon)$ and $f^{2^{2+1}}\left(M_{t}(x)\right)=M_{t}(x)$ for some $t \in \mathrm{~N}$. Since $x \in S A P(f)=S A P\left(f^{2 t+1}\right)$, there exists $N \in \mathbf{N}$ such that $f^{2^{t+1} N j}(x) \in B(x, \varepsilon)-[M(x)]$ for all $j \in \mathbf{N}$. Again since $\left.y \in R(f)=R\left(f^{2^{t+1} N}\right)\right)$, there exists $j_{1} \in \mathbf{N}$ such that $f^{2^{t+1} N j_{1}}(y) \in B(y, \varepsilon)-[M(x)]$. Thus $x \in\left[f^{2^{t+1} N j_{1}}(x), y\right]$ and $y \in\left[x, f^{2^{t+1} N j_{1}}(y)\right]$. By [10, Lemma 1] we get $[M(x)] \cap P(f) \neq \emptyset$, which contradicts Claim 2. Claim 3 is proven.

Since $M(x)=\{x\}$, for any $\varepsilon>0$, we may choose $N \in \mathbf{N}$ such that $M_{t}(x) \subset B(x, \varepsilon)$ for all $t \geqslant N$. On the other hand, $d\left(f^{2^{t+1}}(x), x\right)<\varepsilon$ since $f^{2^{t+1}}\left(M_{t}(x)\right)=M_{t}(x)$. Thus $\lim _{s \rightarrow \infty} f^{2^{s}}(x)=x$. Thus $x \in E(f, T)$.

Proposition 2. Let $f \in C^{0}(T)$ and $g=\left.f\right|_{C R(f)}$. If $h(f)=0$, then for every $p \in P(f), \operatorname{map} \omega_{g}: x \rightarrow \omega(x, g)$ is continuous at p.

Proof: Assume on the contrary that there exists $p \in P_{m}(f)$ such that ω_{g} is not continuous at p. Then there exist $\varepsilon_{0}>0$, sequence $\left\{x_{n}\right\}$ in $C R(f)$ with $x_{n} \rightarrow p$ such that

$$
H\left(\omega\left(x_{n}, g\right), \omega(p, g)\right) \geqslant 2 \varepsilon_{0}
$$

Without loss of generality we may suppose (by taking a subsequence) that either
(i) $\sup _{a \in \omega\left(x_{n}, g\right)} d(a, O(p, g)) \geqslant 2 \varepsilon_{0}$ for each $n \in \mathbf{N}$ or
(ii) $\sup _{b \in O(p, g)} d\left(b, \omega\left(x_{n}, g\right)\right) \geqslant 2 \varepsilon_{0}$ for each $n \in \mathbf{N}$.

Claim 4. We can suppose that there exist $r \in \mathbf{Z}_{m-1}$ and $k_{n} \rightarrow \infty$ such that

$$
d\left(g^{m k_{n}+r}\left(x_{n}\right), f^{r}(p)\right) \geqslant \varepsilon_{0}
$$

Proof of Claim 4: If (i) holds, then for each $n \in \mathbf{N}$ we can choose $l_{n} \in \mathbf{N}$ such that $d\left(g^{l_{n}}\left(x_{n}\right), O(p, g)\right) \geqslant \varepsilon_{0}$ with $l_{n}>l_{n-1}$. By taking a subsequence, we may assume
that $l_{n}=m k_{n}+r$ for some $r \in \mathbf{Z}_{m-1}$ and all $n \in \mathbf{N}$. Thus we have

$$
d\left(g^{m k_{n}+r}\left(x_{n}\right), f^{r}(p)\right) \geqslant \varepsilon_{0}
$$

If (ii) holds, then by taking a subsequence, we may assume that there exists $r \in \mathbf{Z}_{m-1}$ such that

$$
d\left(g^{r}(p), \omega\left(x_{n}, g\right)\right) \geqslant 2 \varepsilon_{0} \text { for all } n \in \mathbf{N}
$$

Thus, for each $n \in \mathbf{N}$, there exists $k_{n}>k_{n-1}$ such that $d\left(g^{k}\left(x_{n}\right), g^{r}(p)\right) \geqslant \varepsilon_{0}$ whenever $k>k_{n}$. Hence we have

$$
d\left(g^{m k_{n}+r}\left(x_{n}\right), f^{r}(p)\right) \geqslant \varepsilon_{0}
$$

Claim 4 is proven.
Since $C R(f)=C R\left(f^{m}\right)$ and $f(C R(f)) \subset C R(f)$, we may assume that $r=0$ and $G=g^{m}$. Then $p \in \operatorname{Fix}(G), x_{n} \in C R(G), x_{n} \rightarrow p$ and

$$
d\left(p, G^{k_{n}}\left(x_{n}\right)\right) \geqslant \varepsilon_{0}
$$

For convenience, we may assume that $G^{k_{n}}\left(x_{n}\right) \rightarrow b$. It is easy to see that $b \in C E(p, G)$. Let $J=[C E(p, G)]$. Since $h(G)=0$, by theorem A, we may assume that for each $n \in \mathbf{N}$, $O\left(x_{n}, G\right)$ is an infinite set and $\left(\bigcup_{n=1}^{\infty} O\left(x_{n}, G\right)\right) \cap J=\emptyset$.

Let T_{1} and T_{2} are the connected components of $\overline{T-J}$ containing p and b, respectively. By taking a subsequence, we may assume that $\left\{x_{n}\right\} \subset T_{1},\left\{G^{k_{n}}\left(x_{n}\right)\right\} \subset T_{2}$. Put

$$
s_{n}=\min \left\{k \geqslant 0: G^{k}\left(x_{n}\right) \notin T_{1}\right\}
$$

then there exist a connected component T_{3} of $\overline{T-J}$ and a subsequence $\left\{s_{i_{n}}\right\}$ of $\left\{s_{n}\right\}$ such $T_{3} \cap T_{1}=\emptyset$ and $G^{s_{i_{n}}}\left(x_{i_{n}}\right) \in T_{3}$. For convenience, we may assume that $s_{i_{n}}=s_{n}$, $G^{s_{n}}\left(x_{n}\right) \rightarrow y$ and $G^{s_{n}-1}\left(x_{n}\right) \rightarrow z$. It is easy to show that $y, z \in C E(p, G)$. Hence $z=p=G(z)=y$, which contradicts $T_{3} \cap T_{1}=\emptyset$. Proposition 2 is proven.

Proposition 3. Let $f \in C^{0}(T)$ and $g=\left.f\right|_{C R(f)}$. If $h(f)>0$, then
(1) there exists $x \in S A P(f)$ such that $x \notin E(f, T)$.
(2) there exists $p \in P(f)$ such that $\omega_{g}: x \rightarrow \omega(x, g)$ is not continuous at p.

Proof: Since $h(f)>0$, it follows from [11] that there is the closure J of a connected component of $T-D(T), s \in \mathbf{N}$ and $[a, b],[c, t] \subset J$ such that:
(i) $\quad(a, b] \cap[c, t)=\emptyset$ and $f^{s}([a, b]) \cap f^{s}([c, t]) \supset[a, b] \cup[c, t]$.
(ii) $f^{s}(a)=f^{s}(t)=a$ and $f^{s}(b)=f^{s}(c)=t$.
(iii) $f^{s}(x) \in(x, t)$ if $x \in(a, b)$ and $f^{s}(x) \in(a, t)$ if $x \in(c, t)$.
(1) it is easy to see that f^{s} has a periodic point x with period l for each prime number $l>N E(T)$. Obviously $x \notin E(f, T)$.
(2) Choose points $\left\{b_{k}\right\}_{k=1}^{\infty}$ such that

$$
f^{s}\left(b_{k}\right)=b_{k-1}, f^{s}\left(b_{1}\right)=b b_{k} \in\left(a, b_{k-1}\right), f^{s}\left[b_{k}, b_{1}\right] \subset\left[b_{k-1}, b\right]
$$

for each $k \geqslant 2$, then $\lim _{k \rightarrow \infty} b_{k}=a$. Since

$$
f^{s(k+2)}\left(b_{k}\right)=a, f^{s(k+2)}\left(b_{k+1}\right)=t
$$

it follows from [10, Lemma 1] that there exists $a_{k+1} \in\left(b_{k+1}, b_{k}\right)$ such that a_{k+1} $\in \operatorname{Fix}\left(f^{s(k+2)}\right)$ and $\lim _{k \rightarrow \infty} a_{k+1}=a$. For any $k \in \mathbf{N}$, there exists $i_{k} \in \mathbf{N}_{k}$ such that $f^{s i_{k}}\left(a_{k}\right) \in\left[b_{1}, b\right]$. Thus

$$
H\left(\omega\left(a_{n}, g\right), \omega(a, g)\right) \geqslant \min \left\{d\left(b_{1}, a\right), d\left(b, b_{1}\right)\right\}
$$

Which implies that ω_{g} is not continuous at a.
Proof of Theorem 1: $(1) \Leftrightarrow(2)$ follows from Proposition 1 and Proposition 3.
$(1) \Leftrightarrow(3)$ is from Proposition 2 and Proposition 3.

References

[1] S. Choi, C. Chu and K. Lee, 'Recurrence in persistent dynamical systems', Bull. Austral. Math. Soc. 56 (1997), 467-471.
[2] T. Li and X. Ye, 'Chain recurrent points of a tree map', Bull. Austral. Math. Soc. 59 (1999), 181-186.
[3] L. Alseda and X. Ye, 'No division and the set of periods for tree maps', Ergodic Theory Dynamical Systems 15 (1995), 221-237.
[4] X. Ye, 'No division and the entropy of tree maps', Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1859-1865.
[5] T. Sun, Research of dynamical systems of tree maps, Ph.D. Thesis (in Chinese) (Zhongshan University, 2001).
[6] T. Sun, 'Chain recurrent points and topological entropy of a tree map', Appl. Math. J. Chinese Univ. 17 (2002), 473-478.
[7] X. Ye, 'The center and the depth of center of a tree map', Bull. Austral. Math. Soc. 48 (1993), 347-350.
[8] L. Alseda, S. Baldwin, J. Llibre and M. Misiurewicz, 'Entropy of transitive tree maps', Topology 36 (1997), 519-532.
[9] L. Block and W.A. Coppel, Dynamics in one dimension (Springer-Verlag, New York, 1992).
[10] A.M. Blokh, 'Trees with snowflakes and zero entropy maps', Topology 33 (1994), 379-396.
[11] J. Llibre and M. Misiurewicz, 'Horseshoes, entropy and periods for graph maps', Topology 32 (1993), 649-664.

Department of Mathematics
Guangxi University
Nanning
Guangxi 530004
People's Republic of China
e-mail: stxhql@gxu.edu.cn

