BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 267-269

A NIL-IMPLIES-NILPOTENT RESULT IN ARTINIAN RINGS

J.H. MEYER

It is shown that if the ring A is left Artinian and L_1 and L_2 are left ideals of A then L_1 is nilpotent modulo L_2 if L_1 is nil modulo L_2 .

An easy consequence of Levitzki's theorem is that if the ring A is left Noetherian and L is a left ideal which is nil modulo I, where Iis a two-sided ideal, then L will be nilpotent modulo I. This can be proved by considering the ring A/I. The problem is: what if I is a left ideal?

In this note I solve the problem for left Artinian rings, but a proof (or counter example) is still lacking in the left Noetherian case:

THEOREM Suppose the ring A is left Artinian (not necessarily with 1). Let L_1 and L_2 be left ideals of A. Then L_1 is nil mod L_2 if and only if L_1 is nilpotent mod L_2 .

Proof ← is trivial.

 \Rightarrow : Suppose L_{γ} is nil mod L_{2} . Consider the descending chain:

Received 22 November 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

J.H. Meyer

$$L_1 \supseteq L_1^2 \supseteq L_1^3 \supseteq \cdots \supseteq L_1^n = L_1^{n+1} = B = B^2 = \cdots$$

Suppose $B^2 = B \notin L_2$. Let H be a minimal left ideal contained in L_1 such that $BH \notin L_2$. Then there is an element $h \in H$ such that $Bh \notin L_2$. But now $B(Bh) = B^2h = Bh \notin L_2$ and $Bh \subseteq H$ which forces Bh = H by the minimality of H. Let $b \in B$ be such that h = bh. Hence, h = bh = $b^2h = \ldots = b^qh \in L_2h$ for q large enough since $b \in B \subseteq L_1$ and L_1 is nil mod L_2 . Consequently, there is an element $\ell \in L_1 \cap L_2$ such that $h = \ell h$ and the following relation holds for all integers $i, j \ge 1$:

$$h^{j} = \ell^{i}h^{j}$$

Let p and r be the smallest integers such that $(l + h)^p \in L_2$ and $h^r \in L_2$ $(p, r \ge 2)$. Let $t = \max\{p, r\}$. Then

$$(\ell+h)^{t} = h + k_{2}h^{2} + k_{3}h^{3} + \dots + k_{r-1}h^{r-1} + k_{r}h^{r} + \dots$$
$$+ h^{t} + \text{terms that end with an } \ell$$

is an element of L_2 , where the k_i are integers. Hence

$$h + k_2 h^2 + k_3 h^3 + \ldots + k_{r-1} h^{r-1} \in L_2 \ldots$$
 (*)

If r = 2, then (*) would imply that $h \in L_2$, a contradiction. If r > 2, then

$$h^{r-2}(h + k_2h^2 + \dots + k_{r-1}h^{r-1})$$

= $h^{r-1} + k_2h^r + \dots + k_{r-1}h^{2r-3} \in L_2$

which imply that $h^{r-1} \in L_2$, contradicting the minimality of r. Hence we must have $L_1^n = B \subseteq L_2$.

Examples suggest the validity of the result for left Noetherian rings (with 1, of course). However, to the best of my knowledge this remains an unsolved open problem.

https://doi.org/10.1017/S0004972700010121 Published online by Cambridge University Press

References

- [1] N. Divinsky, Rings and radicals, (University of Toronto Press, 1965).
- [2] A.P.J. Van der Walt, "A variation on nil and nilpotent", Quaestiones Math. 7 (1984), 101 - 104.

Department of Mathematics University of Stellenbosch Stellenbosch 7600 South Africa.