BULL. AUSTRAL. MATH. SOC.
VOL. 34 (1986) 267-269

A NIL-IMPLIES-NILPOTENT RESULT
 IN ARTINIAN RINGS

J.H. Meyer

It is shown that if the ring A is left Artinian and L_{1} and
L_{2} are left ideals of A then L_{1} is nilpotent modulo L_{2} if L_{1} is nil modulo L_{2}.

An easy consequence of Levitzki's theorem is that if the ring A is left Noetherian and L is a left ideal which is nil modulo I, where I is a two-sided ideal, then L will be nilpotent modulo I. This can be proved by considering the ring A / I. The problem is: what if I is a left ideal?

In this note I solve the problem for left Artinian rings, but a proof (or counter example) is still lacking in the left Noetherian case:

THEOREM Suppose the ring A is left Artinian (not necessarily with 1). Let L_{1} and L_{2} be left ideals of A. Then L_{1} is nil mod L_{2} if and only if L_{1} is nilpotent $\bmod L_{2}$.

Proof \Leftarrow is trivial.
\Rightarrow : Suppose L_{1} is nil mod L_{2}. Consider the descending chain:

Received 22 November 1985.

[^0]$$
L_{1} \supseteq L_{1}^{2} \supseteq L_{1}^{3} \supseteq \cdots \supseteq L_{1}^{n}=L_{1}^{n+1}=B=B^{2}=\ldots
$$

Suppose $B^{2}=B \underline{\nsubseteq} L_{2}$. Let H be a minimal left ideal contained in L_{1} such that $B H \notin L_{2}$. Then there is an element $h \in H$ such that $B h \notin L_{2}$. But now $B(B h)=B^{2} h=B h \nsubseteq L_{2}$ and $B h \subseteq H$ which forces $B h=H$ by the minimality of H. Let $b \in B$ be such that $h=b h$. Hence, $h=b h=$ $b^{2} h=\ldots=b^{q} h \in L_{2} h$ for q large enough since $b \in B \subseteq L_{1}$ and L_{1} is nil mod L_{2}. Consequently, there is an element $\ell \in L_{1} \cap L_{2}$ such that $h=\ell h$ and the following relation holds for all integers $i, j \geq 1$:

$$
h^{j}=\ell^{i} h^{j}
$$

Let p and r be the smallest integers such that $(\ell+h)^{p} \in L_{2}$ and $h^{r} \in L_{2}(p, r \geq 2)$. Let $t=\max \{p, r\}$. Then

$$
\begin{aligned}
(\ell+h)^{t}=h & +k_{2} h^{2}+k_{3} h^{3}+\ldots+k_{r-1} h^{r-1}+k_{r} h^{r}+\ldots \\
& +h^{t}+\text { terms that end with an } \ell
\end{aligned}
$$

is an element of L_{2}, where the k_{i} are integers. Hence

$$
\begin{equation*}
h+k_{2} h^{2}+k_{3} h^{3}+\ldots+k_{r-1} h^{r-1} \epsilon L_{2} \cdots \tag{*}
\end{equation*}
$$

If $r=2$, then (*) would imply that $h \in L_{2}$, a contradiction.
If $r>2$, then

$$
\begin{aligned}
& h^{r-2}\left(h+k_{2} h^{2}+\cdots+k_{r-1} h^{r-1}\right) \\
= & h^{r-1}+k_{2} h^{r}+\cdots+k_{r-1} h^{2 r-3} \in L_{2}
\end{aligned}
$$

which imply that $h^{r-1} \in L_{2}$, contradicting the minimality of r. Hence we must have $L_{1}^{n}=B \subseteq L_{2}$.

Examples suggest the validity of the result for left Noetherian rings (with 1, of course). However, to the best of my knowledge this remains an unsolved open problem.
[1] N. Divinsky, Rings and radicals, (University of Toronto Press, 1965).
[2] A.P.J. Van der Walt, "A variation on nil and nilpotent", Quaestiones Math. 7 (1984), 101 - 104.

Department of Mathematics
University of Stellenbosch
Stellenbosch 7600
South Africa.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.

