BULL. AUSTRAL. MATH. SOC. VOL. 28 (1983), 447-448.

RELATIVE RELATION MODULES OF FINITE GROUPS

M. YAMIN

Let G be a fixed finite group and consider a short exact sequence

$$1 \rightarrow S \rightarrow E \xrightarrow{\Psi} G \rightarrow 1$$

where *E* is a finitely generated group. The abelian group $\overline{S} = S/S'$ may be regarded as a \mathbb{Z}_{G} -module and, for a fixed prime *p*, the elementary abelian *p*-group $\hat{S} = S/S'S^{p} = \overline{S}/p\overline{S}$ may be regarded as an \mathbb{F}_{p}^{G} -module. If *E* is a free group, \overline{S} is called the relation module of *G* determined by ψ , and \hat{S} the relation module modulo *p*. In general we call \overline{S} the relative relation module, and \hat{S} the relative relation module modulo *p*. When the minimal number of generators of *G* and *E* is the same, \overline{S} and \hat{S} will be called minimal.

Gaschütz, Gruenberg and others have studied relation modules and relation modules modulo p. The main aim of this thesis is to study relative relation modules modulo p when E is a free product of cyclic groups. To be more precise, let $X = \{g_i, 1 \le i \le d\}$ be a generating set of G, G_i the cyclic group generated by g_i , E the free product of the G_i , $1 \le i \le d$, Ψ the epimorphism whose restriction to each G_i is the identity isomorphism, and S the kernel of Ψ .

Some of the results may be summarised as follows. \hat{S} is embedded in

Received 25 October 1983. Thesis submitted to Australian National University, March 1983. Degree approved, August 1983. Supervisor: Dr P.J. Cossey.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 \$A2.00 + 0.00.

the direct sum of the augmentation ideals of the $\mathbb{F}_{p}^{G}_{i}$, $1 \leq i \leq d$, induced to G, and the resulting factor module is isomorphic to the augmentation ideal of \mathbb{F}_{p}^{G} . \hat{S} may also be embedded in a free \mathbb{F}_{p}^{G} -module of rank d-1.

Two relative relation modules, isomorphic as \mathbb{F}_p -spaces, are rarely isomorphic as *G*-modules; that is, \hat{S} not only depends on *G*, *p* and *d* but also on Ψ . Some cases when \hat{S} does not depend on Ψ are established.

We say that p is semicoprime to the order of G if p divides the order of G and does not divide the orders of the G_i , $1 \le i \le d$. In the coprime and semicoprime cases a characterisation (including a criterion for counting projective summands) of \hat{S} is given. Some relative relation modules (modulo p) of SL(2, p) and PSL(2, p) are described completely; the description may be useful in the study of the factor groups of PSL(2, \mathbb{Z}).

Given an unrefinable direct decomposition of a module, the direct sum of all the nonprojective summands is called the nonprojective part of the module. In the semicoprime case the nonprojective part of \hat{S} is a uniquely determined, nonzero and indecomposable module (and is also the nonprojective part of \hat{S} when E is a free group). The nonprojective part of \hat{S} in the nonsemicoprime case may be zero or decomposable (and may not be a homomorphic image of the nonprojective part of \hat{S} when E is free). When G is a p-group, we prove that \hat{S} is nonprojective and indecomposable for \hat{S} minimal.

Some of the above results can be generalised in the case when the cyclic factors of E are not restricted to be the generators of G, however it is not known whether in this case the minimal relative relation modules of p-groups are also indecomposable.

Some results may also be extended to \overline{S} .

Department of Mathematics, Centre for Advanced Study in Mathematics, Panjab University, Chandigarh 160014, India.