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On definable groups and D-groups in
certain fields with a generic derivation
Ya’acov Peterzil, Anand Pillay, and Françoise Point
Abstract. We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-
dimensional definable groups in models of the theory T∂ , the model companion of an o-minimal
L-theory T expanded by a generic derivation ∂ as in Fornasiero and Kaplan (2021, Journal of
Mathematical Logic 21, 2150007).

We generalize Buium’s notion of an algebraic D-group to L-definable D-groups, namely (G, s),
where G is an L-definable group in a model of T, and s ∶ G → τ(G) is an L-definable group section.
Our main theorem says that every definable group of finite dimension in a model of T∂ is definably
isomorphic to a group of the form

(G, s)∂ = {g ∈ G ∶ s(g) = ∇g},

for some L-definable D-group (G, s) (where ∇(g) = (g , ∂g)).
We obtain analogous results when T is either the theory of p-adically closed fields or the theory

of pseudo-finite fields of characteristic 0.

1 Introduction

1.1 Background and motivation

Let us begin with some motivation and background for the general reader.
The notion of an algebraic D-group is due in full generality to Buium [4] and

belongs entirely to algebraic geometry. It can be described as follows: let (K , ∂) be
a field of characteristic 0 equipped with a derivation ∂ ∶ K → K. Then a (connected)
algebraic D-group over (K , ∂) is a (connected) algebraic group G over K, together
with a lifting of ∂ to a derivation ∂′ ∶ OK(G) → OK(G) of the structure sheaf OK(G)
of K, commuting with (or respecting) co-multiplication. When G is affine, we can
replace the structure sheaf by the coordinate ring of G. There are other equivalent
descriptions (as given later). One can think of an algebraic D-group as an algebraic
group over a differential field, which is equipped with a certain kind of order-one
differential equation. When the base field is (C(t), d/dt), a geometric description
of an algebraic D-group is a family G→ S of complex algebraic groups over the
affine line (with finitely many points removed), together with a suitable “Ehresmann

Received by the editors August 1, 2023; revised December 18, 2023; accepted January 1, 2024.
Published online on Cambridge Core January 15, 2024.
The first author was partially supported by ISF grant 290/19. The second author was partially

supported by NSF grants DMS-1665035, DMS-1760212, and DMS-2054271.
AMS subject classification: 03C64, 03C65, 12H05.
Keywords: Generic derivation, D-groups, p-adic, o-minimal, pseudo-finite.

https://doi.org/10.4153/S0008414X24000063 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000063
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X24000063&domain=pdf
https://doi.org/10.4153/S0008414X24000063


2 Y. Peterzil, A. Pillay, and F. Point

connection,” namely lift of the vector field on S corresponding to d/dt to a vector
field on the total space G, respecting multiplication in the obvious sense. One of the
main points of [4] is to show that the category of algebraic D-groups over K is the
“same” as the category of finite-dimensional differential algebraic groups over K in
the sense of Kolchin [12]. An algebraic D-group, (G , s) over (K , ∂) is associated with
the solution set of the corresponding differential equation in a “universal” differential
field (L, ∂) extending K (which will be a subgroup of G(L)). Moreover, Buium [4] has
an exhaustive study of these finite-dimensional differential algebraic groups, yielding
an account of (cases of) function field Mordell–Lang in characteristic 0. This was
built on by Hrushovski [8] using model-theoretic methods and generalized to positive
characteristic.

The connection with model theory is that finite-dimensional differential groups,
in the sense of Kolchin above, are precisely the finite-dimensional groups definable in
differentially closed fields (K ,+, ⋅, ∂), and various nontrivial model-theoretic results
come into play (see [2]). Moreover, algebraic groups over algebraically closed fields K
are precisely definable groups in algebraically closed fields (K ,+, ⋅) (see [22]).

The purpose of this paper is to generalize the relationships between algebraic
groups, algebraic D-groups, and finite-dimensional differential algebraic groups, to
other categories, sometimes provided by model theory. In one of these categories,
Nash groups replace algebraic groups. The category of Nash groups lies properly in
between the categories of real algebraic groups and (real) Lie groups. The model-
theoretic connection is that these are precisely the groups definable in real closed
fields. Likewise p-adic Nash groups, also treated in this paper are those definable in
p-adically closed fields. So, among other things, we introduce the notion of a Nash
D-group over a real closed differential field, likewise for p-adic analogues, and relate
them to finite-dimensional definable groups in real closed (p-adically closed) fields
equipped with a “generic” derivation. We also consider the case of pseudo-finite fields
K, where definable groups are, up to a quotient by a finite normal subgroup, a finite
index subgroup of G(K), for G an algebraic group over K (see [9]).

From this point on, the paper is somewhat more technical, and assumes some
knowledge of basic model theory. We will be repeating in different formalisms, the
notions discussed in the last paragraphs.

1.2 The setting and main result

In [15], we initiated a study of definable groups in closed ordered differential fields
(see [20]), and more generally in differential expansions of o-minimal structures,
p-adically closed fields, pseudo-finite fields of characteristic 0, or topological fields
which are models of an open theory (as in [13]).

In all of the above settings, we start with a suitable theory T in a language L, where
T expands the theory of fields. We add a symbol ∂ to the language to getL∂ = L ∪ {∂}.
TheL∂-theory T∪ “∂ is a (compatible) derivation” will have a model companion which
we call T∂ .

The main theorems in [15] said that in all of these cases, if Γ is a finite-dimensional
group in a model of T∂ , then there is an L-definable group G and an L∂-definable
group embedding of Γ into G.
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On definable groups and D-groups 3

Here, we mostly follow the setting suggested by Fornasiero and Kaplan [6], where
we start with anL-theory T of an o-minimal expansion of a real closed field K, expand
it in the language L∂ to the theory T∗ of a T-compatible derivation ∂, and let T∂ be
the model companion of T∗.

In [4], Buium introduced the notion of an algebraic D-group, namely a pair (G , s),
where G is an algebraic group and s ∶ G → τ(G) a rational group section into the
prolongation of G. In the setting of DCF0 (differentially closed fields of characteristic
zero), it was shown (see [18, Corollary 4.2] and [4]) that every finite-dimensional
definable group is definably isomorphic to

(G , s)∂ = {g ∈ G ∶ s(g) = ∇(g)},

(∇(g) = (g , ∂g)).
Our goal here is to obtain analogous tools and theorems in the setting of T∂ . We

first associate to every L-definable C1-manifold V, with respect to K, its prolongation,
the bundle τ(V). We then note, as in the algebraic case, that when G is an L-definable
group over a differentially closed subfield of K, then so is τ(G), and the projection
π ∶ τ(G) → G a group homomorphism. An L-definable D-group is then a pair (G , s)
with G an L-definable group and s ∶ G → τ(G) an L-definable group section. Our
main theorem (see Theorem 4.6) is the following.

Theorem Let Γ be a finite-dimensionalL∂-definable group in a model of T∂ . Then there
exists an L-definable D-group (G , s) such that Γ is definably isomorphic to

(G , s)∂ = {g ∈ G ∶ s(g) = ∇(g)}.

When T is a model complete theory of large fields in the language of fields (plus
maybe constants), Tressl [21] shows that the theory of models of T equipped with a
derivation has a model companion. He also gave a uniform (in T) axiomatization of
the model companion. Here, we treat two special cases: the case of p-adically closed
fields and of pseudo-finite fields. We develop the notions of τ(G) and (G , s), for an
L-definable group G and prove the exact analogue of the above theorem for
T∂-definable groups (see Theorem 4.12). Along the way, we prove a p-adic analogue
of an o-minimal theorem of Fornasiero and Kaplan (see Proposition A.1 in the
Appendix).

When K is a pseudo-finite field, we prove that every L∂-definable group Γ is
virtually isogenous to H0 ∩ (H, s)∂ , where (H, s) is an algebraic D-group over K and
H0 a finite index subgroup of H (see Theorem 4.13).

Remark 1.1 The case of an arbitrary (not necessarily finite dimensional)L∂-definable
group will be treated in a subsequent paper jointly with Silvain Rideau-Kikuchi.

1.3 Preliminaries

We refer to Section 2 of [15] for all conventions and basic notions. Briefly, we always
work in a sufficiently saturated structure and use the fact that o-minimal structures
(and later, p-adically closed fields) are geometric structures in the sense of [9], to
define dimL(a/k) as the aclL-dimension of a over k. The dimension of anL-definable
set X ⊆ Kn is defined as the maximal dimL(a/k), for a ∈ X (or equivalently via cell
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decomposition). If we have dim(a/B) = dim X, for a ∈ X an L-definable set over B
(written also as L(B)-definable), then we say that a is generic in X over B. A definable
Y ⊆ X is said to be large in X if dim(X/Y) < dim X (equivalently, Y contains every
generic element of X over the parameters defining X , Y).

For a tuple a = (a1 , . . . , an), we let ∂a = (∂a1 , . . . , ∂an). To define the L∂-
dimension, for a ∈ Kn and k ⊆ K a differential subfield, we let dim∂(a/k) =
dimL(a, ∂a, . . . , ∂n a, . . . /k) (possibly infinite). The L∂-dimension of an L∂-
definable set X ⊆ Kn over k is the maximum dim∂(a/k), as a varies in X.

2 Manifolds, tangent spaces, and tangent bundles

We fix an o-minimal expansion of a real closed field K in a language L. All definability
in this section is in the o-minimal structure, allowing parameters.

We first recall the basic definition of a differentiable manifold and its tangent bun-
dle in the o-minimal setting (for differentiability in this context, see [23, Section 7]).

Notation Let U ⊆ K r × Kn be an open definable set, and f ∶ U → Km a definable C1-
map, written as f (x , y), f = ( f1 , . . . , fm). Given (a, b) ∈ U , we let (Dx f )(a ,b) ∶ K r →
Km , and (Dy f )(a ,b) ∶ Kn → Km denote the corresponding K-linear maps defined as
follows: (Dx f )(a ,b) is the m × r matrix of partial derivatives

( ∂ f i

∂x j
(a, b))

1≤i≤m ,1≤ j≤r
,

and (Dy f )(a ,b) is the m × n matrix

( ∂ f i

∂yt
(a, b))

1≤i≤m ,1≤t≤n
.

Then, (D f )(a ,b) is the m × (r + n)-matrix

((Dx f )(a ,b), (Dy f )(a ,b)) .

For a C1 map f ∶ V → W between open subsets of Kn and Km , respectively, we
write D f ∶ V × Kn → W × Km , for the map

(a, u) ↦ ( f (a), (D f )a ⋅ u),

where (D f )a ⋅ u = (∑n
i=1

∂ f j

∂x i
(a)u i)m

j=1 .

2.1 Definable manifolds and their tangent bundles

Definition 2.1 An L-definable C1manifold of dimension r, with respect to K, is a
topological Hausdorff space M, together with a finite open cover M = ⋃n

i=1 Wi , and
homeomorphisms ϕ i ∶ Vi → Wi , where Vi ⊆ K r is a definable open set, such that
Vi , j = ϕ−1

i (Wi ∩Wj) is a definable open subset of Vi , and each map ϕ i . j = ϕ−1
j ○ ϕ i ∶

Vi , j → Vj, i is a definable C1-map (between definable open subsets of K r).
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On definable groups and D-groups 5

The collection {(Vi , Wi , ϕ i)i∈I} is an atlas for M. We identify the manifold with
the quotient of the disjoint union ⊔i Vi by the equivalence relation a ∼M b ⇔ b =
ϕ i , j(a). We say that the manifold is defined over A if the sets and functions in the atlas
are all defined over A.

If we omit the C1 requirement from the transition maps, then the manifold is called
a definable topological (or C0) manifold.

If M , N are L-definable C1(or C0)-manifolds, then so is M × N , with the natural
atlas.

Definition 2.2 For M an L-definable C1-manifold of dimension r given as above, we
let the tangent space of M, T(M) be the quotient of ⊔n

i=1 Vi × K r by the equivalence
relation, denoted by ∼T(M), given via the maps:

Dϕ i , j ∶ Vi , j × K r → Vj, i × K r ; Dϕ i , j(c, u) = (ϕ i , j(c), D(ϕ i , j)c ⋅ u).

We then write

T(M) = ⊔
i

Vi × Kn �∼T(M) ,

and denote (equivalence classes of) elements in T(M) by [a, u], a ∈ ⊔i Vi , u ∈ K r .
Note that if M = U ⊆ K r is a definable open set with the identity atlas, then

T(M) = U × K r .
The following are easy to verify.

Lemma 2.3 Assume that M and N are L-definable, C1-manifolds, given by atlases
(Wi , Vi , ϕ i)i∈I and (U j , Z j , ψ j) j∈J . If f ∶ M → N is a C1-map (read through the charts),
then there is a well-defined continuous map D f ∶ T(M) → T(N) satisfying, whenever
the elements are in the appropriate Vi and U j ,

Dh([a, u]) = [( f (a), D(ψ−1
j ○ f ○ ϕ i)a ⋅ u)].

Proof In fact, the map (a, u) ↦ ( f (a), D(ψ−1
j ○ f ○ ϕ i)a ⋅ u) induces a well-defined

map from T(M) into ⊔ j∈J U j × Kdim N . The quotient by ∼T(N) gives the desired
map. ∎

Lemma 2.4 (1) For M , N L-definable, C1-manifolds, T(M × N) = T(M) × T(N).
(2) (Chain rule) For f ∶ M → N and h ∶ N → S two L-definable C1-maps between

L-definable C1 manifolds, D(h ○ f ) = D(h) ○ D( f ).

Summarizing, we have the following lemma.

Lemma 2.5 (T , D) is a functor from the category of definable C1-manifolds to the
category of definable C0-manifolds. It, moreover, preserves products.

3 Adding a derivation

Let T be a complete, model complete theory of an o-minimal expansion of a real closed
field K, in a language L. The following definition is due to Fornasiero and Kaplan [6].
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Definition 3.1 A derivation ∂ ∶ K → K is called T-compatible if for every ∅-definable
C1 map f ∶ U → K, for U ⊆ Km open, for all a ∈ U , we have

∂ f (a) = D fa ⋅ ∂a.

(Here, ∂(a1 , . . . , am) = (∂a1 , . . . , ∂am)t .)

Note that if a ∈ dcl(∅) and ∂ is T-compatible, then ∂(a) = 0.
Fornasiero and Kaplan [6] show that the L∂ theory T∪ “∂ is a compatible deriva-

tion” has a model companion, which we call T∂ . We assume from now on that ∂ is a
T-compatible derivation on K, and work in models of T∂ . See [6, Proposition 2.8 and
Lemma 2.9] for instances where the compatibility condition holds.

We observe the following claim.

Claim 3.2 Assume that M = ⊔i Vi/ ∼M is a ∅-definable manifold. Then, for a ∈ M,
∂a is a well-defined element of T(M)a . Namely, if a i ∼M a j , then (a i , ∂a i) ∼T(M)
(a j , ∂a j).

Proof This is easy to verify, using the compatibility of ∂. ∎

3.1 The definition of f ∂ on an open set

The following theorem of Fornasiero and Kaplan, which follows easily from their [6,
Lemma A.3], plays an important role here: in the Appendix, we prove the analogous
result, Proposition A.1, for p-adically closed fields, and the proof could be modified to
give an alternative proof in the o-minimal setting as well.

Fact 3.3 Assume that g ∶ W → K r is an L(∅)-definable partial function on some open
W ⊆ Kn × Km , and b ∈ π2(W) ⊆ Km is dclL-independent. If g(x , b) is a C1-map on
W b = {a ∈ Kn ∶ (a, b) ∈ W}, then for every a ∈ W b , the function g is a C1-function (of
all variables) at (a, b).

As a corollary, one obtains the following.

Fact 3.4 If f (x) is an L(A)-definable C1-function on an open subset of Kn , then there
is a dcl

L(∅)-independent tuple b ⊆ A, and an L(∅)-definable C1-function g(x , y) on
an open subset of Kn × K ∣b∣ such that f (x) = g(x , b).

Definition 3.5 For U ⊆ Kn open and f ∶ U → K r an L-definable C1-map (possibly
over additional parameters), let

f ∂(a) = ∂ f (a) − (D f )a ∂a.

Notice that if f is ∅-definable, then f ∂(a) = 0. For the following, see also [6, Lemma
2.12].

Lemma 3.6 If f ∶ U → K r is an L-definable C1 map, over a differential field k, then
f ∂ is L-definable over k, and continuous on U.

Proof By Fact 3.4, we may write f (x) = g(x , b), for b ∈ Km which is L(∅)-
independent, and g which is a C1 map, L(∅)-definable. By the compatibility of ∂,
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∂ f (a) = ∂g(a, b) = (Dg)(a ,b)(∂a, ∂b) =

= (Dx g)(a ,b)∂a + (Dy g)(a ,b)∂b = (D f )a ∂a + (Dy g)(a ,b)∂b.

It follows that f ∂(a) = ∂ f (a) − (D f )a ∂a = (Dy g)(a ,b)∂b, and since b ∈ k, then
so is ∂b. Also, because g is a C1-function, f ∂ is continuous. ∎
Remark 3.7 When p(x) = ∑m am xm is a polynomial over k, then p∂(x) is a poly-
nomial over k of the same degree:

p∂(x) = ∑
m

∂am xm .

For a ∈ Kn , we let∇(a) = (a, ∂a), and for r ∈ N,∇r(a) = (a, ∂a, . . . , ∂r a). We also
need the following.

Lemma 3.8 Assume that k ⊆ K is a differential field, a ∈ Km , c ∈ Kn , and
c ∈ dclL(k, a). Then ∇(c) ∈ dclL(k,∇(a)). If, in addition, c and a are
L-interdefinable over k, then ∇(a) and ∇(c) are L-interdefinable over k.

Proof Assume first that a is L-generic in Km over k. Then, c = f (a) for f an
L-definable over k and C1 at a. We have ∂ f (a) = (D f )a ∂a + f ∂(a), where, by Lemma
3.6, f ∂(x) is L-definable over k. So, if we let h(x , u) = ( f (x), (D f )x u + f ∂(x)), then
h(∇(a)) = ∇(c), so ∇(c) ∈ dclL(k, a).

Given a general a ∈ Km , we can write it, up to permutation of coordinates, as
(a1 , a2) where a1 ∈ Km1 is L-generic over k and a2 ∈ dclL(a1). Then c ∈ dclL(k, a1),
so by what we saw, ∇(c) ∈ dclL(k,∇(a1)) ⊆ dclL(k,∇(a)).

Finally, it clearly follows that if a and c areL-interdefinable over k, then so are∇(a)
and ∇(c). ∎

3.2 Prolongation of functions on open sets

Here and below, we make use of Marker’s account [14] of prolongations in the algebraic
setting.

Definition 3.9 For U ⊆ K r open and f ∶ U → Kn an L-definable C1-map, we let
τ( f ) ∶ U × K r → Kn × Kn be defined as

τ( f )(a, u) = ( f (a), (D f )a ⋅ u + f ∂(a)) = ( f (a), (D f )a ⋅ (u − ∂a) + ∂ f (a)).

Using Lemma 3.6 (the L-definability of f ∂) and the L-definability of D f , we have
the following lemma.

Lemma 3.10 If f is a C1-map, L-definable over a differential field k, then τ( f ) is
continuous and L-definable over the same k.

Using the second equality in the definition of τ( f ) and the chain rule for D, we
immediately obtain the following lemma.

Lemma 3.11 If f ∶ U → V and h ∶ V → W are definable C1-functions on open sets,
then

τ(h ○ f ) = τ(h) ○ τ( f ).
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3.3 The definition of τ(M) and τ( f ) for definable manifolds

Definition 3.12 Assume that M = ⊔i Vi/ ∼M is an L-definable C1-manifold of
dimension n. Then the prolongation of M is defined as

τ(M) ∶= ⊔
i

Vi × Kn/ ∼τ(M) ,

where (a i , u) ∼τ(M) (a j , v) if τ(ϕ i , j)(a i , u) = (a j , v).
By Lemma 3.10, τ(M) is an L-definable C0-manifold.
The following is easy to verify.

Lemma 3.13 Assume that M = ⊔i Vi/ ∼M is an L-definable C1-manifold. Then

(a i , u) ∼T(M) (a j , v) ⇔ (a i , u + ∂a i) ∼τ(M) (a j , v + ∂a j).

In particular, the map

σM ∶ (a, u) ↦ (a, u + ∂a)
induces a well-defined L∂-definable bijection over M, between T(M) and τ(M).

Using the above lemma, we see that for a ∈ M, the element (a, ∂a) ∈ τ(M) is well
defined (e.g., as σM(a, 0)). We thus have a well-defined map∇ ∶ M → τ(M), given in
coordinates by ∇M(a) = (a, ∂a).
Definition 3.14 Assume that M and N are L-definable C1-manifolds, f ∶ M → N an
L-definable C1 map. Then the prolongation of f, τ( f ) ∶ τ(M) → τ(N), is defined by

τ( f ) ∶= σN ○ D f ○ σ−1
M .

The following is easy to verify.

Lemma 3.15 Assume that M and N as above are given via the atlases {(Vi , Wi , ϕ i)i∈I}
and {(U j , Z j , ψ j)}, respectively, with dim M = r and dim N = n. If f ∶ M → N is an
L-definable C1-map, then, for (a, u) ∈ Vi × K r , we have

τ( f )([a, u]) = [τ(ψ−1
j ○ f ○ ϕ i)(a, u)].

Lemma 3.16 Let M , N be L-definable C1-manifolds defined over a differential field k.
(1) If f ∶ M → N is L-definable over k, then so is τ( f ) ∶ τ(M) → τ(N), and τ( f ) is

continuous.
(2) If f ∶ M → N and h ∶ N → S are L-definable C1 maps between L-definable

C1-manifolds, then τ(h ○ f ) = τ(h) ○ τ( f ).
(3) We have τ(M × N) = τ(M) × τ(N). Moreover, if π1 ∶ M × N → N and π1 ∶

τ(M) × τ(N) → τ(M) are the projection maps on the first coordinates, then
τ(π1) = π1 ○ τ.

(4) We have ∇N ○ f = τ( f ) ○ ∇M .

Proof (1) By Lemma 3.15, the result reduces to the L-definability of each
τ(ψ−1

j ○ f ○ ϕ i), and therefore follows from Lemma 3.6. (2) follows from Lemma 3.11.
(3) and (4) are easy to verify. ∎

As a corollary, we have the following lemma.
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Lemma 3.17 τ is a functor from the category of definable C1-manifolds to definable C0

manifolds, which moreover preserves products.

4 L∂-definable groups

4.1 Prolongation of L-definable groups, D-groups, and Nash D-groups

Let G be an L-definable group of dimension m. By [16], it admits the structure of
an L-definable C0-manifold. Since we shall be using the particular construction, in
its C1-version, we repeat the details below for future use (see [16, Lemmas 2.4 and
Proposition 2.5]).

Fact 4.1 There exist a group topology t on G, a largeL-definable set W ⊆ G, a definable
open V ⊆ Km , and an L-definable homeomorphism σ from V (with the Km-topology)
and W (with the t-topology), and there are g1 , . . . , gk ∈ G, such that:

(i) G = ⋃ j g jW.
(ii) The maps ϕ i ∶ V → g i W ∶ x ↦ g i σ(x) endow (G , t) with a definable C1-atlas.
(iii) The group G is a C1-group with respect to this atlas, namely the group operations

of G are C1 maps.

To be precise, [16, Proposition 2.5] states the result in the C0 category. However, as
is commented in [16, Remark 2.6], if the underlying o-minimal structure is the field
(R, <,+, ⋅), then one can obtain an analytic atlas for G, making it an analytic group. If
we work, as we do here, in an o-minimal structure over an arbitrary real closed field,
where definable functions are piecewise C1 [23, Theorem 6.3.2], then exactly the same
proof would yield the above C1-atlas, making G a C1-group. Moreover, every other
definable C1-atlas on G which makes it into a C1 group yields the same C1-structure,
namely the identity map is a diffeomorphism of the two (this follows from the fact
that definable functions are generically C1). In addition, if G was definable over A,
then since the notion of a C1-atlas is first-order, one can obtain a corresponding C1-
atlas for G which is also defined over A.

Remark 4.2 The result above, from [16], has already been used in several other
settings (e.g. [17]). As we shall be using it again in the p-adic setting, we point out that
Fact 4.1 holds (with the exact same proof) under the following assumptions: the group
G ⊆ Kn , is definable is an L-expansion of a topological field K (namely, a field with
a definable basis for a Hausdorff, non-discrete, field topology), which is a geometric
structure, and in addition admits a C1-cell decomposition.

From now on, one we endow every L-definable group G with its canonical C1-
structure.

By purely categorical reasons, using Lemmas 2.5 and 3.17, we have (see [14,
Section 2] for the same construction in algebraic groups) the following lemma.

Lemma 4.3 Let G be a definable group, endowed with its canonical C1-structure, and
let m ∶ G ×G → G be the group product. Then

⟨T(G); Dm⟩ and ⟨τ(G); τ(m)⟩
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are L-definable C0-groups (namely, topological groups with respect to an L-definable
C0-atlas)), and the function [a, u] ↦ a is in both cases an L-definable group homomor-
phism from T(G) and τ(G) onto G.

The map a ↦ [a, 0] ∶ G → T(G) is an L-definable group section and ∇G ∶ G →
τ(G) is an L∂-definable group section.

Definition 4.4 Assume that G is an L-definable group, and s ∶ G → τ(G) is an
L-definable group section. Then the pair (G , s) is called an L-definable D-group.

Remark 4.5 When T = RCF is the theory of real closed fields, every definable group
admits the structure of a Nash group with respect to K. Namely, the underlying
manifold and group operations are semialgebraic over K and either real analytic, when
K = R, or C∞ in general (see discussion in [10], based on [1]). In this case, every
definable homomorphism between such groups is a Nash map; thus, π ∶ T(G) → G
and π ∶ τ(G) → G are Nash maps, and an L-definable section s ∶ G → τ(G) is a Nash
map. We call a D-group (G , s) in this case a Nash D-group.

Our goal is to prove the following theorem.

Theorem 4.6 Let T∂ be the model companion of a complete, model complete, o-minimal
theory T, with a T-compatible derivation ∂. Assume that Γ is an L∂-definable group
of finite L∂-dimension. Then there exists an L-definable D-group (G , s) and an L∂-
definable group embedding Γ → G whose image is

(G , s)∂ = {g ∈ G ∶ s(g) = ∇G(g)}.

We first recall our result [15, Theorem 6.8]. We shall be using the following version.

Theorem 4.7 If Γ is a finite-dimensional L∂-defined group in a model of T∂ , then it
can be L∂-definably embedded in an L-definable group G ⊆ Kn such that:

(i) Every L-generic type p ⊢ G is realized by some γ ∈ Γ.
(ii) There are L-definable sets X1 , . . . , Xr ⊆ G, G = ⋃r

i=1 X i , and L-definable func-
tions s i ∶ X i → Kn such that for each L-generic a ∈ X i , a ∈ Γ iff ∂a = s i(a). (Recall that
for a = (a1 , . . . , an), ∂a = (∂a1 , . . . , ∂an).

Note that as a corollary of above we may obtain X′1 , . . . , X′k ⊆ G pairwise disjoint,
all of the same dimension as dim G, satisfying (ii), but instead of G = ⋃X′i we have
dim(G/⋃X′i) < dim G. Indeed, we replace the original X i by X′i = X i/⋃ j<i X j and
remove all X′i whose dimension is smaller than dim G.

In fact, we shall prove a more precise version of Theorem 4.6.

Theorem Assume that Γ and G satisfy (i) and (ii) of Theorem 4.7. If we endow G with
its C1-structure, then there exists an L-definable s ∶ G → τ(G), such that Γ = (G , s)∂ ,
where (G , s)∂ = {g ∈ G ∶ s(g) = ∇(g)}.

We first prove a general fact about groups in geometric structures.

Proposition 4.8 Let G be a definable group in a geometric structure, and let S ⊆ G be
a definable subset. Assume that for every generic pair (a, b) ∈ S × S, we have a ⋅ b ∈ S
and for every generic a ∈ S we have a−1 ∈ S.

Then there is a definable S0 ⊆ S such that S0 ⋅ S0 is a subgroup of G and S0 is a large
subset of both S and S0 ⋅ S0.
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Proof We let

S1 = {s ∈ S ∶ the set {t ∈ S ∶ s ⋅ t ∈ S & t ⋅ s ∈ S} is large in S}.

By definability of dimension in geometric structures, S1 is definable. By our
assumptions, S1 contains all generic elements of S; thus, by our assumptions, S0 ∶=
S1 ∩ S−1

1 is also large in S. We claim that S0 ⋅ S0 is a subgroup of G.
We need to prove that for every a, b, c, d ∈ S0, we have abc−1d−1 ∈ S0 ⋅ S0. We fix

g ∈ S generic over a, b, c, d, and consider

abc−1d−1 = (abg)(g−1c−1d−1).

Since b ∈ S0, the set {t ∈ S ∶ bt ∈ S} is large in S, defined over b, and therefore contains
g. Thus, bg is in S and by our choice, it is in fact generic in S over a, c, d, so in particular
belongs to S0. Thus, a(bg) ∈ S, and again generic there over c, d, so belongs to S0.
Similarly, g−1c−1d−1 ∈ S0, so abc−1d−1 ∈ S0 ⋅ S0. Let H ∶= S0 ⋅ S0.

To see that S0 is a large subset of H, we fix g ∈ S0 and h ∈ S generic over g (so
h ∈ S0). Then gh, gh−1 ∈ S and generic there so in S0. It follows that g ∈ S0 ⋅ S0 and
h ∈ S−1

0 ⋅ S0 = S0 ⋅ S0.
Hence, S0 ⊆ H and every generic h ∈ S over g is in H, so S0 is large in H. ∎
We are now ready to prove Theorem 4.6.
We first apply Theorem 4.7 and the subsequent corollary and deduce the existence

of pairwise disjoint L-definable X1 , . . . , Xr ⊆ G ⊆ Kn , each of dimension equal to m =
dim G, such that X = ⊔ j X j is a large subset of G and on each j, we have anL-definable
s j ∶ X j → Kn , such that for g generic in X j , we have g ∈ Γ ⇔ ∂g = s j(g). We let s ∶ X →
Kn be the union of the s j ’s.

Next, we apply Fact 4.1, and fix anL-definable large W ⊆ G, V ⊆ Km open, σ ∶ V →
W a homeomorphism, and g1 , . . . , gk ∈ G, such that the maps ϕ i ∶ V → g i W ∶ x ↦
g i σ(x) endow G with a definable C1-manifold structure, and make G into a C1-group.

By intersecting W with the relative interior of X in G, we may assume that W = X.

Claim 4.9 There exists an L-definable ŝ ∶ V → Km , such that for every L-generic a ∈
V, ŝ(a) = ∂a ⇔ s(σ(a)) = ∂σ(a).
Proof Every a ∈ V is L-interdefinable with σ(a), so by Lemma 3.8, ∇(a)
and ∇(σ(a)) are L-interdefinable over k. By compactness, there exists an
L-definable (partial) bijection h ∶ W × Kn → V × Km , such that for each generic a ∈
V , h(∇(σ a)) = ∇(a). Let

ŝ(a) = π2(h(σ(a)), s(σ(a))),

where π2 ∶ V × Kn → Kn is the projection onto the second coordinate.
Now, if s(σ(a)) = ∂(a), then (σ(a), s(σ(a))) = ∇(σ(a)), so

ŝ(a) = π2(h(∇σ(a))) = π2(∇(a)) = ∂a.

The converse follows from the invertibility of h. ∎
Going back to G, we now endow G with a finite C1-atlas (Vi , g i W , ϕ i)i∈I , where

Vi = V for all i, and identify G with ⊔Vi/ ∼M . We also identify Γ with the group
⊔ϕ−1

i (Γ ∩ g i W)/ ∼M . Notice that each g i W/ ∼M is large in G, and by Claim 4.9,
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there is an L-definable ŝ ∶ V → Km such that, for generic a ∈ V , ŝ(a) = ∂a if and
only if s(σ(a)) = ∂σ(a). Thus, by our assumption, for every generic g ∈ G, g ∈ Γ ⇔
ŝ(g) = ∂g. For simplicity, from now on, we use s instead of ŝ and let X = dom(s), an
L-definable large subset of G.

Consider the L-definable C1-group τ(G) as before, and the associated L-definable
homomorphism π ∶ τ(G) → G, together with an L∂-definable group section ∇G ∶
G → τ(G). The map s can be replaced by x ↦ (x , s(x)), so we may think of it as a
function from X into τ(X) = X × Km with π ○ s(x) = x.

In addition, we still have for every generic g ∈ X, g ∈ Γ ⇔ s(g) = ∇G(g). By
our assumptions, every generic L-type of X contains an element of Γ; hence, the
L-definable set X0 = {x ∈ X ∶ s(x) ∈ τ(X)} is large in X, so without loss of generality,
X = X0. Let S be the graph of s∣X0.

We claim that S satisfies the assumptions of Proposition 4.8: indeed, assume that
(a, b) is generic in S2. Namely, a = (g , s(g)) and b = (h, s(h)), for (g , h) generic in
X × X. We need to prove that ab ∈ S.

By [15, Lemma 6.7], applied to the function (s, s) ∶ X × X → τ(X × X), there
exists (x , y) ∈ X × X, realizing the same L-type as (g , h) such that ∇G×G(x , y) =
(s(x), s(y)). But then, by our assumptions, (x , y) ∈ Γ × Γ, so x y ∈ Γ. Because x y is
still L-generic in G, we have x y ∈ X. Thus, we have

s(x y) = ∇G(x y) = ∇G(x)∇G(y) = s(x)s(y)
(where the middle equality follows from the fact that∇G is a group homomorphism).
Since tpL(x , y) = tpL(g , h), we also have s(gh) = s(g)s(h), hence ab = (gh, s(gh)),
is in S.

We similarly prove that for a generic in S, we have a−1 ∈ S; thus, S satisfies, indeed,
the assumption of Proposition 4.8.

Hence, there exists an L-definable S0 ⊆ S, such that S0 is a large subset of the group
H = S0 ⋅ S0. Since S0 is large in H, for every generic (g , s(g)) ∈ H, we have π−1(g) ∩
H is a singleton, which implies that ker(π∣H) = {1}, and hence H is the graph of a
function. Also, since the group π(H) is large in G, it necessarily equals to G.

We therefore found anL-definable group-section ŝ ∶ G → τ(G), making (G , ŝ) into
a D-group. In addition, x ∈ Γ ⇔ ŝ(x) = ∇G(x), for all x generic in G.

It is left to see that

Γ = (G , ŝ)∂ = {x ∈ G ∶ ŝ(x) = ∇G(x)}.

Let X0 = π(S0) and Γ0 = X0 ∩ Γ. By the definition of S, Γ = {x ∈ π(S) ∶ S(x) =
∇G(x)}, so Γ0 = {x ∈ X0 ∶ ŝ(x) = ∇G(x)}. We claim that Γ0 ⋅ Γ0 = Γ.

Indeed, let γ ∈ Γ, and pick g generic in X0 over γ. By the geometric axioms, there
exists γ1 ≡L(γ) g such that ŝ(γ1) = ∇G(γ1), namely γ1 ∈ Γ0. It follows that γ ⋅ γ−1

1 is
L-generic in G over γ and hence in X0, namely in Γ0. Hence, γ ∈ Γ0 ⋅ Γ0.

It follows that for all γ ∈ Γ, we have ŝ(γ) = ∇G(γ). To see the converse, assume that
ŝ(x) = ∇G(x), and choose γ ∈ Γ0 generic over x. We then have ŝ(γ) = ∇G(γ), and x ⋅ γ
generic in X0. Because ŝ is a homomorphism,

ŝ(xγ) = ŝ(x)ŝ(γ) = ∇G(x)∇G(γ) = ∇G(xγ).

It follows that xγ ∈ Γ and hence so is x. This ends the proof of Theorem 4.6.
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4.2 The case of p-adically closed fields

Let K be a p-adically closed field, namely a field which is elementarily equivalent to
a finite extension of Qp . The field admits a definable valuation, which we may add to
the field language and call this language L.

We shall use multiplicative notation for the valuation map ∣ ∣ ∶ K → {0} ∪ vK.
Namely,

∣0∣ = 0 < vK , ∣ ∣ ∶ K∗ → (vK , ⋅) a group homomorphism

and

∀x , y ∈ K ∣x + y∣ ≤ max{∣x∣, ∣y∣}.

For a = (a1 , . . . , an) ∈ Kn , we write ∥h∥ = max{∣a i ∣ ∶ i = 1, . . . , n}. Since K is a geo-
metric structure, we use the acl-dimension below.

Definition 4.10 For U ⊆ Km open, a map f ∶ U → Kn is called differentiable at a ∈ U
if there exists a K-linear map T ∶ Km → Kn such that for all ε ∈ vK there is δ ∈ vK,
such that for all h ∈ Km , if ∥h∥ < δ, then

∥ f (a + h) − f (a) + T(h)∥ < ε∥h∥.

The linear map T can be identified with D fa the n ×m matrix of partial derivatives
of f. We identify Mn×m(K) with Kn⋅m . The function f is called continuously differen-
tiable on U, or C1, if it is differentiable on U and the map x ↦ D fa is continuous.

Differentiable maps satisfy the chain rule, by the usual proof (see, for example, [19,
Remark 4.1] for a proof in Qp).

Toward our main result, we first note that p-adically closed fields satisfy the
assumptions in Remark 4.2: indeed, these are geometric fields with a definable
Hausdorff, non-discrete topology. Let us see that they admit C1-cell decomposition
(we could not find a precise reference for that in the literature).

First, one can read-off analytic cell decomposition in finite extensions of Qp from
Scowcroft and van den Dries [24, Sections 4 and 5]. More explicitly, the result is
stated in [5, Theorem 3.3] (as mentioned there, the theorem works for the Macintyre
language, as well as the subanalytic one). Since being C1 is a definable property, one
may conclude a C1-cell decomposition for definable sets in arbitrary elementarily
equivalent structures, i.e., p-adically closed fields.

Thus, as we commented in Remark 4.2, the result of Fact 4.1 holds in this setting
as well and in particular, every L-definable group admits an L-definable C1-manifold
which makes it into a C1-group.

We now endow K with a derivation, denoted by ∂. By Tressl’s work (see [21,
Theorem 7.2]), the theory of p-adically closed fields with a derivation has a model
companion T∂ . In our one derivation case, (Tressl deals with several commuting
derivations), one can axiomatize T∂ with the following geometric axioms (see, for
instance, [15, Fact 5.7(ii)]): whenever (V , s) is an irreducible D-variety over K with
a smooth K-point and U is a Zariski open subset of V defined over K, then there is
a ∈ U(K) such that (a, s(a)) = ∇(a). (Recall that a D-variety (V , s) defined over K
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is a K-variety V equipped with a rational section s defined over K from V to T(V)
[15, Definition 2.4].)

Now, exactly as in the work of Fornasiero and Kaplan for real closed fields [6,
Lemmas 2.4 and 2.7 and Proposition 2.8], every nontrivial derivation is compatible
with the theory of p-adically closed fields, namely compatible with every L(∅)-
definable C1 map, as in Definition 3.1. We briefly review the details.

As in [6, Lemma 2.4], it is enough to verify compatibility of ∅-definable C1-
functions in neighborhoods of aclL-independent points in Kn (we use here the
fact that aclL = dclL). By quantifier elimination, the graph of every L(∅)-definable
function g ∶U→K, for U ⊆Kn open, is given implicitly by {(x , y) ∶ x ∈U& f (x , y)=0},
for f (x , y) an irreducible polynomial over Z. Now, if a ∈ U is L-generic over ∅, then
(∂ f /∂y)(a, g(a)) ≠ 0 and as in [6, Lemma 2.7], ∂ is compatible with g.

In order to develop the rest of the theory as in the o-minimal case, we prove in
the Appendix (see Proposition A.1) that definable functions in p-adically closed fields
satisfy the analogue of Fact 3.4.

Proposition 4.11 Given an L(∅)-definable W ⊆ Kn × Km and an L(∅)-definable g ∶
W → K, if (a, b) ∈ W, dim(b/∅) = m, W b is open and g(x , b) is a C1-function on W b ,
then (a, b) ∈ Int(W) and g is a C1-function at (a, b).

Now, the category of K-differentiable manifolds M and their associated functors T
and τ can be developed identically to Sections 1 and 2. This allows us to associate to
every definable group G the definable groups T(G) and τ(G), such that the natural
projections onto G are group homomorphisms. If G is a C1-group, then T(G) and
τ(G) are C0-groups.

By a p-adic D-group, we mean a pair (G , s) where G is an L-definable C1-group
and s ∶ G → τ(G) an L-definable homomorphic section (i.e., π ○ s = id).

As before, we define in models of T∂ , given a D-group (G , s),

(G , s)∂ = {g ∈ G ∶ s(g) = ∇G(g)}.

In order to prove our main theorem in the p-adically closed field, we let T be the
theory of p-adically closed fields and let Γ be a finite-dimensional L∂-definable group
in K ⊧ T∂ . Since p-adically closed fields are large geometric fields, we may apply [15,
Theorem 5.11] to conclude that Theorem 4.7 holds in this setting as well. Namely, Γ
embeds into an L-definable group G, with the additional L-definable X i ’s as in the
theorem. Now we repeat word-for-word the proof in the o-minimal setting (see also
Remark 4.2) to conclude the following theorem.

Theorem 4.12 Let T be the theory of p-adically closed fields, and let Γ be a finite-
dimensional L∂-definable group in K ⊧ T∂ . Then there exists an L-definable D-group
(G , s) such that Γ is definably isomorphic to (G , s)∂ .

4.3 The case of pseudo-finite fields

Let L be the language of rings, and let C = (c i ,n)n∈N, i<n be an infinite countable set
of new constants. Let T be the L(C)-theory of pseudo-finite fields of characteristic
0, namely the theory of pseudo-algebraically closed fields plus the scheme of axioms
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saying, for every n ∈ N, that there is a unique extension of degree n, and that the
polynomial

Xn + cn−1,n Xn−1 + ⋅ ⋅ ⋅ + c0,n

is irreducible.
Since T is a model-complete theory of large fields, one can apply the Tressl

machinery and so the theory of differential expansions of models of T has a model-
companion [21, Corollary 8.4], which has been axiomatized [21, Theorem 7.2] (in
case of expansions by a single derivation, one obtains a geometric axiomatization [3,
Lemma 1.6]). Recall that since T has almost q.e. (see [3, Remark 1.4(2)]), the theory
T∂ does too [3, Definition 1.5 and Lemma 2.3], [21, Theorem 7.2(iii)].

LetU be our sufficiently saturated model of T∂ , a differential expansion of a pseudo-
finite field, and let Ū ⊇ U be a saturated model of DCF0 extending it. We work over a
small submodel (K , ∂) ⊧ T∂ .

We briefly review the construction of the algebraic prolongation τ(V) ⊆ Ūn × Ūn

of an irreducible algebraic variety (see [14] for details).
Assume that the ideal I(V) is generated by polynomials p1 , . . . , pm , over K, and

let P ∶ Ūn → Ūm be the corresponding polynomial map P(x) = (p1(x), . . . , pm(x)).
The definition of DP and τ(P) is defined as before using the formal derivative of
polynomials (see also Remark 3.7). Then

T(V) = {(x , u) ∈ Ū2n ∶ P(x) = 0 & (DP)x ⋅ u = 0}

and

τ(V) = {(a, u) ∈ Ū2n ∶ a ∈ V & τ(P)(a, u) = 0}.

Both are algebraic varieties over K. For a ∈ V(Ū), a ↦ ∂a is a section of
π ∶ τ(V) → V , and we have

τ(V) = {(a, u) ∈ Ū2n ∶ a ∈ V & u − ∂a ∈ T(V)a}.

So, τ(V)a is an affine translate of the vector space T(V)a ⊆ Ūn . In particular,
dim(τ(V)a) = dim V .

As described in [14], the above constructions of T(V) and τ(V) can be extended
to abstract, not necessarily affine, algebraic varieties (which are covered by finitely
many affine algebraic varieties). Furthermore, if H is an algebraic group, then T(H)
and τ(H) are algebraic groups with the property that the map ∇H is now a group
morphism [14, Section 2].

Our goal is to prove the following theorem.

Theorem 4.13 Let T be the theory of pseudo-finite fields, and let Γ be a finite-
dimensional definable group in K ⊧ T∂ . Then there exists a K-algebraic D-group (H, s)
such that Γ is virtually definably isogenous over K to the K-points of (H, s)∂ .

By “Γ and (H, s)∂(K) are virtually isogenous,” we mean the following: there exist
an L∂-definable subgroup Γ0 ⊆ Γ of finite index and an L∂-definable homomorphism
σ ∶ Γ0 → H with finite kernel, whose image has finite index in the K-points of (H, s)∂ .

We first need the following lemma.
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Lemma 4.14 Let W1 , W2 be irreducible algebraic varieties over a differential field K,
and a, b generic tuples in W1 and W2, respectively, over K. Suppose that a and b are
field-theoretically interalgebraic over K (in particular, dim W1 = dim W2), and let W ⊆
W1 ×W2 be the (irreducible) variety over K with generic point (a, b). Then τ(W)(a ,b)
is the graph of a bijection over K(a, b), α ∶ τ(W1)a → τ(W2)b .

Proof This basically follows from the fact that the projection from W to W1 , W2
is generically étale. However, for completeness, we include a proof. By dimension
considerations, the affine space τ(W)(a ,b) projects onto both τ(W1)a and τ(W2)b .

Fix some coordinate a1 of the tuple a. By our interalgebraicity assumption, a1
is in the field-theoretic algebraic closure of K(b). Let q(x) be the minimal monic
polynomial of a1 over K(b). q(x) = xn + fn−1(b)xn−1 + ⋅ ⋅ ⋅ + f1(b)x + f0(b), where
the f i(b) are K-rational functions of the tuple b. After getting rid of denominators, we
can rewrite q(x) as qn(b)xn + qn−1(b)xn−1 + ⋅ ⋅ ⋅ + q1(b)x + q0(b) where the q i are
polynomials over K.

Hence, r(x , y): qn(y)xn + qn−1(y)xn−1 + ⋅ ⋅ ⋅ + q0(y) is a polynomial (over K) in
IK(W).

Hence, (∂r/∂x)(a1 , b)(u1) +∑ j(∂r/∂y j)(a1 , b)(v j) + r∂(a1 , b) = 0 for
(u1 , ..., v1 , ..., v j , ...) ∈ τ(W)a ,b .

By the minimality of r(x , b), we have ∂r/∂x(a1 , b) ≠ 0, and hence

u1 =
⎛
⎝∑j

(∂r/∂y j)(a1 , b)(v j) + r∂(a1 , b))/(∂r/∂x)(a1 , b)
⎞
⎠

.

Thus, u1 ∈ dcl(K , a, b, v). We similarly prove that u and v are inter-definable over
K(a, b). Since τ(W)(a ,b) is a translate of a linear space, containing (u, v) whose
dimension equals dim W1 = dim W2, it must be the graph of a bijection. ∎

We now return to the proof of Theorem 4.13.
By [15, Theorem 5.11], there exist an L-definable group G and a definable group

embedding ∶ σ ∶ Γ → G. Furthermore, every generic L-type of G is realized by an
element in σ(Γ) and, in addition, there is a covering of G by finitely many L(K)-
definable sets X i , i = 1, . . . , m, and for each X i , there is a K-rational function s i ∶ X i →
Un such that for every a ∈ X i(U) which is L-generic in X i over K, we have

a ∈ σ(Γ) ⇔ ∂(a) = s i(a).

For simplicity, we assume now that σ = id, so Γ ⊆ G.
We may take each X i to be Zariski dense in a K-variety Vi . We are only interested in

those Vi whose Zariski dimension is maximal, call it d, so in particular, every algebraic
type in Vi over K, of dimension d, is realized in X i in U, so by the axioms also realized
by some a ∈ X i(U)with ∂a = s i(a), and hence, by the above, also realized in Γ. Finally,
each X i can be taken to be the U-points of Wi = Reg(Vi) ∶= Vi/Sing(Vi), namely the
U-points of a smooth quasi affine K-variety.

We now apply [9, Theorem C] in the structure U: there exist a connected algebraic
group H over K,L-definable subgroups of finite index, G0 ⊆ G and H0 ⊆ H(U), and an
L-definable surjective homomorphism f ∶ G0 → H0 whose kernel is finite, all defined

https://doi.org/10.4153/S0008414X24000063 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000063


On definable groups and D-groups 17

over K. The group H, as an algebraic group over K, has an associated K-algebraic group
τ(H). Notice that aclL equals the field acl and we have dim H = d.

Let Γ0 = Γ ∩G0, a subgroup of Γ of finite index. Since f (G0) is Zariski dense in H,
so is f (Γ0). As we shall now see, we can endow H with the structure of a D-group,
(H, s) such that

f (Γ0) = {h ∈ H0 ∶ s(h) = ∇H(h)}.

Claim 4.15 For every g ∈ Γ0, tr.deg(∇H f (g)/K) ≤ dim(H).

Proof We first prove the result for g ∈ Γ0 such that tr.deg(g/K) = d.
Since tr.deg(g/K) = d, there exists a K-algebraic quasi-affine variety Wi as above

such that g is generic in Wi over K. The L-definable function f takes values in H,
and because aclL is the same as the field acl , there exists an algebraic correspon-
dence C i ⊆ Wi ×H over K, such that (g , f (g)) is field-generic in C i . It follows that
(∇Wi (g),∇H f (g)) ∈ τ(C i) ⊆ τ(Wi) × τ(H).

By Lemma 4.14, τ(C i)(g , f (g)) induces an (algebraic) bijection over K between
τ(Wi)g and τ(H) f (g). In particular, ∇Wi (g) and ∇H f (g) are interalgebraic over
K. By our construction, ∇Wi (g) = s i(g); hence, g and ∇H f (g) are interalgebraic
over K (notice that g is algebraic over ∇Wi (g)). Hence, tr.deg(∇H f (g)/K) =
tr.deg(g/K) = d.

Assume now that g is an arbitrary element of Γ0, and let h ∈ Γ0 be such that
tr.deg(h/K , g ,∇H f (g)) = d.

Since tr.deg(hg/K) = d and hg ∈ Γ0, it follows from the above that

d = tr.deg(∇H f (hg)/K)) = tr.deg(∇H f (h) ⋅ ∇H f (g)/K),

and therefore

tr.deg(∇H f (h) ⋅ ∇H f (g)/∇H f (h), K) ≤ d .

The elements∇H f (h) ⋅ ∇H f (g) and∇H f (g) are interalgebraic over K and∇H f (h),
and thus tr.deg(∇H f (g)/∇H f (h), K) ≤ d.

We know that h and ∇X i (h) (and hence also ∇H f (h)) are interalgebraic over K
(as witnessed by s i ), and as h and ∇H( f (g)) are independent over K, it follows that
∇H f (h) and ∇H f (g) are independent over K. Therefore,

tr.deg(∇H f (g)/K) = tr.deg(∇H f (g)/∇H f (h), K) ≤ d . ∎

We now consider the subgroup ∇H f (Γ0) of τ(H) and let S ⊆ τ(H) be its Zariski
closure, an algebraic subgroup of τ(H). By the claim above, dim(S) ≤ dim H, but since
S contains ∇H f (h) for L-generic h ∈ Γ0, we have dim(S) = dim(H). Consider the
projection π ∶ τ(H) → H, a group homomorphism, and its restriction to S. Since H
is connected, we have π(S) = H, and hence ker(π) ∩ S is a finite subgroup of τ(H)e .
However, τ(H)e = T(H)e is a vector space over K, a field of characteristic 0, thus
torsion-free. Hence, ker(π) ∩ S is trivial, so π ∶ S → H is a group isomorphism. It
follows that S can be viewed as a group section s ∶ H → τ(H). Since S is the Zariski
closure of ∇H( f (Γ0)), we have for every g ∈ Γ0, ∇H( f (g)) = s( f (g)).

Recall that H0 = f (G0) is an L-definable subgroup of finite index of H(U).
Claim 4.16 f (Γ0) = (H0 , s)∂ = {h ∈ H0 ∶ ∇H(h) = s(h)}.
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Proof We only need to prove the ⊇ inclusion.
We first prove that for every h ∈ (H0 , s)∂ , if tr.deg(h/K) = d, then h ∈ f (Γ0).

Indeed, since h ∈ H0 is L-generic in H over K, there exists g ∈ G0, necessarily
L-generic in G over K, such that h = f (g). By our assumptions, there exists g′ ∈ Γ,
such that g′ and g realize the same L-type over K. Thus, g′ is in G0 so also in Γ0. In
addition, f (g′) and f (g) = h must realize the same L-type over K. Because S is the
Zariski closure of ∇H f (Γ0), it follows that f (g′) ∈ (H0 , s)∂ .

Since ∇H(h) = s(h) and ∇H( f (g′)) = s( f (g′)), it follows that for every n ∈ N,
there is an L(K)-definable function sn such that

∇n
H(h) = sn(h) , ∇n

H( f (g′)) = sn( f (g′))

(recall that ∇n
H(g) = (g , ∂g , . . . , ∂n g)). Because h and f (g′) realize the same L-type

over K, we may conclude that for every n, ∇n
H(h) and ∇n

H( f (g′))) realize the same
L-type over K, and therefore

tpL(K)(∇∞H (h)) = tpL(K)(∇∞H ( f (g′))).

(∇∞H (g) = (g , ∂g , . . . , ∂n g , . . .).)
By [21, 7.2(iii)], every L∂(K)-formula is equivalent in T∂ to a Boolean combination

of formulas of the form (x , ∂x , . . . , ∂n x) ∈ Y , where Y is an L(K) definable set. Thus,
it follows from the above that h and f (g′) realize the same L∂-type over K, and
therefore h ∈ f (Γ0), as needed.

This proves that every h ∈ (H0 , s)∂ with tr.deg(h/K) = d belongs to f (Γ0).
However, every h ∈ (H0 , s)∂ can be written as h = h1h2, with h1 , h2 ∈ (H0 , s)∂ and
tr.deg(h1/K) = tr.deg(h2/K) = d. Indeed, pick h1 ∈ (H0 , s)∂ with tr.deg(h1/hK) =
d and h2 = h−1

1 h). Thus, every h ∈ (H0 , s)∂ belongs to f (Γ0). This ends the proof of
Theorem 4.13. ∎

A Appendix

We fix K a p-adically closed field. All definability below is in the language L of K. Our
goal is to prove the following p-adic analogue of Fornasiero–Kaplan’s theorem (see
[6, A.3]).

Proposition A.1 Let K be a p-adically closed field. Assume that g ∶ W → K r is an
L(A)-definable partial function on some definable W ⊆ Kn × Km , and b ∈ π2(W) ⊆
Km is aclL-independent over A.

If W b = {a ∈ Kn ∶ (a, b) ∈ W} is open and g(x , b) is a C1-map on W b , then for
every a ∈ W b , (a, b) ∈ Int(W) and the function g is a C1-map (of all variables) in a
neighborhood of (a, b).

We shall use the following three important properties of p-adically closed fields (as
well as o-minimal structures and some other geometric structures).

Fact A.2 Fix A ⊆ K eq .
1. Given a ∈ Km and b ∈ Kn , if U ∋ a is a (definable) open set in Km , then there exists a

definable open V, a ∈ V ⊆ U, such that dim(b/A[V]) = dim(b/A) (we use [V] for
the canonical parameter of V) (see [7, Corollary 3.13] or [11, Lemma 4.30]).
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2. Assume that X ⊆ Km+n is definable over A, a ∈ Km , b ∈ Kn , and (a, b) ∈ X. Assume
further that Xb = {x ∈ Km ∶ (x , b) ∈ X} is finite. Then there exists a definable open
W ∋ (a, b) (possibly over additional parameters) such that X ∩W is the graph of
a definable map from Km to Kn (this follows from cell decomposition in p-adically
closed fields).

3. If U ⊆ Km is open and f ∶ U → Kn is an A-definable map, then f is C1 at every a ∈ U
with dim(a/A) = m (see [24]).

An immediate corollary of the first two is the following.

Fact A.3 For a ∈ Km and b ∈ Kn and A ⊆ K eq , if a ∈ acl(b, A), then there exists A1 ⊇
A such that a ∈ dcl(bA1) and dim(b/A1) = dim(b/A).

Proof of Proposition A.1 We first prove a continuous version.

Lemma A.4 Assume that g ∶ W → K r is an L(A)-definable partial function on
some definable W ⊆ Km × Kn , and b ∈ π2(W) ⊆ Kn is aclL-independent over A. If
W b ⊆ Km is open and g(x , b) is continuous on W b , then (a, b) ∈ Int(W) and for every
a ∈ Xb , the function g is continuous at (a, b). ∎

Proof We need the following claim.

Claim A.5 Assume that X ⊆ Km × Kn is an A-definable set, (a, b) ∈ X, and b is aclL-
independent in Kn over A. If a ∈ Int(Xb), then (a, b) ∈ Int(X). ∎

Proof Applying Fact A.2(1), there is a definable open V ∋ a such that a ∈ V ⊆ Xb and
dim(b/A[V]) = dim(b/A).

Because b is generic in Kn over A[V], it remains generic in Y = {b′ ∈
Kn ∶ V ⊆ Xb′}. It follows that dim(Y) = n and b ∈ Int(Y), so (a, b) ∈ V ×
Int(Y) ⊆ Int(X). ∎

To prove the lemma, let V ⊆ K r be an open neighborhood of g(a, b). By Fact A.2(1),
we may replace V by V1, g(a, b) ∋ V1 ⊆ V , with b generic in Kn over A[V1]. Consider
the set X = {(x , y) ∈ W ∶ f (x , y) ∈ V1}. We need to see that (a, b) ∈ Int(X). Since
f (x , b) is continuous at a, we have a ∈ Int(Xb), and hence by the above claim, (a, b) ∈
Int(X).

We now return to the proof of Proposition A.1. Just like in [6], we first reduce to
the case where a = 0 ∈ Km and g(0, y) ≡ 0.

After permuting a, we may write it as a = (a1 , a2)where (a2 , b) is acl-independent
over A and a1 ∈ acl(a2bA). Since W b ⊆ Km is open, the set W(a2 ,b), obtained by fixing
additional parameters, is open in Km−∣a2 ∣. Similarly, x1 ↦ f (x1 , a2 , b) is still C1 at a1
(since f (x , b) was C1 at a). Thus, by replacing b with (a2 , b) and a with a1, we may
assume that a ∈ acl(bA). By Fact A.3, we may add parameters to A while preserving
the genericity of b, such that a ∈ dcl(bA). We still use A for this new parameter set.
Thus, b = α(a) for an A-definable function α. Since b is generic in dom(α), then α is
continuously differentiable at b. Without loss of generality, dom(α) = π1(W).

Consider the local C1-diffeomorphism ᾱ ∶ (x , y) ↦ (x − α(y), y). It sends W to a
set W̄ and (a, b) to (0, b), so by Fact A.5, (0, b) ∈ Int(W̄). The pushforward of g via
ᾱ is ḡ(x , y) = g(x + α(y), y). The map ḡ(x , b) is still C1 on W̄ b , and it is sufficient to
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prove that ḡ is C1 at (0, b). So, we may replace g with ḡ, W with W̄ , and (a, b) with
(0, b). We still use g and W for the sets. Finally, since b is generic in Kn , it follows
from Fact A.2(3) that the function g(0, y) is C1 in a neighborhood of b, so we may
replace g with g(x , y) − g(0, y), and thus assume that g(0, y) ≡ 0, and in particular,
Dy g(0,b) = 0, so Dg(0,b) = (Dx g(0,b) , 0) ∈ Mr×(m+n)(K).

To simplify notation below, we view x ∈ Kn both as a row and a column vector,
depending on context. Thus, for, say, (x , y) ∈ Km × Kn , we write Dg(a ,b) ⋅ (x , y),
instead of Dg(a ,b)(x , y)t .

Notice that in order to show that g is differentiable at (0, b), we need to show that
for every ε ∈ vK, the point (0, b) belongs to the interior of the set of (x , y) ∈ Km × Kn ,
such that

∥g(x , y) − g(0, b) − Dg(0,b) ⋅ (x − 0, y − b)∥ < ε∥(x , y − b)∥,

which, since g(0, b) = 0 and Dy g(0,b) = 0, equals

{(x , y) ∈ Km × Kn ∶ ∥g(x , y) − Dx g(0,b) ⋅ x∥ < ε∥(x , y − b)∥} .(A.1)

We fix ε ∈ vK. By our assumption that g(x , b) is differentiable at 0, it follows that
0 is in the interior of

{x ∈ Km ∶ ∥g(x , b) − Dx g(0,b) ⋅ x∥ < ε∥x∥} .

By Claim A.5, (0, b) is in the interior of

{(x , y) ∈ Km × Kn ∶ ∥g(x , y) − Dx g(0, y) ⋅ x∥ < ε∥x∥} ;

hence, there exists δ1 ∈ vK such that if ∥(x , y − b)∥ < δ1, then

∥g(x , y) − Dx g(0, y) ⋅ x∥ < ε∥x∥.

In order to prove that (0, b) is in the interior of the set in (A.1), we write

g(x , y) − Dx g(0,b) ⋅ x = g(x , y) − Dx g(0, y) ⋅ x + (Dx g(0, y) − Dx g(0,b)) ⋅ x .(A.2)

Claim A.6 There is δ2 ∈ vK, such that for all (x , y) ∈ Km × Kn , if ∥y − b∥ < δ2, then

∥(Dx g(0, y) − Dx g(0,b)) ⋅ x∥ < ε∥x∥.

Proof We first observe that for every A = (a i , j) ∈ Mn(K), if for all i , j, ∣a i , j ∣ < ε, then
for all x ∈ Kn , we have ∥A ⋅ x∥ < ε∥x∥.

Consider the map G ∶ Kn → Mr×n(K), given by G(y) = Dx g(0, y) (we identify the
space on the right with K rn). It is definable over A and hence continuous at b.
Thus, there exists δ2 ∈ vK such that whenever ∥y − b∥ < δ2, then ∥G(y) −G(b)∥ =
∥Dx g(0, y) − Dx g(0,b)∥ < ε. The result follows from our above observation. ∎

If we now take δ = min{δ1 , δ2}, for δ2 as in the above claim, then for all (x , y) ∈
Km × Kn with ∥(x , y − b)∥ < δ, we have, using (A.2),

∥g(x , y) − Dx g(0,b) ⋅ x∥≤ max{∥g(x , y) − Dx g(0, y) ⋅ x∥, ∥(Dx g(0, y) − Dx g(0,b)) ⋅ x∥}

< ε∥x∥ ≤ ε∥(x , y − b)∥.
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This ends the proof that g(x , y) is differentiable at (a, b). Since a ∈ W b was
arbitrary, it follows that for all x ∈ W b , g(x , y) is differentiable at (x , b). Consider
now the map G ∶ (x , y) ↦ Dg(x , y). Since g(x , b) is C1 on W b , the map G(x , b) is
continuous on W b , and therefore by Lemma A.4, G is continuous at (a, b). Thus, g is
C1 at (a, b). This ends the proof of Proposition A.1.
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