
J. Functional Programming 9 (5): 577–578, September 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

577

Book review

Purely Functional Data Structures by Chris Okasaki, Cambridge University

Press, 1998, 220pp.

This is a well-written book about purely functional data structures. Actually, it is more than

that: the main emphasis is on general techniques for designing data structures which sets it

apart from most other textbooks on data structures. The book provides a wealth of ideas

and examples in a compact 220 pages. Every functional programmer who finds herself in

need of an efficient data structure should definitely read this book. Even anyone who is

more than casually interested in data structures should read this book. That said, however,

the reader must be familiar both with the basics of data structures and with a functional

language, preferably Standard ML including its module system, as Standard ML is used for

the examples.

Are functional data structures different from imperative ones? Yes they are – and for

mainly one reason. Functional programmers love referential transparency – the ability to

substitute equals for equals – which is why assignments are frowned upon. Unfortunately,

assignments are indispensable for many data structures including simple ones like doubly

linked lists and complex ones like the quad edge data structure (Guibas and Stolfi, 1985). Not

using assignments, however, has its merits: purely functional data structures are automatically

persistent. A data structure is called persistent if, after an update, the old version of the data

structure is still available for processing. By contrast, imperative data structures are typically

ephemeral: an update destroys the old version of the data structure. So Chris Okasaki’s book

really deals with persistent data structures which should make it worthwhile for a wider

audience including imperative programmers.

The book is structured in three parts. The first part serves as an introduction, the second

explores the relationship between lazy evaluation and amortization, and the third is concerned

with general design techniques.

Part I

Chapter 1 sets the stage by delineating the difference between functional and imperative

data structures and between eager and lazy evaluation. Chapter 2 explains how functional

languages achieve persistence through path copying. Actually the chapter serves a double

purpose as it also illustrates the use of signatures, structures and functors for implementing

abstract data types. This mingling is a bit unfortunate, as it possibly distracts from the main

thread. Chapter 3 covers three data structures which are easily implemented in a functional

setting: leftist heaps, binomial queues, and red-black trees. In each case it is a delight to look

at the code which is concise and clear. Insertion into a red-black tree, for instance, takes

13 lines. By contrast, the imperative version in Cormen et al. (1991) occupies 43 lines even

though symmetric cases are omitted.

Part II

Data structures with amortized time bounds are usually simpler than their worst-case coun-

terparts making them the data structure of choice for many applications. Unfortunately, the

https://doi.org/10.1017/S0956796899009995 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899009995


578 Book review

classical approaches to amortization do not work in a persistent setting. Moreover, for a long

time amortization and persistence were considered to be incompatible. Using lazy evaluation

this Gordian knot can be cut. Chapter 4 introduces an extension of Standard ML, which is

a strict language, for support of lazy evaluation. Chapter 5 reviews the classical techniques

of amortization and gives well chosen examples illustrating their use: Gries’ FIFO queues,

splay heaps, and pairing heaps. Chapter 6 explains in great detail the use of lazy evaluation

to implement persistent, amortized data structures. Again, the techniques are supported by

several, carefully analyzed implementations of FIFO queues and priority queues. Chapter 7

shows how to convert an amortized data structure into a worst-case one by systematically

scheduling delayed computations.

Part III

Chapter 8 describes the techniques of batched, global, and lazy rebuilding and provides several

implementations of FIFO queues and deques based on these ideas. Chapter 9 deals with so-

called numerical representations. A container type is termed a numerical representation if

it is designed in close analogy to a number system. The basic idea is to model a container

with n elements after the representation of n and operations on the container after the

corresponding arithmetic functions. Chris Okasaki develops this technique into a fine art.

He presents an abundance of number systems, explains their properties, and shows how to

turn them into efficient implementations of flexible arrays and priority queues. Chapter 10

discusses three different flavours of data-structural bootstrapping: bootstrapping unbounded

data structures from bounded ones, bootstrapping efficient data structures from inefficient

ones, and bootstrapping data structures for compound types from data structures for atomic

types. Data-structural bootstrapping is applied, for instance, to implement optimal priority

queues. Finally, Chapter 11 combines ideas from the previous two chapters into a framework

called implicit recursive slowdown. The examples illustrating this technique culminate in an

implementation of catenable deques that are optimal in an amortized sense.

Complete implementations in Standard ML are given for all data structures. Furthermore,

there is an appendix providing Haskell translations of most of the examples. Unfortunately,

the Haskell code is neither explained nor documented. For example, one major difference

between Haskell and Standard ML is the use of type classes rather than structures and

functors. Lack of explanation here is definitely a shortcoming and should be corrected in

a second edition. The text is complemented by exercises and bibliographic remarks at the

end of each chapter. Occasionally, there are ‘hints to practitioners’ which recommend data

structures that perform well in practice. In summary, this is a great book from a competent

author and I heartily recommend it.

References

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1991) Introduction to Algorithms. MIT

Press.

Guibas, L. and Stolfi, J. (1985) Primitives for the manipulation of general subdivisions and

computation of Voroni diagrams. ACM Trans. Graphics, 4(2), 74–123.

Ralf Hinze

Universität Bonn, Germany

https://doi.org/10.1017/S0956796899009995 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899009995

