
15 
D-branes and geometry II 

In a number of the previous chapters, we probed various systems while 
remaining largely in the limit where D-branes are pointlike in their trans­
verse directions. However, we learned in chapter 10 that D-branes have an 
intrinsic geometry of their own, which can be seen when we place a lot of 
them together to produce a large back-reaction on the spacetime geome­
try, or if we were to turn up the string coupling (for fixed string tension) 
such that Newton's constant is strong. Both sorts of situation can and will 
be forced upon us later, so it is worthwhile trying to understand what we 
can learn by probing the supergravity geometry with different types of 
branes (we have already probed extremal p-branes with Dp-branes in sec­
tion 10.3). If we choose things such that there is some supersymmetry 
preserved, we can use it to help us learn many useful things. 

15.1 Probing p with D(p - 4) 

Let us probe the geometry of the extremal p-branes with a D(p-4)-brane. 
From our analysis of chapter 11, we know that this system is supersym­
metric. Therefore, we expect that there should still be a trivial potential 
for the result of the probe computation, but there is not enough super­
symmetry to force the metric to be fiat. There are actually two sectors 
within which the probe brane can move transversely. Let us choose static 
gauge again, with the probe aligned so that its p - 4 spatial directions 
e - ep - 4 are aligned with the directions xl - xp - 4 . Then there are four 
transverse directions within the p-brane background, labelled xp - 3 - xP , 

and which we can call xii for short. There are 9 - p remaining transverse 
directions which are transverse to the p-brane as well, labelled xp+l - x 9 , 

which we'll abbreviate to xT. The 6-2 case is tabulated as a visual guide 
below. 

345 
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XU Xl x:J x0 xL! xl) xi) Xl xl) x':cJ 

D2-brane - - - • • • • • • • 
6-brane - - - - - - - • • • 

The extremal p-brane supergravity solution is given in equation (10.38). 
As in section 10.3, we can probe this solution with D-branes, using the 
world-volume actions described in chapters 5 and 9. Following the same 
lines of reasoning as used in section 10.3, the determinant which shall go 
into our Dirac-Born-Infeld Lagrangian is: 

- (p-3) ( 2 2) 
det[-Gabl = Zp 2 1- vII - Zpvl. , (15.1) 

where the velocities come from the time (~O) derivatives of XII and Xl.. This 
is nice, since in forming the action by multiplying by the exponentiated 
dilaton factor and expanding in small velocities, we get the Lagrangian 

1 ( 2 2 ) I: = "2mp-4 VII + ZpVl. - 2 , (15.2) 

which again has a constant potential which we can discard, leaving pure 
kinetic terms. We see that there is a purely fiat metric on the moduli 
space for the motion inside the four dimensions of the p-brane geometry, 
while there is a metric 

(15.3) 

for the transverse motion. This is the Coulomb branch, in gauge theory 
terms, and the fiat metric was on the Higgs branch. (In fact, the Higgs 
result does not display all of the richness of this system that we have 
seen. In addition to the fiat metric geometry inside the brane that we 
see here, there is additional geometry describing the Dp-D(p - 4) fields 
corresponding to the full instanton geometry. This comes from the fact 
that the D (p - 4)-brane behaves as an instanton of the non-Abelian gauge 
theory on the world-volume of the coincident Dp-branes. See section 13.4.) 

Notice that for the fields we have studied, we obtained a trivial potential 
for free without having to appeal to a cancellation due to the coupling 
of the charge {Lp-4 of the probe. This is good, since there is no electric 
source of this in the background for it to couple to. Instead, the form of 
the solution for the background makes it force-free automatically. 

15.2 Probing six-branes: Kaluza-Klein monopoles 
and M-theory 

Actually, when p 2: 5, something interesting happens. The electric source 
of C(p+l) potential in the background produces a magnetic source of 
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C(7-p)' The rank of this is low enough for there to be a chance for the 
D(p - 4)-probe brane to couple to it even in the Abelian theory. For ex­
ample, for p = 5 there is a magnetic source of C2 to which the Dl-brane 
probe can couple. Meanwhile for p = 6, there is a magnetic source of C1 . 

The D2-brane probes see this in an interesting way. Let us linger here 
to study this case a bit more closely. Since there is always a trivial U(I) 
gauge field on the world volume of a D2-brane probe, corresponding to 
the centre of mass of the brane, we should include the coupling of the 
world-volume gauge potential Aa (with field strength Fab) to any of the 
fields coming from the background geometry. 

In fact, as we saw before in section 9.2, there is a coupling 

27ra' f-L2 1M C1 /\ F, (15.4) 

where C 1 = C<j;d¢ is the magnetic potential produced by the six-brane 
background geometry, which is easily computed to be: C<j; = -(r6/gs) 
cos e, where r6 = gsN a/1/2 /2. 

The gauge field on the world volume is equivalent to one scalar, since we 
may exchange Aa for a scalar s by Hodge duality in the (2+ 1 )-dimensional 
world-volume. (This is of course a feature specific to the p=2 case.) To get 
the coupling for this extra scalar correct, we should augment the probe 
computation. As we have seen, the Dirac-Born-Infeld action is modified 
by an extra term in the determinant: 

(15.5) 

We can143, 171 introduce an auxiliary vector field Va, replacing 27Ta/ Fab by 
the combination e2<j; f-L22VaVb in the Dirac action, and adding the term 

27Ta/ r F /\ V 1M 
overall. Treating Va as a Lagrange multiplier, the path integral over Va 

will give the action involving F as before. Alternatively, we may treat Fab 

as a Lagrange multiplier, and integrating it out enforces 

(15.6) 

Here, Cc are the components of the pull-back of C1 to the probe's world­
volume. The solution to the constraint above is 

(15.7) 

where s is our dual scalar. We may now replace Va by Bas + f-L2Ca in the 
action. 
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The static gauge computation picks out only s + !-L2Cq;¢, 
puting the determinant gives 

3 Z"2 2<P 2 -"2 2 2 6 e. . ( 1) 
det=Z6 1-vll-Z6v~- !-L§ [S+!-L2 Cq;¢] . 

and recom-

(15.8) 

Again, in the full Dirac-Born-Infeld action, the dilaton factor cancels 
the prefactor exactly, and including the factor of -!-L2 and the trivial 
integral over the worldvolume directions to give a factor V2 , the resulting 
Lagrangian is 

(15.9) 

which is (after ignoring the constant potential) again a purely kinetic 
Lagrangian for motion in eight directions. There is a non-trivial metric in 
the part transverse to both branes: 

ds2 = V(r) (dr2 + r2d02) + V(r)-l (ds + Aq;d¢)2, 

with V(r) = !-L2 Z6 and A = !-L2 r6 cos ed¢, (15.10) 
98 g8 

where d02 = de2 + sin2e d¢2. There is a number of fascinating inter­
pretations of this result. In pure geometry, the most striking feature is 
that there are now eleven dimensions for our spacetime geometry. The 
D2-brane probe computation has uncovered, in a very natural way, an 
extra transverse dimension. This extra dimension is compact, since s is 
periodic, which is inherited from the gauge invariance of the dual world­
volume gauge field. The radius of the extra dimension is proportional to 
the string coupling, which is also interesting. This eleventh dimension is of 
course the M-direction we saw in section 12.4. The D2-brane has revealed 
that the six-brane is a Kaluza-Klein monopole168 of eleven dimensional 
supergravity on a circle152 , which is constructed out of a Taub-NUT ge­
ometry* in equation (15.10). This fits very well with the fact that the D6 is 
the Hodge dual of the DO-brane, which we already saw is a Kaluza-Klein 
electric particle. 

15.3 The moduli space of 3D supersymmetric gauge theory 

As before, the result also has a field theory interpretation. The 
(2 + I)-dimensional U(l) gauge theory (with eight supercharges) on the 

* It is a very useful exercise for the reader to take the Taub-NUT metric, times seven 
fiat directions, and use the reduction formula given in insert 12.1 (p. 274) to reproduce 
the six-brane metric of equation (10.38) directly. 
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world-volume of the D2-brane has N f = N extra hypermultiplets coming 
from light strings connecting it to the N f = N D6-branes. The SU(Nd 
symmetry on the worldvolume of the D6-branes is a global 'flavour' sym­
metry of the U(l) gauge theory on the D2-brane. A hypermultiplet W 
has four components Wi corresponding to the four scalar degrees of free­
dom given by the four positions Wi == (2'ITo:')-lxll' The vector multiplet 
contains the vector Aa and three scalars <I>m == (21TCx')-l xT. The Yang-
M 'll 1" 2 ,-1/2 1 S coup mg IS gYM = gsa . 

The branch of vacua of the theory with W # 0 is called the 'Higgs' 
branch of vacua while that with <I> # 0 constitutes the 'Coulomb' branch, 
since there is generically a U(l) left unbroken. There is a non-trivial four 
dimensional metric on the Coulomb branch. This is made of the three <I>m, 
and the dual scalar of the U(l)s photon. Let us focus on the quantities 
which survive in the low energy limit or 'decoupling limit' a' ----+ 0, holding 
fixed any sensible gauge theory quantities which appear in our expressions. 
The surviving parts of the metric (15.10) are: 

where U = r / a' has the dimensions of an energy scale in the gauge theory. 
Also, 0' = a's, and we will fix its period shortly. 

In fact, the naive tree level metric on the moduli space is that on JPi.3 x Sl, 
of form ds2 = gY~1dxl + g?MdO'2. Here, we have the tree level and one 
loop result: V(U) has the interpretation as the sum of the tree level and 
one-loop correction to the gauge coupling of the 2+ 1 dimensional gauge 
theory237. Note the factor Nf in the one loop correction. This multiplicity 
comes from the number of hypermultiplets which can run around the 
loop. Similarly, the cross term from the second part of the metric has 
the interpretation as a one-loop correction to the naive four dimensional 
topology, changing it to the (Hopf) fibred structure above. 

Actually, the moduli space's dimension had to be a multiple of four, 
as it generally has to be hyper-Kahler for D=2 + 1 supersymmetry with 
eight supercharges185 . Our metric is indeed hyper-Kahler since it is the 
Taub-NUT metric: the hyper-Kahler condition on the metric in the form 
it is written is the by-now familiar equation: \7 x A = \7V, which is 
satisfied. 

In fact, we are not quite done yet. With some more care we can establish 
some important facts quite neatly. We have not been careful about the 
period of 0', the dual to the gauge field, which is not surprising given all of 
the factors of 2, 'IT and a'. To get it right is an important task, which will 
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yield interesting physics. We can work it out in a number of ways, but 
the following is quite instructive. If we perform the rescaling U = p / 4g?M 
and 1j; = 8'IT2 (J / N f , our metric is: 

(15.12) 

which is a standard form for the Taub-NUT metric, with mass Nf, equal 
to the 'nut parameter' for this self-dual case186 . 

This metric is apparently singular at p = 0, and in fact, for the cor­
rect choice of periodicity for '1jJ, this pointlike structure, called a 'nut', is 
removable, just like the case of the bolt singularity encountered for the 
Eguchi-Hanson space. (See insert 7.6, p. 188.) Just for fun, insert 15.1 
carries out the analysis and finds that '1jJ should have period 4'IT, and so in 
fact the full SU(2) isometry of the metric is preserved. 

What does this all have to do with gauge theory? Let us consider the 
case of N f = 1, which means one six-brane. This is 2+ 1 dimensional 
U(I) gauge theory with one hypermultiplet, a rather simple theory. We 

Insert 15.1. The 'nut' of Taub-NUT 

The metric (15.12) will be singular at at the point p = 0, for arbitrary 
periodicity of '1jJ. This will be a point like singularity which is called 
a 'nut,83, 82, in contrast to the 'bolt' we encountered for the Eguchi­
Hanson space in insert 7.6 (p. 188), which was an S2. In this case, near 
p = 0, if we make the space look like the origin of]]{4, we can make this 
pointlike structure into nothing but a coordinate singularity. Near 
p = 0, we have, for R = 2p2 (see also insert 7.4, p. 180): 

d4N = 2Nf(dR2 + R2dD§), 

which is just the right metric for ]]{4 if b..1j; = 4'IT, the standard choice 
for the Euler coordinate. (This may have seemed somewhat heavy­
handed for a result one would perhaps have guessed anyway, but it is 
worthwhile seeing it, in preparation for more complicated examples.) 
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see that after restoring the physical scales to our parameters, our original 
field (J has period 1/21T, and so we see that the dual to the photon is 
more sensibly defined as 0- = 41T 2 (J, which would have period 21T, which 
is a more reasonable choice for a scalar dual to a photon. We shall use 
this choice later. With this choice, the metric on the Coulomb branch of 
moduli space is completely non-singular, as should be expected for such 
a simple theory. 

Let us now return to arbitrary Nf. This means that we have Nf hyper­
multiplets, but still a U(l) 2+1 dimensional gauge theory with a global 
'flavour' symmetry of SU(Nr) coming from the six-branes. There is no rea­
son for the addition of hypermultiplets to change the periodicity of our 
dual scalar and so we keep it fixed and accept the consequences when we 
return to physical coordinates (U,o-): the metric on the Coulomb branch 
is singular at U = O! This is so because insert 15.1 told us to give 0- a 
periodicity of 21TNf for freedom from singularities, but we are keeping it 
as 21T. So our metric in physical units has 0- with period 21T appearing in 
the combination (2do- + Nf cos ed¢? This means that the metric is no 
longer has an SU(2) acting, since the round S3 has been deformed into a 
'squashed' S3, where the squashing is controlled by Nf. In fact, there is a 
deficit angle at the origin corresponding to an ANf - 1 singularity. 

How are we to make sense of this singularity? Well, happily, this all 
fits rather nicely with the fact that for Nf > 1 there is an SU(Nr) gauge 
theory on the six-branes, and so there is a Higgs branch, corresponding 
to the D2-brane becoming an SU(Nr) instanton! The singularity of the 
Coulomb branch is indeed a signal that we are at the origin of the Higgs 
branch, and it also fits that there is no singularity for Nf = l. 

It is worthwhile carrying out this computation for the case of Nf 
D6-branes in the presence of a negative orientifold six-plane oriented in 
the same way. In that case we deduce from facts we learned before that 
the presence of the 06-plane gives global flavour group SO(2Nr) for Nf 
D6-branes. The D2-brane, however, carries an SU(2) gauge group. This is 
T-dual to the earlier statement made in section 13.4 about D9-branes in 
type I string theory carrying SO(Nr) groups while D5s carry USp(2M) 
groups as we learned in section 8.7: the orientifold forces a pair of D2-
branes to travel as one, with a USp(2) = SU(2) group. 

So the story now involves 2+1 dimensional SU(2) gauge theory with 
Nf hypermultiplets. The Coulomb branch for Nf = 0 must be completely 
non-singular, since again there is no Higgs branch to join to. This fits 
with the fact that there are no D6-branes; just the 06-plane. The result 
for the metric on moduli space can be deduced from a study of the gauge 
theory (with the intuition gained from this stringy situation), and has 
been proven to be the Atiyah-Hitchin manifold231 . Some of this will be 
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discussed in more detail in subsection 15.6. For the case of N f = 1, the re­
sult is also non-singular (there is again no Higgs branch for one D6-brane) 
and the result is a certain cover of the Atiyah-Hitchin manifold232, 248. 
The case of general N f gives certain generalisations of the Atiyah-Hitchin 
manifold248, 250. The manifolds have DN£ singularities, consistent with the 
fact that there is a Higgs branch to connect to. Note also that a stringy 
interpretation of this result is that the strong coupling limit of these 
06-planes is in fact M-theory on the Atiyah-Hitchin manifold, just like it 
is Taub-NUT for the D6-brane. 

N.B. It is amusing to note - and the reader may have already spotted 
it - that the story above seems to be describing local pieces of K3, 
which has ADE singularities of just the right type, with the associ­
ated 5U(N) and 50(2N) enhanced gauge symmetries appearing also 
(global flavour groups for the 2+ 1 dimensional theory here). (The 
existence of three new exceptional theories, for E 6 , E7, E 8 , is then 
immediate237 .) What we are actually recovering is the fact 153 that 
there is a strong/weak coupling duality between type I (or 50(32) 
heterotic) string theory on T3 and M-theory on K3. We'll recover 
this fact again via another route in section 16.2.2. 

15.4 Wrapped branes and the enhall(;on mechanism 

Despite the successes we have achieved in the previous section with inter­
pretation of supergravity solutions in terms of constituent D-branes, we 
should be careful, even in the case when we have supersymmetry to steer 
us away from potential pathologies. It is not always the case that if some­
one presents us with a solution of supergravity with R-R charges that we 
should believe that it has an interpretation as being 'made of D-branes'. 

Consider again the case of eight supercharges. We studied brane con­
figurations with this amount of supersymmetry by probing the geome­
try of N (large) Dp-branes with a single D(p-4)-brane. As described in 
previous sections, another simple way to achieve a geometry with eight 
supercharges from D-branes is to simply wrap branes on a manifold which 
already breaks half of the supersymmetry117. The example mentioned was 
the four dimensional case of K3. In this case, we learned that if we wrap 
a D(p+4)-brane (say) on K3, we induce precisely one unit of negative 
Dp-brane charge115 supported on the unwrapped part ofthe world-volume 
(see equation (9.36)). At large N therefore, we might expect239 that 
there is a simple supergravity geometry which might be obtained by 
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taking the known solution for the D(p+4)-Dp system, and modifying the 
asymptotic charges to suit this situation. The resulting geometry naively 
should have the interpretation as that due to a large number N of wrapped 
D(p+4) branes (p = 1,2,3): 

d 2 Z-1/2Z- 1/ 2 d {td v Zl/2Z1/ 2 d id i s = p p+4 rJ{tv x X + p p+4 x x 

+ V 1/ 2 Zl/2 Z-1/2 d<;2 p p+4 • K3' 

e2<1> = g; Zp (3-p)/2 Zp+4 -(p+1)/2, 

C(p+1) (Zp -1 - l)g;ldx O 1\ dx1 1\ ... 1\ dxp+1 

(Z-l _ l)g-ldxO 1\ dx1 1\ ... 1\ dxp+5 p+4 s . (15.13) 

Here, IL, v run over the xO - xp+1 directions, which are tangent to all the 
branes. Also i runs over the directions transverse to all branes, xp+2 - x 5 , 

and in the remaining directions, transverse to the induced brane but inside 
the large brane, dSk3 is the metric of a K3 surface of unit volume. V is the 
volume of the K3 as measured at infinity, but the supergravity solution 
adjusts itself such that V(T)=VZp /Zp+4 is the measured volume of the 
K3 at radius T. 

In the above, 

while (15.14) 

where the normalisations are related to those in section 10.2. We have 
precisely N units of D(p + 4)-brane charge and -N units of Dp-brane 
charge. Note that the smaller brane is delocalised in the K3 directions, as 
it should be, since the same is true of K3's curvature. 

15.4.1 Wrapping D6-branes 

Let us focus on the case p = 2, where we wrap D6-branes, getting induced 
D2-branes. t The orientations are given as follows. 

XU Xl XLl x0 X4 x b x b Xl x 15 X"' 

D2 - - - • • • • • • • 
D6 - - - • • • - - - -

K3 - - - - - - • • • • 

t This will also teach us a lot about the pure SU(N) gauge theory on the remaining 

2+ 1 dimensional world-volume. Wrapping D7-branes (p = 3) teaches us239 about 
pure SU(N) gauge theory in 3+1 dimensions, where we should make a connection to 
Seiberg-Witten theory240, 241 at large N. 
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The harmonic functions are 

(15.15) 

normalised such that the D2- and D6-brane charges are Q2=-Q6 = -N. 
We worked out the spectrum of type IIA supergravity theory compact­

ified to six dimensions on K3 in section 7.6. Let us remind ourselves of 
some of the salient features. The six dimensional supergravity theory has 
an additional 24 U(l)s in the R-R sector. Of these, 22 come from wrap­
ping the ten dimensional three-form on the 19+3 two-cycles of K3. The 
remaining two are special U (1) s for our purposes: one of them arises from 
wrapping IIAs five-form entirely on K3, while the final one is simply the 
plain one-form already present in the uncompactified theory. 

15.4.2 The repulson geometry 

It is easy to see that there is something wrong with the geometry which 
we have just written down, representing the wrapping of the D6-branes 
on the K3. There is a naked singularity at r = If21, known as the 're­
pulson', since+ it represents a repulsive gravitational potential for small 
enough r. The curvature diverges there, which is related to the fact that 
the volume of the K3 goes to zero, and the geometry stops making sense 
(see figure 15.1). 

To characterise the repulsive nature of the geometry we can consider 
it as a background for particle motion and study geodesics. There is the 
usual obvious pair of Killing vectors, ~ = Ot and rJ = oq" and so a probe 
with ten-velocity u has conserved quantities 

e = -~ . u = -GttUt 

and 
f! = rl . U = G q,q, u q, , 

where e and f! are the total energy and angular momentum per unit mass, 
respectively. Since the particle is massive, we have -1 = u . u. In other 
words, picking 

( dt dr de d¢ ~) 
u = dT' dT' dT' dT'O , 

t This is because it is dua1239 to solutions which had earlier become known by that 
name257 . 
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Fig. 15.1. The repulson locus of points; an unphysical naked singularity. 

we have, working in the equatorial plane e = 'IT /2, 

(dt)2 (dr)2 (d cP )2 
-l=-Gtt dT +Grr dT +G¢¢ dT ' 

and so 
e2 (dr) 2 £2 

-1 = - Gtt + Grr dT + G ¢¢ , 

which we can rewrite as 

1 (dr)2 E = - - + V;ff 2 dT e , 

where 

dr e2 - 1 dT = ±VE - Veff(r), E = -2-' 

Veff(r) = ~ [_1 (1 + ~) - 1], 
2 Grr G¢¢ 

(15.16) 

and the metric components in the above are in string frame, and we have 
used that -Gtt = l/Grr . For what we wish to analyse, we can consider 
only purely radial motion, and hence set to zero the angular momentum f! 
which would correspond to a non-zero impact parameter. We sketch the 
resulting effective potential in figure 15.2. 

For large enough r, the effective potential is attractive, and so we need 
only seek a vanishing first derivative of Veff(r) to see where it becomes 
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Fig. 15.2. The effective potential for massive particle motion m the 
geometry. The minimum is at r = reo 

negative. This gives the condition: 

G;:/ = -G~t = 0, (15.17) 

which we can write in a number of interesting ways as 

, ,(Z2 Zb) (Zb Z~) (Z2 Z6) = Z6 Z6 Z6 + Z~ = Z2 Z6 Z2 + Z6 = 0, (15.18) 

and the particle begins to be repelled at radii smaller than this. Particles 
with non-zero angular momentum will of course experience additional 
centrifugal repulsion, but r = re is the boundary of the region where 
there is an intrinsic repulsion in the geometry. 

15.4.3 Probing with a wrapped D6-brane 

Let us look carefully to see if this is really the geometry produced by the 
wrapped branes. The object we have made should be a BPS membrane 
made of N identical objects. These objects feel no force due to each other's 
presence, and therefore the BPS formula for the total mass is simply (see 
equation (9.37)) 

N 
TN = -(!L6 V - !L2) (15.19) 

98 

with !L6 = (27T)-6 o/-7 j 2 and !L2 = (27T)-2 o/-3 j 2. In fact, the BPS mem­
brane is actually a monopole of one of the six dimensional U(l)s. It is 
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obvious which U(l) this is; the diagonal combination of the two special 
ones we mentioned above. The D6-brane component is already a monopole 
of the IIA R-R one-form, and the D2 is a monopole of the five-form, which 
gets wrapped. 

N.B. As we shall see, the final combination is a non-singular BPS 
monopole, having been appropriately dressed by the Higgs field asso­
ciated to the volume of K3. Also, it maps165 (under the strong/weak 
coupling duality of the type IIA string on K3 to the heterotic string 
on T4) to a bound state of a Kaluza-Klein monopole168 and an H­
monopole242 , made by wrapping the heterotic NS5-brane. 239, 243, 244 

If we are to interpret our geometry as having been made by bringing 
together N copies of our membrane, we ought to be able to carry out the 
procedure we described in the previous sections. We should see that the 
geometry as seen by the probe is potential-free and well-behaved, allowing 
us the interpretation of being able to bring the BPS probe in slowly from 
infinity. 

The effective action for a D6-brane probe (wrapped on the K3) is: 

5=-j· d3~e-q,(r)(fL6V(r)-fL2)(-detgab)1/2+fL6j· C7 -fL2 j· C3. 
M MxK3 M 

(15.20) 

Here M is the part of the world-volume in the three non-compact di­
mensions. As discussed previously (see equation (9.39) and surrounding 
discussion), the first term is the Dirac-Born-Infeld action with the posi­
tion dependence of the tension (15.19) taken into account; in particular, 
V(r) = VZ2(r)/Z6(r). The second and third terms are the couplings of 
the probe charges (fL6, -fL2) to the background R-R potentials, following 
from equation (9.36), and surrounding discussion. 

Having derived the action, the calculation proceeds very much as we 
outlined in previous sections, with the result: 

£ = _fL6VZ2 - fL2 Z6 + fL6 V (Z61 - 1) _ fL2(Z;;1_1) 
Z6 Z 2gs gs gs 

124 
+-(fL6VZ2-fL2Z6)V +O(v). (15.21) 

2gs 

The position-dependent potential terms cancel as expected for a super­
symmetric system, leaving the constant potential (fL6 V - fL2) / 9 and a 
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nontrivial metric on moduli space (the O( v 2 ) part) as expected with eight 
supersymmetries. The metric is proportional to 

2 1 2 /-L6 Z6 (Z2 V*) 2 2 2 ds =-(/-L6VZ2-/-L2Z6)dx~=-- -Z- V (dr +r d0 2), 
98 98 6 

(15.22) 
where we have used /-L2/ /-L6 = V*. We assume that V > V* == (21T)4o/2, 
so that the metric at infinity (and the membrane tension) is positive. 
However, as r decreases the metric eventually becomes negative, and this 
occurs at a radius 

(15.23) 

which is greater than the radius rr = Ir21 of the repulson singularity. 
Furthermore, it is precisely the radius at which the geometry becomes 
repulsive, since Z~/Z~ = - V*/V, and that radius is determined by equa­
tion (15.18). 

In fact, our BPS monopole is becoming massless as we approach the 
special radius. This should mean that the U(l) under which it is charged 
is becoming enhanced to a non-Abelian group. This is the case. There 
is a purely stringy phenomenon which lies outside supergravity which 
we have not included thus far. The W-bosons are wrapped D4-branes, 
which enhance the U(l) to an SU(2). The masses of wrapped D4-branes 
is computed just like that of the membrane, and so becomes zero when 
the K3's volume reaches the value V*==(21TVd)4. 

The point is that the repulson geometry represents supergravity's best 
attempt to construct a solution with the correct asymptotic charges. In 
the solution, the volume of the K3 decreases from its asymptotic value 
V as one approaches the core of the configuration. At the centre, the K3 
radius is zero, and this is the singularity. This ignores rather interesting 
physics, however. At a finite distance from the putative singularity (where 
VK3 = 0), the volume of the K3 gets to V = V*' so the stringy phenomena­
including new massless fields - giving the enhanced SU(2), should have 
played a role§. So the aspects of the supergravity solution near and in­
side the special radius, called the 'enhanc;on radius', should not be taken 
seriously at all, since it ignored this stringy physics. 

The supergravity solution should only be taken as physical down to 
the neighbourhood of the enhanc;on radius reo That locus of points, a 
two-sphere S2, is itself called239 an 'enhanc;on' (see figure 15.3). 

§ Actually, this enhancement of SU(2) is even less mysterious in the heterotic-on-T4 

dual picture mentioned two pages ago. It is just the SU(2) of a self-dual circle in this 
picture, which we studied extensively in section 4.3. 
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Fig. 15.3. The enhan<;on locus at which new physics beyond supergravity 
appears. This happens before the singular repulson locus, signalling that 
the original geometry inside the enhan<;on radius was unphysical. 

Recall also (see section 13.5.1) that the size of the monopole is inverse 
to the mass of the W -bosons (or the Higgs vev), and so in fact by time our 
probe gets to the enhan<;on radius, it has smeared out considerably, and in 
fact merges into the geometry, forming a 'shell' with the other monopoles 
at that radius. Since by this argument we cannot place sharp sources 
inside the enhan<;on radius, and so the geometry on the inside must be 
very different from that of the repulson. In fact, to a first approximation, 
it must simply be fiat, forming a junction with the outside geometry at 
r = reo 

In general, the same sort of reasoning applies for all p. The enhan<;on 
locus results from wrapping a D(p + 4)-brane on K3 is S4-p x lRp+1, 

whose interior is (5 + I)-dimensional. This must work since the ratio 
/Lpl/LpH = V* and so there will always be wrapped branes becoming 
massless at the same loci in the geometry, giving physics which goes be­
yond supergravity. For even p the theory in the interior has an SU(2) 
gauge symmetry, while for odd p there is the Al two-form gauge the­
ory, carried by tensionless strings. The details of the smoothing will be 
very case dependent, and it should be interesting to work out those 
details. 

One can also study SO(2N), SO(2N+1) and USp(2N) gauge theories 
with eight supercharges in various dimensions using similar techniques, 
placing an orientifold 06-plane into the system parallel to the D6-branes. 
The enhan<;on then becomes245 an lRP2. 
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15.5 The consistency of excision in supergravity 

We can actually use classic General Relativity techniques259 , 260 to carry 
out the procedure of removing the interior geometry and replacing it by 
flat space. We should be able to see if this procedure is consistent and 
makes some physical sense. The standard procedure for this is as follows. 
If we join two solutions of Einstein's equations across some surface, there 
will be a discontinuity in the extrinsic curvature at the surface. A rewriting 
of the equations of motion can be done to show that this discontinuity 
can be interpreted as a D-function source of stress-energy located at the 
surface. 

Let's carry this out here264 , performing an incision at arbitrary radius 
r = Ti, and then gluing in flat space. The computation must be performed 
in Einstein frame to enable an interpretation of the discontinuity in the 
extrinsic curvature as a stress-energy. So we work with the ten dimensional 
Einstein metric ds~ = e-'I>/2ds2 denoting the generic metric components 
as GAB: 

g;/2 ds 2 = Z:;5/8 Z;;1/8 rJ{lvdx{ldxV + Zg/8 Z~/8 dxidxi 

+ Vl/2Zg/8Z;;1/8ds~3 
= G{lvdx{ldxV + Gijdxidxj + Gabdxadxb, 

where Z2 and Z6 are given by (15.15). 

(15.24) 

Since we make a radial slice, we can define unit 
insert 10.2): 

normal vectors (see 

A 1 (D)A 
r1± = =t= VGrr Dr ' (15.25) 

where r1+ (rL) is the outward pointing normal for the spacetime region 
r > rj (r < rj). Referring to insert 10.2, we see that the extrinsic curvature 
of the junction surface for each region is 

(15.26) 

We next define the discontinuity in the extrinsic curvature across the 
junction as rAB = K!B + K AB . The stress-energy tensor supported at 
the junction is defined in terms of these as: 

SAB = :2 (rAB - GAB rCc), 

where K is the gravitational coupling defined in (7.44). 

(15.27) 
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In choosing the metric for fiat space, we should ensure that all fields 
are continuous through the incision by writing the interior solution in 
appropriate coordinates and gauge: 

g~/2ds2 = Z2h)-5/8 Z6h)-1/8rl{wdx/LdxV + Z2h)3/8 Z6(rif /8dx i dx i 

+ V 1/ 2 Z2(n)3/8 Z6h)-1/8dsk3' 
2 <I> 2 1/2( ) -3/2( ) e = g8 Z2 n Z6 ri , 

C(3) (Z2(ri)gs)-ldxO 1\ dx1 1\ dx2, 

C(7) = (Z6(n)gs)-ldxO 1\ dx1 1\ dx2 1\ V CK3. (15.28) 

It is straightforward to derive the following results for the discontinuity 
tensor, and the reader should check the result: 

1 1 (Z' Z') 
I/LV = 16 VGrr 5 Z~ + Z: G/LV, 

ry .. = _~_1_ (3Z~ + 7Z~) G .. 
i2J 16 IQ Z Z ZJ' V urr 2 6 

1 1 (Z' Z') 
lab = - 16 VGrr 3 Z~ - Z: Gab, (15.29) 

where a prime denotes ar and all quantities are evaluated at the incision 
surface r = n. The trace is: 

ell (Z~ Z~) 
I C = -16 VGrr 3 Z2 + 7 Z6 ' (15.30) 

and the /L, v = 0,1,2 index directions along the brane, i, j index the two 
angular directions (e, ¢) transverse to the brane, and a, b index the four 
K3 directions. 

So finally we have the stress-energy tensor of the discontinuity: 

(15.31) 

Let us consider the physical properties of this object264 . The last line gives 
the components of the stress-energy along the K3 direction. It involves 
only the harmonic function for the pure D6-brane part which is consistent 
with the fact that there are only D6-branes wrapped there. The middle 
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line shows that there is no stress in the directions transverse to the branes, 
which dovetails nicely with the fact that the constituent branes are BPS 
with no interaction forces needed to support the shell in the transverse 
space. 

As a first check of this interpretation, we can expand the results in 
equation (15.31) for large Tj. Up to an overall sign, the coefficient of the 
metric components gives an effective tension in the various directions. The 
leading contributions are simply: 

(15.32) 

(15.33) 

which is in precise accord with expectations. In the K3 directions, the 
effective tension matches precisely that of N fundamental D6-branes, with 
an additional averaging factor (1/ 47fr;) coming from smearing the branes 
over the transverse space. In the xO, xl, x 2 directions, we have an effective 
membrane tension which, up to the appropriate smearing factor, again 
matches that for N D6-branes including the subtraction of N units of 
D2-brane tension as a result of wrapping on the K3 manifold128 . 

Notice that the result for the stress-energy in the unwrapped part of 
the brane is proportional to (Z2Z6)'. As we have already observed in 
equations (15.18) and (15.23), this vanishes at precisely r = re , where the 
probe starts to become unphysical, and where the supergravity starts to 
become repulsive. So, for incision at the enhan<;on radius, there is a shell 
of branes of zero tension, as the probe computation showed. 

For r < re we would get a negative tension from the stress-energy 
tensor, which is problematic even in supergravity. Notice, however, that 
nothing in our computation shows that we cannot make an incision at 
any radius of our choosing for r ~ re , and place a shell of branes of 
the appropriate tension (as in the calculation of the effective tensions at 
large ri above). This corresponds physically to the fact that constituent 
branes experience no potential, so they can consistently be placed at any 
arbitrary position outside the enhan<;on. 

15.6 The moduli space of pure glue in 3D 

Note that the Lagrangian (15.21) depends only on three moduli space 
coordinates, (x3, x4, x 5), or (r, e, ¢) in polar coordinates. As mentioned 
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before, a (2+1) dimensional theory with eight supercharges, should have 
a moduli space metric which is hyper-Kahler185 . So we need at least one 
extra modulus, s. A similar procedure to that used in section 15.2 can be 
used to introduce the gauge field's correct couplings and dualise to intro­
duce the scalar s. A crucial difference is that one must replace 27Ta/ Fab by 
e2¢(!L6 V(r) - !L2) -2vaVb in the Dirac-Born-Infeld action, the extra com­
plication being due to the r dependent nature of the tension. The static 
gauge computation gives for the kinetic term: 

(15.34) 

where 

Z6 a/-3/ 2 (V gsN a/1/ 2) 
F(r) = - (!L6 V(r) - !L2) = 2 - - 1 - , 

2gs (27T) gs V* r 
(15.35) 

and 02 = iP + sin2g qb2. 
Again, there is gauge theory information to be extracted here. We 

have pure gauge SU(N) theory with no hypermultiplets, and eight su­
percharges. We should be able to cleanly separate the gauge theory data 
from everything else by taking the decoupling limit a/ ----+ 0 while holding 
the gauge theory coupling g?M = g?M,P V-I = (27T)4gsa/3/ 2V- 1 and the 
energy scale U = r / a/ (proportional to Mw) fixed. In doing this, we get 
the metric: 

ds2 = J(U) (U2 + U2d[22) + j(U)-l (dCJ _ 4:2A¢d¢» 2, 

where j(U) = 21 2 (1 - 9?M N ) , (15.36) 
47T gYM U 

the U (1) monopole potential is A¢ = ± 1 - cos g, and CJ = sa/, and the 
metric is meaningful only for U> Ue = A = g?MN, the "t Hooft coupling', 
a natural gauge theory quantity to hold fixed in the limit of large N, 
where we make contact with supergravity. This metric, which should be 
contrasted with equation (15.11), is the hyper-Kahler Taub-NUT metric, 
but this time with a negative mass. It is singular. For N = 2, the full met­
ric, obtained by instanton corrections to this one-loop result, is smooth, 
as we will discuss. For large N, the instantons are suppressed. We shall 
discuss this some more in the next section. 

15.6.1 Multi-monopole moduli space 

Recall that the membrane resulting from wrapping the six-brane is s 
BPS monopole. Therefore the moduli space of the entire wrapped system 
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should be related to the moduli space of N BPS monopoles. In fact, since 
the low energy dynamics of the branes is SU (N) gauge theory, we learn 
that BPS monopole moduli space is to be identified with the Coulomb 
branch of the gauge theory as we1l231 . The part of the moduli space corre­
sponding to the motion of a single sub-brane (the probe discussed above) 
is evidently a submanifold of the full 4N - 4 dimensional metric on the 
relative moduli space218 of N BPS monopoles which is smooth219 . 

This should remind the reader of our study in section 15.3. Recalling 
that this is also a study of SU(N) gauge theory with no hypermultiplets, 
we know the result for N = 2: the metric on the moduli space must 
be smooth, as there is no Higgs branch to connect to via the singular­
ity. This is true for all SU(N), and matches the monopole result. For 
N = 2, we stated that the metric on the moduli space247 is actually the 
Atiyah-Hitchin manifold232 . The metric may be written in the following 
manifestly SO(3) invariant manner232, 251: 

2bcda 
= (b - c)2 - a2, and cyclic perms.; 

f dp 

where the choice f = -bj p can be made, the (Ji are defined in (7.4), and 
K (k) is the elliptic integral of the first kind: 

'IT 

K(k) = 12 (1- k2sin2T)~dT. (15.38) 

Also, k = sin({Jj2), the 'modulus', runs from 0 to 1, so 'IT ~ P ~ 00. In fact, 
the solution for a, b, c can be written out in terms of elliptic functions, but 
we shall not do that here. All of the functions entering the metric can be 
expanded in large p, and the result is: 

dS~N _ = (1 - ~) (dp2 + p2 d02) + 4 (1 _ ~) -1 (d'lj; + cos ed¢ ) 2 . 

(15.39) 

Comparing to equation (15.12), we see that this is the Taub-NUT met­
ric, but with a negative mass parameter, i.e. N f = -1. Now, as already 
stated, Taub-NUT has an SU(2) isometry, and the full Atiyah-Hitchin 
metric has an SO(3). Furthermore, the metric we have here is singular at 
p = 2, whereas the full metric is smooth everywhere. Therefore there is 
a lot missing from this approximate metric. In fact, these key differences 
are invisible at any order in the large p expansion, being exponentially 
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small in p, of the form e- p . These exponential corrections for smaller p 
remove the singularity: p = 2 is just an artifact of the large p metric in the 
above form (15.39). As for the isometry, the fact that it is really 80(3) 
follows from the fact that 1j; started out with periodicity 27T and not 47T 
in the full metric, as required by the requirement that there is no bolt 
spherical singularity at finite p. Expanding in large p will not change that 
periodicity of course, but if one was just presented with the expanded 
result one would not know of the non-perturbative no-bolt condition. So 
in this case of two monopoles, there is an 80(3) = 8U(2)/Z2 isometry in 
the problem, and not the naive 8U(2) of the Taub-NUT space, since 1j; 
has period 27T and not 47T. The 80(3) isometry, smoothness, and the con­
dition of hyper-KEihlerity actually picks out uniquely the Atiyah-Hitchin 
manifold as the completion of the negative mass Taub-NUT. 

Actually, we have described a trivial cover of the true Atiyah-Hitchin 
space. The two monopole problem has an obvious Z2 symmetry coming 
from the fact that the monopoles are identical. Some field configurations 
described by the manifold as described up to now are overcounted, and 
so we must divide by this Z2, resulting in an lRP2 for the bolt instead of 
an 8 2 . 

What is the relation to our probe result? To see it258 , change variables 
in our probe metric (15.36) by absorbing a factor of >../2 = g?MN/2 into 
the radial variable U, defining p = 2U / >... Further absorb 1j; = (J87T 2 / N 
and gauge transform to A¢ = - cos e. Then we get: 

d 2 g?MN2 d 2 
S = 327T2 STN-, (15.40) 

showing that we have precisely the form of the Taub-NUT metric that 
one gets by expanding the Atiyah-Hitchin metric in large p and neglecting 
exponential corrections. 

Now for the same reasons as in section 15.3, the periodicity of (J is 1/27T, 
and we will use (j = 47T 2 (J as our 27T periodic scalar dual to the photon 
on the probe's world-volume. Looking at the choices we made above, this 
implies that for the 8U(2) case, the coordinate 1j; has period 27T, which 
fits what we stated about the Atiyah-Hitchin manifold above. 

The exponential corrections have the expected interpretation in the 
gauge theory as the instanton corrections which maintain positivity of the 
metric and the gauge coupling249. Translating back to physical variables, 
we see that these corrections go as exp (-U / g?M)' which has the correct 
form of action for a gauge theory instanton. (We have just described a 
cover of the Atiyah-Hitchin manifold needed for the 8U(2) case. There 
is an additional identification to be discussed below.) This completes the 
story for the 8U(2) gauge theory moduli space problem248 . 
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Can we learn anything from this for our case of general N, especially 
for large N, to teach us about the enhanc;on geometry? Notice258 that the 
instanton corrections are suppressed at large N if we hold the 't Hooft 
coupling A (which sets the Taub-NUT mass) fixed, since there is a bare N 
in the exponential: exp (-NU / A). So the smoothing is suppressed at large 
N, and we recover the macroscopic sharp (relatively) enhanc;on locus at 
large N in the supergravity geometry. Notice that if we've fixed our period 
of 0- to be 27T as before, for general N the resulting period of '1jJ in the 
scaled variables is b..'IjJ = 47T/N. Therefore our isometry is not 50(3) but 
is only 5U(2)/7Lw, which is not an isometry at all. 
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