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GENERALIZED CONVEXITY
IN MATHEMATICAL PROGRAMMING

B. MOND

The role of convexity in the development of mathematical

programming is reviewed. Many recent generalizations of

convexity and their applications to optimization theory are

discussed.

1. Introduction

As is well known, convexity plays a key role in mathematical

programming. However, functions that are, in some sense, close to, but not

quite, convex often have many of the important properties of convex

functions. This, plus the fact that many practical problems involve

functions that are 'almost1 convex has led to many generalizations of the

notion of convex functions. Here we survey some of these extensions of

convexity and indicate briefly the role they play in optimization theory.

Most of the results in Sections 2 to 5 can be found in the books by

Avriel [7], Mangasarian [76] and Martos [77] while the results in Section

6 on cone-convexity can be found in the book by Craven [JS]. In view of

this, no additional references or original sources will be given for

results in these sections except for the new dual for non-linear programs

in Section 5 that does not appear in any of the above-mentioned books.

More detailed references will be given in the later sections.

Proofs will only be given where they are extremely brief and not

generally available in the literature. It should be noted that most proofs
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186 B. Mond

ut i l i ze the differentiable form (2) of the definition of convexity.

2. Convexi ty

Let / denote a function from a convex set C c Ft into R . f is

said to be a convex function if for all x, y € C , 0 < A 5 1 ,

(1) /(Ai/+(l-A)x) < Xf(y) + (l-A)/(x) .

If f is di'fferentiable, an alternate and equivalent definition is

(2) f(y) - fix) 2 (y-x

where V/(x) denotes the gradient (column) vector of part ial derivatives

of / with respect to x . Whereas (1) says that linear approximation

over-estimates the value of the function, (2) says that a tangent to / at

x l i es on or below / .

By the epigraph of f , denoted by E(f) , we mean the points in M

that are on or above f ; that i s ,

(3) E(f) = {(x, a) : x 6 C, a € R, f(x) 5 a} .

An alternate definition of a convex function is the following:

/ is a convex function if and only if its epigraph is a convex set.

By the Icwev level sets of / we mean

(h) L(f, a) = {x : x € C, f(x) 5 a} for given a .

If f is a convex function, its lower level sets are convex for every

a € R . This is necessary but not sufficient for / to be convex. In

order to obtain necessary and sufficient conditions for the convexity of /

involving lower level sets, we define the generalized lower level sets of

f as follows:

(5) GL(f, E,, a) = {x : x € C, ftx) < ̂ x+a] .

f is convex if and only if i t s generalized lower level sets GL(/, £> a)

are convex sets for a l l E, € R and a € R .

Another approach to convex functions, related to the definition (2),

is the fact that convex functions are generated by the family of affine

functions in the sense that a convex function f is the pointwise supremum
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Generalized convexity 187

of affine functions, or equivalently, that the epigraph of / is supported

at each point by the graph of an affine function.

Some properties of convex functions that we note are the following.

A local minimum of a convex function is always a global minimum.

(This is a necessary but not a sufficient condition.) The class of convex

functions is closed under addition and nonnegative scalar multiplication.

Finally, the set of points for which a convex function attains a minimum is

a convex set.

3. Applications of convexity

Consider the nonlinear programming problem

(6) minimize f{x) subject to g{x) 5 0

where f is a differentiable function from R into R and g a

differentiable function from R into R

Kuhn and Tucker gave the following necessary conditions for feasible

a; to be an optimal solution. If a constraint qualification is satisfied

at optimal x , then there exists y € R such that

(7) ty*ff(*0)
 + V(*o) = o , ytg{xQ) = o , 2/ > o .

We now indicate the role convexity plays in

(a) sufficiency of the Kuhn-Tucker conditions (7),

(b) constraint qualifications for the necessary Kuhn-Tucker

conditions,

(c) dual programs of (6),

(d) the relation between the existence of an optimal solution of

(6) and the existence of a saddlepoint of the Lagrangean.

The relevant results are as follows.

(a) If / and g are convex, then the existence of feasible xfl

and y € H such that the Kuhn-Tucker conditions are satisfied

is sufficient for x to be optimal for (6).
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(b) (Generalized Slater Constraint Qualification.) If g is convex

and, for all non-linear g. , there exists feasible x such that

g .ix) < 0 , then for any optimal x , there exists y € n satisfying

( T ) .

(c) Wolfe gives the following dual of (6 ) :

(8) maximize /(w) + ytgiu) subject to Vy giu) + V/(w) = 0 , y > 0 .

(6) and (8) are r e l a t ed as follows.

(Weak dual i ty . ) I f / and g are convex, then for any feasible x

of (6) and iy, u) of ( 8 ) ,

fix) > flu) + ylgiu) .

(Strong duality.) If, a lso, x is optimal for (6), and a constraint

qualification is sat isf ied at a; , then there exists optimal iy, u) ,

with u = X- and

(9) f{xQ) = flu) + ytgiu) .

(Converse duality.) If / and g are convex, (y , M ) is optimal

for (8) and the matrix

(10) V

is non-singular, then x = «0 is optimal for (6) and (9) is satisfied.

Another kind of duality involving conjugate functions is described in

Avriel [ ) ] . Here, too, convexity plays a fundamental role.

(d) The Lagrangean of (6) is defined by

(11) Lix, y) = fix) + ytgix) for y > 0 .

ix*, y*) , y* > 0 , is said to be a saddlepoint of (ll) if

(12) Lix*, y) < Lix*, y*) < Lix, y*) for a l l x, y iy > 0) .

The saddlepoint problem is related to the programming problem (6) as

follows.
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If (x*, y*) is a saddlepoint of L(x, y) , then x* is an optimal

solution of (6). If x* is optimal for (6), a constraint qualification is

satisfied at x* , f and g are convex, then there exists y* such that

(x*, y*) is a saddlepoint of L(x, y) .

It is noteworthy that for the Kuhn-Tucker conditions convexity is only

required for the sufficiency, not the necessary part of the theorem. By

contrast, for the saddlepoint problem, sufficiency holds without any

restrictions whatsoever; while convexity is needed for the necessary part

of the result.

4. Pseudo-convex and quasi-convex functions

A differentiable function / is said to be pseudo-convex if, for all

x, y in i ts domain,

(13) ' (j/-x) VfU) > 0 - f(y) - f(x) > 0 .

An example of a pseudo-convex, but not convex, function is f(x) = x + x .

A function / is said to be quasi-convex, if for all x, y in its domain

and all X € [0, l ] such that Ax + (l-X)y is in its domain,

(lU) f{Xx+(l-\)y) 5max[/(2/), f(x) ] .

If f is defined over a convex set, (lU) is equivalent to

(15) all lower level sets of f are convex.

If / is differentiable i t is quasi-convex if and only if

fiy) - fix) 5 0=* (y-x)VfU) £ 0 .

An example of a function that is quasi-convex, but not convex or pseudo-

convex, is f{x) = x . If

(16) f{x) * fiy) •» f[Jix+(l-X)y) < max[/(x), fiy)] , 0 < A < 1 ,

the function / is said to be strictly quasi-convex or explicitly quasi-

convex (other names in the literature include semistrictly quasi-convex and

functionally convex). If / is convex, i t is pseudo-convex, strictly

quasi-convex and quasi-convex.

Unlike convex functions, the sum of two pseudo-convex or two quasi-

convex functions need not be pseudo-convex or quasi-convex, respectively.
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An example of two pseudo-convex functions whose sum is not pseudo-convex

are x + x and -x . If / is pseudo-convex on a convex set , i t is
s t r i c t l y quasi-convex and quasi-convex. An example of a function (not
defined on a convex set) that is pseudo-convex but not quasi-convex is

f{x) = x - x where x = {0, l} .

If f is s t r i c t ly quasi-convex and lower semi-continuous on a convex
se t , i t is quasi-convex. An example of a function on a convex set that is
s t r i c t ly quasi-convex "but not quasi-convex is

1 i f x = 0 ,

/(*) = •

0 otherwise.

Some of the importance of pseudo-convex and quasi-convex functions can
be seen from the following result .

THEOREM. If f is pseudo-convex or strictly quasi-convex, a local

minimum is a global minimum.

5. Application of pseudo-convex and quasi-convex functions

The use of pseudo-convex and quasi-convex, instead of convex,

functions allows the weakening of the convexity requirements l is ted in

Section 3 as follows.

(a) The sufficiency of the Kuhn-Tucker conditions (7) holds if / is

pseudo-convex and each g. such that g. [xA = 0 is quasi-convex.

(b) The generalized Slater constraint qualification holds if a l l
constraints are pseudo-convex and there exists a feasible x such that ,
for a l l non-linear g. , g-(%) < 0 .

(c) (i) Converse duality holds if / is pseudo-convex and a l l g.

are quasi-convex. Weak and strong duality do not hold under these
conditions as can be seen by the following counterexample:

(17) min x + x , subject to -x 5 -1 .

The optimal is at x = 1 , whereas the value of the Wolfe dual

(18) max w3 + u + y(-u+l) subject to 3u2 + 1 - y = 0 , z / > 0 ,
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is unbounded.

( i i ) Weak and strong duality do hold if the Lagrangean, f + y g , i s
pseudo-convex. We give the simple proof for weak duality

Therefore f(x) > f(u) + y g(u) .

(d) The requirements of the convexity of f and g1 in order for an

optimal x* of (6) to be part of a saddlepoint solution (12) can be

weakened to the pseudo-convexity of the Lagrangean.

As pointed out, when dealing with the Wolfe dual (8), weak and strong

duality require more stringent convexity requirements than converse

duality. In order to lessen these convexity requirements, Mond and Weir

[79] recently proposed the following dual to (6):

max f(u) subject to Vytg(u) + V/(u) = 0 ,
(19) .

yVg{u) > 0 , y > 0 .

THEOREM (Weak dua l i ty ) . If for all feasible x of (6) and (y, u)

°f (19)., / is pseudo-convex and y g is quasi-convex, then

fix) > f{u) .

Proof, y g(x) - y g(u) 5 0 =» (x-u) Vt/ g(u) < 0 . Therefore

( x - u ) V U ) £ 0 - f{x) > f(u) .

THEOREM [79] (Strong duality). If, also, xQ is optimal for (6)

and a constraint qualification is satisfied at xQ , then there exists

optimal (y, u) , with u = xQ , and the optimal values of primal and dual

are equal.

Thus, this new dual of (17) would be

3 2
(20) max u + u subject to Zu + 1 - y = 0 , y(-u+l) > 0 , y > 0 .
The optimal is attained at u = 1 , y = k .
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6. Cone convexity

One extension of the different types of convexity we have encountered

so far is to convex cones.

DEFINITION. S c if is a convex cone if

(21) x , ytS^Xx + aytS f o r a l l X , a 2 0 .

Let S be a convex cone in C . A function g : C + C is said to be

S-convex if

(22) -g{\y+(l-\)x) + \g(y) + (l-\)g(.x) i S

for al l x, y € iP and 0 S X S 1 .

If g is differentiable, this is equivalent to

(23) g(y) - g(x) - (y-xfygix) € S .

The function g is said to be S-pseudo-convex if

(21*) (i/-x)tVg(x) € S •> g(y) - g(x) € 5

and S-qua8i-convex if

(25) -g(y) + !7U) i s - -(y-x)%(x) e 5 .

Observe that, since the sum of two elements of 5 is also in S , an

5-convex function is also S-pseudo-convex and S-quasi-convex. Note that

if S = it (if g is a scalar function, m = 1 ), then S-convexity

reduces to the usual definition of convexity.

Consider the problem

(26) minimize f(x) subject to -g(x) € S

where S is a convex cone in R . Its dual is

(27) maximize f(w) + y*g(") subject to Vt/tg(u) + Vf(w) = 0 , y £ S* ,

where S* , the polar cone of S , is defined by

(28) S* = {3 € /* : s*s > 0 for all s (. S] .

In extending mathematical programming theory to problems with convex

cones, it becomes necessary to distinguish between convex cones with an
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infinite number of generators and polyhedral cones, that i s , convex cones

with a finite number of generators. In general, a l l results extend readily

to problems with polyhedral cones. Thus, i f x is optimal to (26), the

corresponding Kuhn-Tucker conditions are

(29) fy*s(*0)
 + Vf(x0) = 0 , y € S* , ytg[xQ) = 0 .

Whereas for polyhedral cones, the necessary conditions (29) always hold

subject to an appropriate constraint qualification being satisfied, this is

not true without further restrictions for cones with an infinite number of

generators. Given that f is convex or pseudo-convex and g S-convex or

S-quasi-convex, (29) and feasibility are sufficient for optimality.

Similarly, if f is convex and g S-convex, all duality relationships

between (26) and (27) hold if S is polyhedral. If S has an infinite

number of generators, only weak duality holds without further restrictions.

7. Generalized convexity via generalized means

There is another natural generalization of convex functions that is

rediscovered from time to time. Noting that the right hand side of the

inequality

(30) f{Xy+(l-X)x) 5 Xf(y) + (l-A)/(x) , 0 < X 5 1 ,

is just the weighted arithmetic mean of fiy) and f(x) , the

generalization is obtained by substituting other weighted means for the

right side of (30).

Before formally stating the generalized convexity condition, we review

some classical definitions and results involving generalized means. Let us

assume, for the moment, that both f{y) and f(x) are positive. Then

with 0 2 X S 1 , the rth mean of f{y) and f(x) is defined as

follows :

(3D Mr(f(y), fix); \) = {\[f(y) ]r+(l-A) [ftx) f}1/r if r * 0 .

(Henceforth, we shall write M^f; \) for Mr{f(y) , f(x); X) .)
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, f(x); X) = lim M if; X) = [fiy)]1

r+0

, f{x); X) = lim M (f; X) = maxifiy) , fix)] ,
p-xx>

, fix); X) = lim Mr(f; X) = minlfiy), fix)] .

THEOREM [74]. fa; 1 / fiy) = fix) , then Mpif; X) = fiy) = fix) ,
_OO < yj < OO

fW If f(y) > /(x) 3 then fiy) > tfp(/; X) > /(») , /or all r, X

such that -a> < T < co } O < X < 1 .

(c) If s > r , then M if; X) i M if; X) and the inequality is

strict if fiy) * fix) , 0 < X < 1 .

Following the terminology of [2] , we now extend the definition of
convexity in (l) as follows. A function / is said to be r convex if
i t sa t i s f ies , for a l l x, y in the domain of / ,

(32) f(Xz/+(l-X)x) SMrif; X) , 0 5 X 5 1 .

Note that (32) gives the usual definition of convexity for r = 1 and of
quasi-convexity for r = <*> . Since M if; X) > M (f; X) for s > r , i t

follows that a function that is r convex will also be s convex for
a l l s > r . Thus we have a continuous transition from the class of convex
functions (r = l ) to the class of quasi-convex functions (r = <*>) via
the intermediate class of r convex functions with 1 < r < °° .

Recall now that we restricted our definition of Mif; X) to fiy)

and fix) positive. This was done so that M (f; X) will be defined for

a l l r . in order to allow zero and negative values of f for a l l r ,
Avriel [2] and Martos [77] independently define r-convex functions as
follows: / is said to be r-convex if for a l l r , X , -°° 5 r 2 °° ,
0 5 X 5 1 , i t sat isf ies

(33) f{Xy+il-X)x) 5 log Mr{ef{y), ef{x); X) .

Thus
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if r + 0

+ (l-X)/(x) if r = 0
(3U)

max[/(y), f(x)] if r =

,min[/(y), /(x) ] if r =

Note that r-convexity, which is now no longer restricted to positive

values of f , reduces to ordinary convexity when r = 0 . As before

r-convexity implies s-convexity for all s > r and hence, for

0 < r < °° , (33) gives intermediary inequalities between convexity (r = 0)

and quasi-convexity (r = °°) . In general, the sum of two r-convex

functions or two r -convex functions need not be r-convex or r -convex.

Avriel [2] calls functions that satisfy (33) for r < 0 , superaonvex

and, for r > 0 , suboonvex. Thus superconvexity implies convexity which

implies subconvexity which in turn, implies quasi-convexity.

It is frequently difficult, algebraically, to deal with r-convex

functions. However an r-convex function for finite r can be

characterized in terms of ordinary convexity by the following result.

" rflx)
Let f be defined by e . Then / is r convex with r / 0

if and only if f is convex for r > 0 and concave for r < 0 .

A technique for solving certain nonlinear programs involving r-convex

constraints is given in Avriel [3]. In essence it involves solving a

sequence of programs where the r-convex constraints are approximated by

convex constraints.

A further extension of convexity by the use of generalized means is

possible. Let 6 be a continuous strictly increasing scalar function that

includes f{y) and f(x) in its domain. Then / is said to be Q-oonvex

if, for all x and y in the domain of / and all X , 0 5 X s 1 ,

(36) /(Xz/+(l-X)x) 5 9" i\Q[f(y) ]+(l-X)6[f(x) ]} .

Here 6 is the inverse function of 6 . If 9(x) = x , then (36)

reduces to (l), the usual definition of convexity. If 0(x) = xr and

r # 0 and 9(x) = log x for r = 0 , then (36) reduces to r -convexity

(32). If 9(x) = erx for r # 0 and 9(x) = x for r = 0 , then
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6-convexity, (36), becomes r-convexity, (33).

So far we have extended the definition of convexity by generalizing
the right side of ( l ) . A further extension is possible by generalizing the
le f t side of (l) as well. In essence, since /(Ax+(l-A)x) , 0 £ A 5 1 ,
consists of the values of / at a l l points on the straight line between x
and y that are in the domain of / , we can consider other paths from x

to y . Specifically, l e t p (A) , where p (0) = x and p (l) = y
x,y x ,y x,y

r e p r e s e n t a c o n t i n u o u s p a t h f r o m x t o y i n H s u c h t h a t f{px w ( ^ ) ) >
3*7

0 5 A S 1 , is defined. Then f is said to be {p-&)-convex i f

(37) fh , (A)) 5 e^Uet/^n+d-AM/U)]}

for a l l x and y in the domain of / , 0 5 A 5 1 . A particular
subclass of such functions where the path from x to y involves
generalized mean value functions was explored in a most elegant way in Ben-
Ta I [5] . Specifically l e t h be a continuous one-to-one and onto function

defined on a subset of H , including the domain of / and with values in

if" . Then / will be said to be (h-Q)-convex if, for a l l x, y ,
0 < A < l ,

(38) f(?t"1[A^(j/) + (l-A)^(x)]] < e-1{A6[f(2/)]+(l-A)e[f(x)]} .

Some of the results obtained for (Tz-G)-convex functions include the
following [5] , [7].

THEOREM. (a) If f and g are (h-Q)-convex, then 6~1[6(/)+6(g)]

is also {h-B)-convex.

(b) If f, h and 6 are differentiable, then f is (h-Q)-convex
if and only if, for all x, y ,

I &*± ^ £M] {h.iy)-h.(x)) .
j i

( ) { I
i=l j=X

This last result reduces to (2) if 6(f(x)) = f{x) , h(x) = x .

(h-6)-convexity is related to ordinary convexity by the following result:

/ is (7z-0)-convex, if and only if / given by
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is convex.

The application of (h-Q) convexity to nonlinear programming

including some duality results can be found in [J] and [5].

8. Invex and sublinear functions

In the last section, the notion of convexity was extended by

generalizing the definition (1). Another approach is to extend the

definition of convexity (2) for differentiable functions. Hanson [J2]

introduced the class of functions that satisfies

(39) fty) - f(x) > fc*(x, y)W>)

for all a;, y and for some vector function h . Craven [9] calls such

functions invex (for invariant convex) since f = g ° 0 will be invex if

g is convex, 9 is differentiable and 0f has full rank. Similarly, f

is said to be pseudo-invex if, for some vector function h(x, y) and all

x, y ,

&*(*, y)V/(x) > 0 => fty) - f(x) > 0

and quasi-invex if

fty) - fix) < 0 •* ft*(x, y)Vftx) 5 0 .

It follows that, by taking h (x, y) = y - x , convex functions are also

invex and that invex functions are both pseudo-invex and quasi-invex.

Also, the sum of two functions that are invex for the same function

h{x, y) is also invex.

Hanson [72] proves that if, in (6), / and g are all invex for the

same function h , the Kuhn-Tucker conditions (7) are sufficient. He also

establishes duality between (6) and (8) when / and g are invex (for the

same h ) instead of convex. Indeed duality holds [J3] if only the

Lagrangean

C+0) L(x, y) = ftx) + ytg(x) , y > 0 ,

is pseudo-invex. Weir [29] establishes duality between (6) and (19) if /

is pseudo-invex and y g is quasi-invex.
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Mond and Hanson [7S] and Craven [JO] extend the concept of invex

functions to convex cones. Thus, g : Fc •+ R is said to be S-invex,

where S is a convex cone in H , i f for a l l x and y in the domain of

g , there exists some vector h{x, y) such that

g(y) - g(x) - &*(*, y)Vg(x) e s .

S-pseudo-invex and S-quas-i-invex functions can be defined in an analogous

manner. This allows duality between (26) and (27) to be extended to

S-invex functions.

Hanson and Mond [73] extend the generalization (39) s t i l l further by-

considering sublinear functlonals. F is said to be sublinear if

(Ul) (A) F(a+b) 5 F(a) + F(b) for a l l a, b ,

(1*2) (B) F(ouc) = aF(x) for all x and every a > 0 .

I t follows from (B) that F(0) =0 .

Let / be a differentiable function satisfying

(U3) f(y) - fix) >F JVf(x)]
y >*•

for a l l x, y and for some arbitrary given sublinear functional F .

Sublinear functionals include linear functionals and, in particular, the

special cases occurring on the right hand sides of (2) and (39K Thus (1»3)

can be regarded as a generalization of convex and invex functions.

Similarly corresponding to the definition of pseudo-convex (or pseudo-

invex) and quasi-convex (or quasi-lnvex) functions one has the classes of

functions satisfying

(MO FtJ J V f U ) ] > 0 •> f(y) - f(x) > 0
y 5x

and

(U5) f(y) - fiie) 5 0 - F [ fix)] 5 0 .
y •>*

Hanson and Mond [7 3] establish sufficiency of the Kuhn-Tucker conditions

where there exists a sublinear functional F for all x such that

x,xQ

(kk) is satisfied for f and (*+5) for each g. such that g. [x ) = 0 .

Duality is established between (6) and (8) if the Lagrangean satisfies (kk)
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for some sublinear functional.

9. Additional generalizations

We mention briefly a number of other generalizations of convexity.

Apparently based on an unpublished idea of C.R. Bector, Chandra [7], La+a

[75] and Nehse [20] give duality results for functions satisfying

(U6) K(x, y){f(y)-f(x)} >

where K(x, y) is an arbitrary positive scalar function. Such functions

are called strongly pseudo-convex. If K(x, y) = 1 , then (U6) reduces to

convexity (2). I t follows, by taking

h(x, y) = [l/K(x, y)](y-x)

that strongly pseudo-convex functions are invex. Neshe [20] points out

that the assumption in [7] and [75] that the sum of strongly pseudo-convex

functions is strongly pseudo-convex is incorrect and, hence, that the

duality results in [7] and [75] require further assumptions in order to be

valid. The difficulty is that, unlike Hanson [72], Chandra [7] and Lata

[75] do not require the same function K(x, y) for al l f and g. .

Ben-TaI and Ben-Israel [6] generalize convexity by replacing the

family of affine functions that support a convex function by a family of

other functions. Let F be a family of functions F : if1 -*• R . Then /

is called f-convex if, for every x in the domain of / , there exists an

F € F such that

f(x) = F{x) and f[z) > F(z) for a l l x + z ,

in which case F is a support of f at x . Although in general, for

F-convex functions, a local minimum need not be a global minimum, Ben-TaI

and Ben-Israel [6] do obtain some duality results for programs with

F-convex functions.

In a recent paper, Doeringer [7 7] discusses K-convex functions. A

function / on an interval I of the real line is called K-convex, where

K is a nonnegative real number, if for any x, y € I , x < y , and

0 5 X S 1 ,

f{\x+(l-\)y) 2 A/U) + (l-
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I t is clear that for K = 0 , this becomes the usual definition of

convexity ( l ) . Although ^-convex functions occur frequently in production

and inventory problems, there has, so far, not been a great deal of

research into such functions.

Finally, we point out that the survey of generalizations of convexity

given here is not meant to be exhaustive. Indeed, Ponstein [2/] l i s t s

seven different kinds of convexity (including variants of pseudo-convexity

and quasi-convexity) and in [4] no less than nine different kinds of

convexity, pseudo-convexity and quasi-convexity are given.
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