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Abstract

Let I be an ideal of a commutative Noetherian local ring R, and M and N two finitely generated modules.
Let t be a positive integer. We mainly prove that (i) if H i

I (M, N ) is Artinian for all i < t , then H i
I (M, N )

is I -cofinite for all i < t and Hom(R/I, H t
I (M, N )) is finitely generated; (ii) if d = pd(M) <∞ and

dim N = n <∞, then Hd+n
I (M, N ) is I -cofinite. We also prove that if M is a nonzero cyclic R-module,

then H i
I (N ) is finitely generated for all i < t if and only if H i

I (M, N ) is finitely generated for all i < t .
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1. Introduction

Let R be a commutative Noetherian ring and I a proper ideal of R. In 1969,
Grothendieck proposed the following conjecture.

CONJECTURE 1.1. Let N be a finitely generated R-module and let I be an ideal of R.
Then Hom(R/I, H i

I (N )) is finitely generated for all i ≥ 0.

Hartshorne provided a counter-example to this conjecture in [9]. He defined an
R-module L to be I -cofinite if SuppR{L} ⊆ V (I ) and ExtiR(R/I, L) is a finitely
generated R-module for any i ≥ 0, where V (I ) denotes the set of prime ideals of R
containing I , and he asked the following question.

QUESTION 1.2. Let N be a finitely generated R-module and let I be an ideal of R.
Then is H i

I (N ) I -cofinite for all i?

In general, the answer is also no, even if R is a regular local ring. See [6] for a
counter-example to this question.
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The generalized local cohomology module

H i
I (M, N )= lim

−→
n

ExtiR(M/I n M, N )

for all R-modules M and N was introduced by Herzog in [10]. Clearly, it is a
generalization of the usual local cohomology module. The study of generalized local
cohomology modules was continued by many authors (see, for example, [2, 16]).
In [17], Yassemi asked whether Question 1.2 holds for generalized local cohomology.
And the cofiniteness of generalized local cohomology modules is studied by Divaani-
Aazar and Sazeedeh [8] and Khashyarmanesh and Yassi [11].

At the same time, Conjecture 1.1 inspires us to think about the following question.

QUESTION 1.3. Let M and N be two finitely generated R-modules. When is
Hom(R/I, H i

I (M, N )) finitely generated?

Asadollahi, Khashyarmanesh and Salarian [1] proved that if H i
I (M, N ) is finitely

generated for all i < t , then Hom(R/I, H t
I (M, N )) is finitely generated. As an

analogue of this result, we show that if H i
I (M, N ) is Artinian for all i < t , then

H i
I (M, N ) is I -cofinite for all i < t and Hom(R/I, H t

I (M, N )) is finitely generated.
We also prove that if d = pd(M) <∞ and dim N = n <∞, then Hd+n

I (M, N ) is
I -cofinite, which is a generalization of [6, Theorem 3].

Throughout this paper, (R,m) is a commutative Noetherian local ring (with
nonzero identity), M and N are finitely generated R-modules and I is a proper ideal
of R. We refer the reader to [3] or [4] for any unexplained terminology.

2. Results

We begin this section with some lemmas.

LEMMA 2.1. Let M be a finitely generated R-module. If H i
I (M) is Artinian for

all i < t , then H i
I (M) is I -cofinite for all i < t and Hom(R/I, H t

I (M)) is finitely
generated.

PROOF. This can be deduced from [7, Theorem 2.1] and [13, Proposition 4.3]. 2

LEMMA 2.2. Let M be a finitely generated R-module. If L is Artinian and I -cofinite,
then ExtiR(M, L) is I -cofinite for all i .

PROOF. Since L is Artinian, ExtiR(M, L) is Artinian for all i . By [13, Proposition
4.3], it suffices to prove that HomR(R/I, ExtiR(M, L)) is finitely generated. In the
following, we show that HomR(R/I, ExtiR(M, L)) is of finite length. Since

HomR(R/I, ExtiR(M, L)) ∼= HomR(R/I, ExtiR(M, L))⊗ R̂
∼= HomR̂(R̂/I R̂, Exti

R̂
(M̂, L)),

we may assume that R is m-adic complete.
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Set E = E(R/m), an injective envelope of R/m. By [15, Theorem 11.57],

HomR(HomR(R/I, ExtiR(M, L)), E)∼= R/I ⊗ TorR
i (M, HomR(L , E)).

By Matlis duality, R/I ⊗ TorR
i (M, HomR(L , E)) is finitely generated, so it is enough

to show that it is Artinian. Since L is I -cofinite and Artinian, HomR(R/I, L) is of
finite length, and then HomR(HomR(R/I, L), E)∼= R/I ⊗ HomR(L , E) is of finite
length. In particular,

SuppR{R/I ⊗ HomR(L , E)} = V (I ) ∩ SuppR{HomR(L , E)} = {m}.

Therefore

SuppR{R/I ⊗ TorR
i (M, HomR(L , E))} ⊆ V (I ) ∩ SuppR{HomR(L , E)} = {m}.

This completes the proof. 2

The following lemma plays a key role in the proof of our first main result.

LEMMA 2.3. Let M be a finitely generated R-module and s be a nonnegative integer.
Let L be an R-module such that H i

I (L) is Artinian and I -cofinite for all i < s. If
H i

I (M, L) is Artinian for all i < s, then H i
I (M, L) is I -cofinite for all i < s.

PROOF. The proof is by induction on s. When s = 1, by the hypothesis, H0
I (L) is Ar-

tinian and I -cofinite. Then Hom(R/I, H0
I (M, L))∼= Hom(M, Hom(R/I, H0

I (L))),
which is of finite length. By [13, Proposition 4.3], the result holds.

Suppose that s > 1, and the result holds for the case s − 1. The short exact sequence

0−→ H0
I (L)−→ L −→ L/H0

I (L)−→ 0

yields the long exact sequence

· · · −→ H i
I (M, H0

I (L))−→ H i
I (M, L)−→ H i

I (M, L/H0
I (L))−→ · · · .

Since H0
I (L) is I -torsion, H i

I (M, H0
I (L))

∼= ExtiR(M, H0
I (L)). Then, by Lemma 2.2,

H i
I (M, H0

I (L)) is I -cofinite and Artinian for all i . By [13, Corollary 4.4], it is enough
for us to prove that H i

I (M, L/H0
I (L)) is I -cofinite for all i < s. So we can assume

that 0I (L)= 0. Taking an injective hull E of L , then we have the short exact sequence
0−→ L −→ E −→ E/L −→ 0. Consequently, from the long exact sequences of the
above short exact sequence, H i+1

I (M, L)∼= H i
I (M, E/L) and H i+1

I (L)∼= H i
I (E/L)

for all i . Thus, H i
I (E/L) is Artinian and I -cofinite, and H i

I (M, E/L) is Artinian for
all i < s − 1. Now by the induction hypothesis, the result is proved. 2

The following lemma has already been proved. However, we cannot find the
original proof, so we give our own.

LEMMA 2.4. Assume that 0−→ L1 −→ L2 −→ L3 −→ 0 is an exact sequence of
finitely generated R-modules. Then we have the long exact sequence

· · · −→ H i
I (L3, N )−→ H i

I (L2, N )−→ H i
I (L1, N )−→ H i+1

I (L3, N )−→ · · · .
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PROOF. Let 0−→ N −→ E• be a minimal injective resolution of N . Note that
0I (E) is injective if E is injective. Then Hom(−, 0I (E)) is an exact functor. So
0−→ Hom(L3, 0I (E•))−→ Hom(L2, 0I (E•))−→ Hom(L1, 0I (E•))−→ 0 is an
exact sequence of R-complexes. By a well-known theorem of homology theory, we
have a long exact sequence

· · · −→ H i (Hom(L3, 0I (E
•)))−→ H i (Hom(L2, 0I (E

•)))−→

H i (Hom(L1, 0I (E
•)))−→ H i+1(Hom(L3, 0I (E

•)))−→ · · · .

Suppose that M is a finitely generated R-module. Then

0I (Hom(M, E•))∼= Hom(M, 0I (E
•)),

and so

H i
I (M, N ) = lim

−→
n

ExtiR(M/I n M, N )∼= H i (0I (Hom(M, E•)))

∼= H i (Hom(M, 0I (E
•))).

Hence, we obtain the long exact sequence that we wished to prove. 2

For any submodule K of a finitely generated R-module L , we use K :L 〈m〉 to
denote the submodule {x ∈ L |mnx ⊆ K for some n > 0}. A sequence x1, . . . , xn of
elements in m is said to be an m-filter regular sequence on a module N if

(x1, . . . , xi−1)N :N xi ⊆ (x1, . . . , xi−1)N :N 〈m〉

for all i = 1, . . . , n. The f-depth of an ideal I on a module N is defined as the length
of any maximal m-filter regular sequence on N in I ; we denote it by f-depth(I, N ).
As the analogue of a result in the local cohomology modules case, the authors of [5]
proved that f-depth(I + Ann M, N ) is equal to Min{r | H r

I (M, N ) is not Artinian}.
On the other hand, from the definition of generalized local cohomology modules, it is
well known that, for all i ,

H i
I+Ann M+Ann N (M, N )∼= H i

I+Ann M (M, N )∼= H i
I (M, N ).

Now we are in the position to present our first main result.

THEOREM 2.5. Let M and N be two finitely generated R-modules. If, for some
nonnegative integer t , H i

I (M, N ) is Artinian for all i < t , then H i
I (M, N ) is I -cofinite

for all i < t and Hom(R/I, H t
I (M, N )) is finitely generated.

PROOF. Since H i
I (M, N ) is Artinian for all i < t , H i

I+Ann M (N ) is Artinian for all
i < t by [5, Theorem 2.2]. Then by Lemma 2.1, H i

I+Ann M (N ) is (I + Ann M)-
cofinite for all i < t . Therefore, for any i < t , H i

I+Ann M (M, N ) is (I + Ann M)-
cofinite by Lemma 2.3. In particular, Hom(R/(I + Ann M), H i

I+Ann M (M, N )) is
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finitely generated for all i < t . Note that Hom(R/I, H i
I (M, N ))∼= Hom(R/(I +

Ann M), H i
I+Ann M (M, N )), so that Hom(R/I, H i

I (M, N )) is finitely generated for
all i < t . Thus, by [13, Proposition 4.3], it follows that H i

I (M, N ) is I -cofinite for all
i < t from the hypothesis that H i

I (M, N ) is Artinian for all i < t .
In the following, we prove that Hom(R/I, H t

I (M, N )) is finitely generated. Since,
for any i ,

H i
I+Ann M (M, N )∼= H i

I (M, N )

and

Hom(R/I, H i
I (M, N ))∼= Hom(R/(I + Ann M), H i

I+Ann M (M, N )),

we can assume that Ann M ⊆ I .
Let 0−→ K −→ Rn

−→ M −→ 0 be an exact sequence of finitely generated R-
modules. By Lemma 2.4, we have the exact sequence

· · · −→ H t−1
I (K , N )

α
−→ H t

I (M, N )−→ H t
I (R

n, N )−→ · · · .

It is clear that H i
I (R

n, N )∼=
⊕n

i=1 H i
I (N ) for any i . Then H i

I (R
n, N ) and

H i
I (K , N ) are Artinian for all i < t by [5, Theorem 2.2]. By virtue of the former

part of the result, we know that H i
I (K , N ) is I -cofinite for all i < t . Let L denote the

image of α in the above long exact sequence. By [13, Corollary 4.4], L is I -cofinite.
From the exact sequence

0−→ L
α
−→ H t

I (M, N )−→ H t
I (R

n, N )−→ · · · ,

we have the exact sequence

0−→ Hom(R/I, L)−→ Hom(R/I, H t
I (M, N ))−→ Hom(R/I, H t

I (R
n, N )).

By Lemma 2.1, the right term of the above exact sequence is finitely generated. Then
the result follows from the above exact sequence. 2

The following lemma is a generalization of [14, Lemma 3.4].

LEMMA 2.6 ([12, Theorem 3.2]). Let M be a finitely generated R-module such that
d = pd(M) <∞. Let N be a finitely generated R-module and assume that n is an
integer, and x1, x2, . . . , xn is an I -filter regular sequence on N. Then

H i+n
I (M, N )∼= H i

I (M, Hn
(x1,x2,...,xn)

(N ))

for all i ≥ d. 2

PROPOSITION 2.7. Let I be an ideal of R, and let M, N be two finitely generated
R-modules such that d = pd(M) <∞ and dim N = n <∞. Then Hd+n

I (M, N )∼=
ExtdR(M, Hn

I (N )). In particular, Hd+n
I (M, N ) is Artinian.
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PROOF. For this integer n, it is well known that there exists a sequence x1, x2, . . . , xn
in I such that it is an I -filter regular sequence on N . Note that Hn

(x1,x2,...,xn)
(N ) is

Artinian when n = dim N . By virtue of [14, Lemma 3.4],

Hn
(x1,x2,...,xn)

(N )∼= H0
I (H

n
(x1,x2,...,xn)

(N ))∼= Hn
I (N ).

Therefore, by Lemma 2.6,

Hd+n
I (M, N )∼= Hd

I (M, Hn
(x1,x2,...,xn)

(N ))∼= Hd
I (M, Hn

I (N ))∼= ExtdR(M, Hn
I (N )).

This completes the proof. 2

The following theorem is our second main result, which generalizes [6, Theorem 3].

THEOREM 2.8. Let I an ideal of R, and let M, N be two finitely generated R-modules
such that d = pd(M) <∞ and dim N = n <∞. Then Hd+n

I (M, N ) is I -cofinite.

PROOF. By [6, Theorem 3], we know that Hn
I (N ) is I -cofinite. Then by Lemma 2.2

and Proposition 2.7, the result follows. 2

In the last part of this note, we discuss the finiteness of H i
I (M, N ).

LEMMA 2.9. Let N be a finitely generated R-module and M a nonzero cyclic
R-module. Let t be a positive integer. If H i

I (N ) is finitely generated for all i < t ,
then H t

I (N ) is finitely generated if and only if Hom(M, H t
I (N )) is finitely generated.

PROOF. The ‘only if’ part is clear. Now suppose that Hom(M, H t
I (N )) is finitely

generated. Note that Hom(M, H t
I (N )) is I -torsion, then there exists an integer n such

that I n Hom(M, H t
I (N ))= 0. Assume that M is generated by an element m. For

any x ∈ H t
I (N ), we can find an element f ∈ Hom(M, H t

I (N )) such that f (m)= x .
Since I n f = 0, I nx = 0, and so I n H t

I (N )= 0. Since H i
I (N ) is finitely generated

for all i < t , by [3, Proposition 9.1.2], there exists an integer r , I r H i
I (N )= 0 for all

i < t . Thus, I r H i
I (N )= 0 for all i < t + 1. Again by [3, Proposition 9.1.2], H i

I (N ) is
finitely generated for all i < t + 1. In particular, H t

I (N ) is finitely generated. 2

PROPOSITION 2.10. Let N be a finitely generated R-module and let t be a positive
integer. If M is a nonzero cyclic R-module, then H i

I (N ) is finitely generated for all
i < t if and only if H i

I (M, N ) is finitely generated for all i < t .

PROOF. The ‘only if’ part has been proved in [11, Theorem 1.1(iv)]. Now we suppose
that H i

I (M, N ) is finitely generated for all i < t . By induction on t , we can assume
that H i

I (N ) is finitely generated for all i < t − 1. Then by [11, Theorem 1.1(iii)], it
follows that Hom(M, H t−1

I (N )) is finitely generated from the fact that H t−1
I (M, N )

is finitely generated. Then H t−1
I (N ) is finitely generated by Lemma 2.9. 2
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