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Introduction

Magill, Jr. and Yamamuro have been responsible in recent years for a number
of papers showing that the property that every automorphism is inner is held by
many semigroups of functions and relations on topological spaces. Following [9],
we say a semigroup has the Magill property if every automorphism is inner. That
the semigroup of Frechet differentiable selfmaps 3), of a finite dimensional Banach
space E, had the Magill property was shown in [10], while a lengthy result in [6]
extended this to the semigroup of k times Frechet differentiable selfmaps, 3)k, of a
Frechet Montel space (FM-space). In the latter paper it was noted that with a
little additional effort the semigroup Ck, of k times continuously Frechet differen-
tiable selfmaps of FM-space, could be shown to possess the Magill property. It is
the purpose of this paper to present a simpler proof of this result in the case where
the underlying space is finite dimensional.

NOTATION: Notation and terminology are the same as in [10]. For basic
definitions and a discussion of differential calculus in Banach spaces the reader is
referred to [3, chapter 8]. We shall use Greek letters to denote elements of the
reals, R, and Roman letters for the elements of the real finite dimensional Banach
spaces E and F. The constant map, whose single value is a e E, is denoted by ca.
&{E, F) denotes the space of linear maps from E into F with the norm topology.
The dual of E is given by E. If ae E, aeE we define a map a ® a in
:?(£) = ^ ( £ , £ ) b y

(a ® d)(x) = <x, d}a, for xeE.

More generally we have a®"'d in the space of w-linear maps i?(£m,£).
If h e S>m we write the mth Frechet derivative of h at x e E as h(m\x). After m
evaluations at a e E we write this as h(m\x)(a)m. We now prove
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THEOREM: If E is a finite dimensional real Banach space, every automor-
phism <j> of Ck is,inner. That is, there exists a bijection heCk such that h'1 eCk

and

(1) <£(/) = hfh~\ for all feC.

PROOF: 1. There exists a bijection h such that (1) holds.
Magill showed this for automorphisms of the semigroup of all differentiable

selfmaps of the reals in [5]. For a proof in this more general instance see [7]. It
was also shown we can assume h(O) = 0 in [8].

2. h(£a) is continuous in £, e R, each aeE.
In [8] it was shown that if aeE, <Ji{^d),a} is continuous in £, for each

aeE. But the weak andstrong topologies in E coincide so the result follows.
Our aim is to show that h e Ck, for since any property true of h is also true of

h~1, (1) will then hold. Whereas in [6] this was achieved by elementary methods,
we show here that the problem can be arranged in such a way that a classical
theorem concerning differentiability is applicable.

DEFINITION: A family {iKO : £ e R } of selfmaps of £ is said to be a one-pa-
rameter group if

if) = \KQiKv), for any Z,

Bochner and Montgomery have proved the following in [2]: if E is finite
dimensional, {${£,)} a one-parameter group with ij/(0(x) separately continuous,
and \l/(0 e Ck for each f e R, then \]/ : R x E -+ E is jointly C \

We define a one-parameter group of C* selfmaps of E, {iK£)}> by <K£) = <K^)>
£eR. Continuity with respect to the parameter follows readily from the continuity
of h(£a) with respect to £. We show in steps 3 to 6 that the k times continuous dif-
ferentiability with respect to the parameter suffices to show h e Ck.

3. For a. e R,a > 0, (dk/da.k)h(txx) exists and is continuous in a.

Tedious differentiation shows that if a = e^, y e E, and m e N, the set of natu-
ral numbers, then

(2) (dm/d^m)h(eiy) = I C^{drjd<xr)h{ay)

provided we assume that these derivatives exist. The coefficients C " e N are given
inductively by C\ = 1, C™ = rC?'1 + C™-"/, for r,m>\.

We show the result using the above and complete induction. When k = 1,
since ij/(£,)(x) is continuously differentiable in £, we have the existence of

where y = h~\x),<x = e*. Hence for a > 0, (dldix)h(<xy) exists. Since
is continuous in <jj,
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( d l d a ) h ( a y ) = e ^ ^

is also continuous in £. Theorems 8 and 9 of [4, page 95] ensure the continuity
in a.

Assuming now that the result holds for all natural numbers less than some
m e N, m ^ k, we may use (2) and the existence and continuity in £, of
{dmjd^m)h(e^y) to give the existence and continuity in a of (dmjda.m)h(ixy) for all
a > 0 in an entirely parallel manner.

Let {ej be the standard basis for E = R", and ({ef}, {e;}) a biorthogonal pair.
Let hi = /i(ej® e,).

4. h^C^i = l , - - ,n

The proof is by induction on k. That hte2 follows as in [10]. The continuity of
h'i follows as in the general case so we omit it here. For the purposes of this sec-
tion the index i may be fixed so we shall simplify the notation by referring to et

as e.
Suppose hie2m, some m, 1 ^ m < k. We can readily show (dmlda"')hl((xe)

= hfXxeXe)"', and since (dm+lld<xm + i)h(ae) = (<T+1/dam+1)/ii(ae) exists and is
continuous for a > 0 we deduce the limit

lim e - ^ / i ^ V + ee)(e)m - h(?Xae)(e)m~]
£->0

exists and is continuous for such a. We call this limit (h(/"))*(ae)(e)m+1.
We show that /ijm) is differentiable at oee, a > 0, and that

^ + 1 ) = (h\m))*(<xe)(e)m+i

Consider

I*!-1 lh\m\«e + y) - hf\y) - (Mm))*M(e)m+1 ®m + le{y)\\.

For y such that <y,e> = 0 the expression is zero so we may neglect such values.
Further, h\m\x) = h\m\x)(e)m <g) me, so the expression is

IMI" 1 \ < y \ \\
- hf\^y,eye)(e)m ® me) - (/ji

^ sup--- sup l o ^ o l -
l l y i | l = i l l y m l l = i

( / i | m V + <y,e>e)(e)m - h(?X<te){e)m) - (h\m))*(oce)(e)m+1\\

which converges to zero as j>|| converges to zero since
sup |<j>;,e>| = | e | = 1, j = l,—,m.

\\yj\\ = i

We can now show h\m) is differentiable at x e £ with /i-m>(x)
+ «*,<?> - a)ce)/ij](I"+1)(ae). We use the expansion for the higher deriva-
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tive of a composition function as found in [1, page 3]. Consider

(y,e)e)

which converges to zero as | y || converges to zero, since [0(1 + «x,e> - a)
ce)/ii]

(m+1)(ae)(e) exists.
Now choose an x0 such that <xo,<?> is positive. Let {xn} converge to x0.

Standard calculations show

But Mm+I)«xo,e>>e)(e)"1+1 = (/I[
Bl))*«x0)e>e)(e)m+1 which is known to be con-

tinuous at x0. Thus h\m+1) is continuous at x0. Letting x be an arbitrary element
in E, and {*„} converge to x it may readily be shown that

<x - xo,e>ce)h^m+1\xo + xn - x)

so h.eCm+1. Inductively we have now shown that for each i, ht e Ck.

5. (et®edhe&, i = 1, ••-,«.

Since ^eC* it follows that

f ' M = h-\h(e,®e,))h = ( e ^ e ^ e C .

6. A e C*.

Again the proof is by induction. Differentiability of h follows as in [10], while the
continuity of h' follows as in the general case. Suppose h e Cm, some m, 1 :g m < k.
Then [_(ei®ei)h~\°"+1Xx)(y) exists, and for a null sequence {en} equals,

Since the weak and strong convergence of a sequence of operators in J?(Em, E)
coincide, we have that lim e"1 [h(m\x + eny) - /i(m)(x)] exists.

n->oo

If we call this (h(m))*(x)(y) then for each i,

(3) l(et <g> edh]im+ 1) ( >
Because {e,} is a basis for £ and et ^ 0, each i, it follows

that (h{m))*(x)e^C(Em+1,E). Assume now that this is not the Frechet derivative
of h(m) at x. Then there is a null sequence {yn}, sequences {zj}, •••,{z™} in the
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closed unit sphere S of E, and an et such that

< W l "'[fc^C* + *»Xzi) - ( O - vm\x){z\)... (zH
m)

does not converge to zero with «. But this contradicts (3).

We now show h e Cm+1, again by contradiction. Suppose h(m) is discontinuous

at xeE. Then there is a sequence {*„} converging to x, sequences {y*}, •••,{y"+1}

inS, and an e, such that <[fc ("+ 1>(*.){^1}-(y:+ 1 ) - '« ("+ 1 ) (*){j ' i}-(y:+ 1 ) ]A>

does not go to zero with n. This contradicts the continuity of [(e,- ® e;)/i](m+1) at

x. Hence heCk and the theorem is proved.
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