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Abstract

In 1959 Hayman proved an inequality from which it follows that if/ is transcendental and meromorphic
in the plane then either/ takes every finite complex value infinitely often or each derivative / ( k ) , k > 1,
takes every finite non-zero value infinitely often. We investigate the extent to which these values may be
ramified, and we establish a generalization of Hayman's inequality in which multiplicities are not taken
into account.

2000 Mathematics subject classification: primary 3OD35.

1. Introduction

Our starting point is the following result of Hayman [8, 9].

THEOREM 1.1. Let k e H and let a, b e C, b ^ 0. Let f be nonconstant and

meromorphic in the plane. Then at least one of f — a and f ( A r ) — b has at least one

zero, and infinitely many iff is transcendental.

Hayman's proof of Theorem 1.1 is based on Nevanlinna theory, the result deduced

from the following inequality. Here the notation is that of [9], with S(r,f) denoting

any term which is o(T(r,f)) as r -> oo, possibly outside a set of finite Lebesgue

measure.

THEOREM 1.2 ([8, 9]). Let i e N and let f be transcendental and meromorphic in

the plane. Then, as r - » oo,

(1) r(rJ)
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38 Walter Bergweiler and J. K. Langley [2]

A normal families analogue for functions g meromorphic in a plane domain D was
established in [7] (see also [15, 22]).

THEOREM 1.3. Let k e H and let a, b e C, b ^ 0. Let D be a plane domain, and
let F be the family of functions f meromorphic on D such that f — a and f(k) — b
have no zeros in D. Then F is normal.

Theorems 1.1 and 1.3 together provide an illustration of the Bloch principle, that
(most) properties which suffice to make constant a function meromorphic in the plane,
render the corresponding family on a plane domain normal [22].

Suppose next that / is meromorphic in the plane, that n > 3 and a\,... , an are
distinct elements of the extended complex plane, and that all solutions of/ (z) — ak

have multiplicity at least mk > 2. A striking generalization of Picard's theorem says
that if X2jt=i (1 ~ \-/mk) > 2 t h e n / is constant [9, page 46]. The investigations of the
present paper started from the analogous problem involving the multiplicities of roots
of/ (z) = a, f(k)(z) = b, in which direction results are not available directly from
Theorem 1.2, because of the N(r, 1//) term in (1). It will be convenient to use the
following notation.

DEFINITION 1.1. Let A: be a positive integer and let 0 < M < oo, 0 < N < oo. Let

D be a plane domain. We say tha t / 6 $(k, M, N, D) if/ is meromorphic on D and
all zeros of/ in D have multiplicity at least M, while all zeros of/'*' — 1 in D have
multiplicity at least /V.

Illustrating further the Bloch principle referred to above, we shall prove the follow-
ing.

THEOREM 1.4. Let k, M, N e N and let D be a non-empty plane domain. Then

, M, N, D) is normal if and only if$(k, M, N, C) consists of constants only.

Theorem 1.4 will be established by applying a well-known rescaling lemma (see
Lemma 5.1). In Definition 1.1 and Theorem 1.4, M = oo or N = oo should be
interpreted as meaning that there are no corresponding zeros in D. To show that these
families are not vacuous, we note that

( 2 ) / ( z ) =
 v c ^"> , a2 -2a + 28 = 0, / ' ( z ) - 1 =

gives a transcendental function/ in 5(1 , 2, 3, C).
It was proved by Chen [4] that the inequality (1) holds with N(r, 1//) replaced by

Nlk+2)(r, 1//), in which Na+2)(r, 1//) is the same as N(r, 1//) except that zeros of
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[3] Multiplicities in Hayman's alternative 39

/ of multiplicity it + 2 or greater are counted just k + 2 times. It follows at once from
this inequality that if

(2 + l/k)(k + 2) (2 + 2/k)(k + l)

Mk
 + Nk

and/ e $(k, Mkt Nk, C) then/ is constant. Chen showed further in [4] that if Mk, Nk

satisfy (3) and D is a plane domain then ${k, Mk, Nk, D) is normal. We shall prove:

THEOREM 1.5. Let k be a positive integer and let 0 < Mk < oo and 0 < Nk < oo
with

2k+ 3 + 2/k (2 + 2/k)(k+l)
Mk Nk

 < '

Iff 6 $(k, Mk, Nk, C) then f is constant. Further, if D is a plane domain then
, Mk, Nk, D) is normal.

The condition (4) is slightly less restrictive than (3), and the normal family analogue
is proved by applying a rescaling method (see Lemma 5.1), rather than the more
complicated method of [4].

A generalization of Theorem 1.2 replacing the &th derivative /(*> by a linear
differential polynomial F = f(k) + ^,jZoajf(J) w a s g i v e n m [H] ( s e e a l s o [10]):
here there are exceptional cases in which / is transcendental but both / and F — 1
are zero-free. We have the following extension of the second part of Theorem 1.5.

THEOREM 1.6. Letk, Mk, Nk, D be as in Theorem 1.5, let a$, ... , ak_\ befunctions
analytic in D, and let <3 be a family of functions meromorphic on D with the property
that, for every f e <3, all zeros off in D have multiplicity at least Mk, and all zeros
ofF-l have multiplicity at least Nk, in which F = L(f) = fw + E y l i « ; / 0 > -
Then <£> is normal.

Theorem 1.6 fails for meromorphic coefficients aj, as the following example shows.
Let

fn(z) = , Fn(z) = fa(z)
nz

Then Fn is non-constant on D = fl(0, 1), and for n > 3 both / „ and Fn — \ are
zero-free there. However, t h e / n do not form a normal family. On the other hand, for
functions meromorphic in the plane, we have the following, which is the key to the
proof of Theorems 1.5 and 1.6.
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THEOREM 1.7. Let f be meromorphic and non-constant in the plane, and let A be
the field of functions A meromorphic in the plane with T(r, A) = S(r,f) as r -*• oo.
Let k be a positive integer, and let the linear differential operator Lk be defined by

(5) Lk = D + YjajD, D = ,
j=o z

with the aj in A, and assume that F = Lk(f) is non-constant. IfLk ^ Dk set

(6) £> = max(/' : 0 < 7 < k- \,a}# 0}, q = max{l, k - 1 - Q],

while if Lk — Dk set Q = — 1, q = k. Then one of the following holds.

(i) We have

(7) T(r, f) < 2yV(i+" (r, - ) + -iV(*+2> (r, - )

in which N<p) (r, 1//), for p e N, counts zeros off, but with zeros of multiplicity at
least p counted just p times.

(ii) There exists a function H meromorphic in the plane and satisfying

(8)
H'(z) *(Jfc+l)

such that f, Lk and F are given by

(9)
F — L (f) — 1 — l/Hk+i

in which co is a (k + \)th root of unity.

If ak-\ = 0 , then (i) always holds.

It is clear that by choosing /J, H, / , Lk as in (8) and (9) it is possible to ensure that
/ is transcendental b u t / and F — 1 are zero-free. Theorem 1.7 contains Theorem 1.2
and the results of [4, 10, 11], and the proof presented here is considerably simpler
than that in [11]. It seems extremely unlikely, however, that the constants in (4) and
(7) are sharp, and it seems reasonable to investigate the extent to which the condition
on one of Mk, Nk may be relaxed, if a stronger condition is placed on the other. In
this direction, we have the following result.
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[5] Multiplicities in Hayman's alternative 41

THEOREM 1.8. Let k be a positive integer. Then there exists a positive integer 7*
with the following property. If D is a plane domain then the family $(k, k + 2, Tk, D)
is normal, and iff e $(k, k + 2, Tk,C) thenf is constant.

We remark that, with k a positive integer, Wang and Fang proved in [ 17, Theorem 7]
that $(k, k + 2, oo, D) is normal for every plane domain D, and [17, Theorem 3] that
$(k, 3, oo, C) contains only rational functions, the simple example/ (z) = z3 showing
that $(k, 3, oo, C) does have non-constant elements.

The proof of Theorem 1.8 uses the rescaling lemma and the following two propo-
sitions due to Wang and Fang [17, Lemmas 8 and 6].

PROPOSITION 1.9 ([17]). Let k be a positive integer. Then f is a non-constant
rational function in $(k, k + 1, 00, C) if and only iff has the form

" * " •

The examples (10) show that the family $(k, k + 1, oo, D) is not normal for a plane
domain D, since a may be taken arbitrarily close to b.

PROPOSITION 1.10 ([17]). Letk e N and let f be transcendental and meromorphic
of finite order in the plane, such that / ( t ) — 1 has finitely many zeros. Then f has
infinitely many zeros of order k or less.

In particular Proposition 1.10 shows that $(k, k + 1, oo, C) contains no transcen-
dental function of finite order. It is not clear whether Proposition 1.10 holds without
the hypothesis t h a t / has finite order, the proof in [17] relying on a result from [2]
concerning critical and asymptotic values. Indeed, it was conjectured in [1] that if/
is transcendental and meromorphic in the plane with / ' — 1 zero-free then there exists
a sequence zn —*• oo with / (zn) = 0 and / '(zn) —*• oo. This is known to be true if in
addition/ has finite order [1, Lemma 5] o r / has at most finitely many multiple poles
[12, Theorem 2].

For rational functions we prove the following:

THEOREM 1.11. Let k e M, M > k + 1 and N > 2. Let f be a non-constant
rational function in 3(k, M, N, C). Then

M N

or f has the form (10).
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Theorem 1.11 is proved via complex dynamics, using ideas introduced to the area
by Eremenko [6]. Taking N = oo shows that Theorem 1.11 contains Proposition 1.9.
We give two examples of non-constant rational functions in 5(1, M, N, C) satisfying
(l l)with* = landM.W > 2 .

EXAMPLE 1.1. Let N = 2, M > 3 and

4(M - 1) zM

f(z) = M2 zM~l + c
with ce€\ {0}. Then

(Mc- (M-2)z" - ' ) 2

J W M2(zM-> + c)2

EXAMPLE 1.2. Let N = 3, M = 2 and

(7 + Q ( z 2 - l ) 2 (i - l)(z2 + 1 - 2/)3

1 K) ^ U )1 KZ) Sz(z2 - 1 + 2i) ' "̂  U ) 8z2(z2 - 1 + 2/)2 "

On the other hand, it seems unlikely that Theorem 1.11 is sharp for k > 2. To show
that Theorem 1.11 fails for transcendental meromorphic functions, we give examples
of transcendental functions/ in $(l, M, N, C), for which equality holds in (11) with
k= 1.

EXAMPLE 1.3. The function

(12) / (z) = (e~4z + I)"1, / ' ( z ) - l = - ( e - 4 z - l ) 2 ( e - 4 z + l ) - 2 ,

has M = oo, N = 2.

Next, f (z) = z — tanz is an obvious example for (M, N) = (1, oo), and any
elliptic solution / of (f')2 = 1 — (f + I)4 provides an example for (2, 4).

EXAMPLE 1.4. Le t / = 1/p', where p is the WeierstraB doubly periodic function
satisfying (p')2 = 4p3 - g2p — gi = 4p3 + 3p - 1. Then / has only triple zeros
and so h a s / ' - 1 = - 4 ( p + l/2)3/(p')2, so that/ e 5(1, 3, 3, C).

EXAMPLE 1.5. Let / (z) = l/(atan3z + frtanz). For suitable values a, b, u, v we
then have / '(z) - 1 + / (z)2(« tan2 z + w)3 = 0, and again / and / ' - 1 have only
zeros of multiplicity at least 3, so that/ 6 5(1, 3, 3, C).

A specific solution of the equations for a, b, u, v (found with MAPLE) is, with
x = ^ 2 ,

3-24JC + llx2 (75+ 15(k - 75JC2)1/3(-11 + 8x + x2)
a = , u =

- 3 - 6 J C + 3JC2 (75+
b = , v =
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EXAMPLE 1.6. Let

so that
tan2z-±tanz + ^

1 = -

Then/ e5( l ,2 ,4 ,C) .

A (bold) conjecture might be that if/ is a non-constant function in $(k, M, N, C)
then k/M + (k + Y)/kN > 1, possibly with strict inequality if/ is a rational function.
For k = 2, the following examples would then be extremal.

EXAMPLE 1.7. Let p again denote the WeierstraB doubly periodic function, this
time with g2 = -4 /5 , g3 = -24/5, and set / (z) = (p (z) + I) ' 2 . Then

f"{z) - 1 = -(p(z) - 3f/(p(z) + I)3

so that/ e5(2,4,3,C).

EXAMPLE 1.8. Let g2 = 0,g3 = 196/5 and/ (z) = p(z)~4. Then

so that/ e #(2, 8, 2, C).

We mention some further related results. First, a modified version of (1) was
proved by Yang Le in [18], but it is not clear whether those methods can be adapted
to give an inequality on the lines of (7). Next, the questions considered in this paper
were addressed by Yang and Zhang [19] for holomorphic functions. It is shown
in [19] that for a plane domain D and a positive integer k, the family of holomorphic
functions in $(k, Mk, Nk, D) is normal if (k + \)/Mk + l/Nk < 1. Results for
meromorphic functions were obtained in [20], but subject to additional hypotheses on
the multiplicities of poles. A survey of some results may be found in [5]. Finally,
further results on normal families of meromorphic functions with multiple zeros and
poles and/ ' — 1 zero-free appear in [17].

2. Proof of Theorem 1.7

Let/ and F be as in the hypotheses. We start with Milloux' inequality [9, page 57]

(13) T(rJ) < N(rJ) + N (r, y)+" U J^) - ô U y) + S(r,f),
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in which A^ (r, l/F') counts only zeros of F' which are not zeros of F — 1. Let
N* (r, l/F') count zeros of F' which are not zeros of F — 1 and, in addition, are not
zeros of/ of multiplicity k + 2 or greater.

LEMMA 2.1. We have

(14) N (r, j) + N* (V, j^j < N(t+1) (V, j ) + tf0 (r, ̂ ) + S(r,f).

PROOF. Suppose that at least one of/ and F' has a zero at a. If/ has a zero at a
denote its multiplicity by m, and set m = 0 if/ (a) ^ 0. Suppose first that m < k + l.
Then a contributes the same to n*(r, l/F') as to no(r, l/F'), and contributes m to each
of n(r, 1//) andnw+1)(r, 1//).

Assume next that a is a zero of/ of multiplicity m > k + 2, and write 1// =
(F/f){\/F). Let p ; > 0 be the order of the pole of ay at a, with p ; = 0 if a; (a) is
finite. Similarly, let \x be the order of the zero of F at a, with /x = 0 if F(a) ^ 0. Since
each / 0 ) / / has poles of multiplicity at most; and F/f = f ( k ) / / + £* l i ajf^/f,
we get

(15) m <k + n +
j=0 j=0

Now a contributes exactly m to n(r, 1//) + n*(r, l/F'). On the other hand using (15)
we see that, whether or not /x is positive, a contributes at least

k-\

;=0

to /i(i+1)(r, 1//) + no(r, l/F'), and this proves the lemma. D

Using Lemma 2.1, inequality (13) now becomes

(16) T(r,f)<N(r,f)

Following Hayman [9, page 60], write

(17) N(r,f) = Ni(r,f) + N2(r,f),

in which Nt(r,f) counts simple poles of/, while N2(r, f) counts the points at which
/ has multiple poles, each such pole counted just once. Since

N](r,f) + 2N2(r,f)<N(r,f)< T(r,f),
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we obtain from (16) and (17),

(18) N2(r,f) < N(k+i> (r,j\+N(r, j^—\ - N* (r, ±-\ + S(r,f).

We may therefore assume henceforth that

(19) Nl(r,f)^S(r,f),

because if (19) fails, then using (17) and (18) in (16) leads at once to an inequality
stronger than (7).

LEMMA 2.2. Let

Assume thatf has a simple pole at b, and that b is not a pole of any of the coefficients a^.
Then M has a zero of multiplicity at least q = max{l, k — 1 — Q] at b, in which Q is
defined as in Theorem 1.7.

PROOF. Assume first that Q = k — 1, so that q = 1. As z —> b we may write

with d a non-zero complex number,

z-byk-l +
{-l)k-l{k - l)\d(z - byk + O(\z - b\rk+l

and

F'(z) = ( - 1)*+I (k + l)\d(z - byk-2

This gives, as z -*• b,

~'M k + 1 a, ,(h\
O(\z-b\)F{z)-

F"

)
- 1

(z)

A: +

z —

k +

1

2

a*-i(&)

it

and
F"(7\ k 4-7 n, ,CM

f w « - * t + i • 0 ( | z - ' " ) '

and we see at once that M (b) = 0.
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Next, suppose that 0 < Q < k — 1, so that in particular ak-1 s O and q = k — 1 - Q.
Then as z —*• b we have

F(Z) - 1 = (-l)kk\d(z - byk-1 + O(\z - b\YQ-\

F'(z) = (-1)*+1(* + l)W(z - fc)^2 + O(|z - t|)~e-2

and

so that M has a zero of multiplicity at least q at &. Finally, suppose that Q = —1, so
that q — k. Then as z —*• b we have

F(Z) - 1 = (-l)kk\d(z - fc)-*"1 + 0(1),
F'(z) = (-l)k+l(k + l)W(z - fc)-*-2 + 0(1),

which gives (21) again. •

3. Completion of the proof of Theorem 1.7, when M ^ 0

Suppose that M ^ 0 in (20). Then by Lemma 2.2 we have

qNx(r,f) < N (r, ^-] + S(r,f) < T(r, M) + S{rJ) < N(r, M) + S(r,f).

But poles of M + 2ak_ i / k can only be simple, and can only arise from poles of the a},
multiple poles of/, zeros of F — 1, zeros of F' which contribute to N*(r, 1/F'), and
zeros of/ of multiplicity at least k + 2. Since a zero of/ of multiplicity at least k + 2
contributes 1 to n(k+2)(r, 1//) - n(*+1)(r, 1//), this gives

qNi(rJ)< N2(r, f) + N (r, -^—\ + N* (r, y)

+ N(t+2) (r, i ) - N^ (r, i ) + S(r,f),

which, together with (18), leads to

(22) qNi(r,/) < Nik+» (r, y \ + 2N (r, -^—\ + S(r, f).

Using (17), (18) and (22) in (16), we obtain (7).
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4. Completion of the proof of Theorem 1.7, when M = 0

Assume henceforth that M = 0 in (20), and define the function ft by

k(k + 1)
Since we are assuming that (19) holds, we may take a simple pole z\ of / and
a small simply connected neighbourhood U of z\ on which all of the coefficients
ao, • • • , dk-\ are analytic. It follows therefore that we may define an analytic branch
H of (1 - F)-1/ (*+1) on U, with a simple zero at zi. Computation of H' and H"/H'
then shows that H is a solution of (8) in U, since M = 0 in (20), and obviously we
have

(23) F = Lk(f) = 1 - 1 / Hk+1.

Define the linear differential operators J, K by

(24) J = (D + P) • • • (D + kfi), K = Lk- J, D = — ,
dz

and define a function N, meromorphic on U, by

(25) N =

Then (8) gives

and repeating this shows that, on U,

(26) J(N) = 1 - \/Hk+x = F.

LEMMA 4.1. The linear differential operator K is the zero operator.

PROOF. Suppose that K is not the zero operator. Since the coefficients of K are
in the field A, and since (19) holds, we may assume that zi has been chosen so that
K {f) has a pole at z\ • Write

/ (z) = —— + <9(1), H(z) = d(z-zt)+ O(\z - z, | ) 2 ,

Z-Zl

as z -> Z\- Then a comparison of Laurent series in (26) gives

i

L
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On the other hand,

-zi)

as z —>• Z\, and so N — f is analytic at zi. But (24) and (26) give

o(D

and this is a contradiction, since K (f) has a pole at z!, by assumption, but J(N — f)
is regular there. D

LEMMA 4.2. Either (7) holds, or H is meromorphic in the plane.

PROOF. Let V = Hk+i, w = (D + 2P)---(D + k0)f, with w = f if k = 1. Then

(23) gives (D + /5)iu = F = 1 - l / / / i + 1 = 1 - 1/ V, from which we see that V is
meromorphic in the plane. Integration gives, on U,

in which c is a constant. If c / 0 then // ' is meromorphic in the plane, and so is H,
since V'/ V = (k + l)H'/H. Suppose next that c = 0. Then (27) shows that w can
have at most simple zeros, and m(r, l/w) < 5(r, V) < 5(r, F) < S(r,f), using (23).
This gives

m\r,-)<

and

Finally, writing 1// = (w/f)(l/w) and noting again that each / W ) / / n a s poles of
multiplicity at most j , we get

(28) T(r,f) < W fr, j ) + 5(r,/) < Â w fr, j \ + S(r,f),

which is a stronger inequality than (7). D

Assume henceforth that H is meromorphic in the plane. A straightforward in-
tegration from (23), using (24) and Lemma 4.1, gives a polynomial P of degree at
most k — 1 such that

J k\H{H')k k\H(H')k
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with constant roots Cj. If all of the c, are equal, then / obviously has the form (9).
We assume next, with no loss of generality, that cx ^ c2. Then (29) gives

W = (H - cx)(H - c2) 3JJ[+1 \H -cj
and so

with d\, d2 constants. But (23) and (30) give

m U j \ < S(r, H) < S(r, F) < S(r,f).

Since (30) implies tha t / cannot have a zero of multiplicity greater than k, we obtain
(28) again.

Finally, suppose that ak-\ = 0, and that (8) and (9) hold. Then H is a linear
function a n d / is a rational function, w i th / (oo) = oo. Thus

for large r, a n d / has just one zero, of multiplicity k + 1, so that (7) still holds. •

5. Proof of Theorems 1.4,1.5 and 1.6

First, let k, Mk, Nk be as in the hypotheses of Theorem 1.5 and suppose that
/ 6 $ik, Mk, Nk, €) is non-constant. T h e n / ( i ) is non-constant, since Mk > k, and
s o / satisfies the hypotheses of Theorem 1.7, with Lk = Dk. But

tffr, y\ <M-lTir,f)+O(l), N (r, . J \ < Nk~'TirJ{k)) + OH),

and a contradiction arises from (7), since T(r, f(k)) < (k + 1) T(r, f) + S(r, f).
To establish Theorem 1.6, which will obviously in turn prove the normality criterion

of Theorem 1.5, we apply the rescaling lemma referred to in the introduction. This
result, in the present form due to Chen and Gu [3], extends earlier work of Zalcman [21 ]
and Pang [13, 14]. For a survey of these results and their applications, see [22J.

LEMMA 5.1. Let a > 0 and let H be a family offunctions meromorphic in the plane
domain D such that for every h in H all zeros ofh in D have multiplicity greater than
a. If H is not normal at zo € D then there exist sequences zn —> Zo, hn € H, pn -> 0,
such that, as n —*• oo, the functions p~ahnizn + pnz) converge locally spherically
uniformly in C to a non-constant meromorphic function h of finite order.
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Assume now that k, D, a,, <£> satisfy the hypotheses of Theorem 1.6, but that (5 is
not normal. Since normality is a local property we may further assume that 0 e D
and that 0 is not normal at 0, and that the ctj are bounded on D. Since Mk > k we
may apply Lemma 5.1, which gives sequences zn —> 0 , / n 6 (9, pn -> 0, such that
the functions gn(z) = P~kfn(zn + pnz) converge locally spherically uniformly in the
plane to a non-constant meromorphic function g.

A standard application of Hurwitz' theorem shows that all zeros of g have multi-
plicity at least Mk. Next, let f be a zero of g(k) — 1. Then g is bounded near £ and gn

converge uniformly to g on a neighbourhood U of f, with respect to the standard
metric. With Fn = L(fn) this gives

Fn{Zn + PnZ) = g[k)(z) +
; = 0

locally uniformly on U. Applying Hurwitz' theorem again we deduce that all zeros of
gik) — 1 have multiplicity at least Nk, and this contradicts the first part of Theorem 1.5.

We turn now to the proof of Theorem 1.4. The obvious examples

fn(z) = 2n(z-a)k, n e N, a e C,

show that there is nothing to prove if M < k, since /„ e $(k, k, oo, C) and there is no
neighbourhood of a on which the/,, form a normal family. On the other hand, if M > k
then the same application of Lemma 5.1 as in the proof of Theorem 1.6 shows that
if $(k, M, N, D) is not normal then $(k, M, N, C) has non-constant elements, while
if/ e $(k, M, N, C) is non-constant, then the functions hn(z) = n'kf (nz), n e N,
form a family which is not normal at 0. Obviously Theorem 1.4, together with the
first part of Theorem 1.5, gives an alternative way to prove the normality criterion of
Theorem 1.5. •

6. Proof of Theorem 1.8

We first prove that there exists a positive integer Tk with the property that ${k, k +
2, Tk, C) contains only constant functions. Assuming that no such Tk exists, we obtain
for each large positive integer n a non-constant function /„ e $(k, k + 2, n, C), and
there is no loss of generality in assuming that |/n(0)| < 1 for each n. Applying
Milloux' inequality (13) t o / n gives

T(r,/„) < N(r,fn) + kN (r, j-) + N (r, * ) + S(r,/„),
\ J n / \ fn — 1 /
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and so each / „ has at least one pole. Replacing fn(z) if necessary by R~kfn{Rnz) for
some large positive /?„, we may therefore assume that the family / „ is not equicon-
tinuous, and hence not normal, at 0. Applying Lemma 5.1 we obtain sequences
nq -*• oo, zq -»• 0, pq -> 0, such that as q —> oo the functions P~kfn,(zq + pqz)
converge locally spherically uniformly in the plane to a non-constant meromorphic
function g of finite order. As in the proof of Theorem 1.5 we deduce that all zeros
of g have multiplicity at least k + 2, and that g(k) — 1 has no zeros. This contradicts
Propositions 1.9 and 1.10.

Applying Lemma 5.1 in the same way to $(k, k + 2, Tk, D) we now see that
, k + 2, Tk, D) is normal for every plane domain D. •

7. ProofofTheoreml.il

LEMMA 7.1. Let k > 2 and let f be meromorphic in the plane such that f{k) is
non-constant and satisfies

(31) »i(r,/(*)) = 5(r,/(*)), N(r,f) < N,{r,f) + S(r,f(k>),

in which N\ (r, f) counts the simple poles off. Assume further that, for some N > 2,

(32) j

Then either

(33) /«(z) = ! _ _ _ ! _ _

or

(34)

PROOF. Assume that / is as in the hypotheses. By (31) we have

(35) T(r,fli) w

Define M by (20), with F— / ( i ) and ak_\ = 0. Then M has a zero of multiplicity at
least k at each simple pole of/ , using Lemma 2.2.

If M = 0 then we obtain (33). Assume henceforth that M fk 0. Then we have,
using (20), the lemma of the logarithmic derivative and (31),

kN(r,f) < N(r, I/A/) + S(r,f(k)) < T(r, M) + S(r,fik))

<N(r,M) + S(r,f(k))
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- 2N (r> TWZT) +N(r,f) + 5(r,/w),

which leads to, using (32) and (35),

(k - l)N(rJ) < ^T(r,fik)) + S(r,f(k)) < C^~^ + <>(l)\ N{r,f)

outside a set of finite measure, from which (34) follows at once. •

Assume now tha t / satisfies the hypotheses of Theorem 1.11. We write

where the a, and bj are distinct. By hypothesis we have m; > M for all j . Moreover,
u = deg U = E]=i mJ a n d v = deg V = ^ = I n ; . We put / = it - 1 and A = / ( / ) .
Obviously if k = 1 then h = f, and in the general case we can write

Hz) = ^p-, P(z) = R(z) f\(z ~ a})
m'-1, Q(z) =

in which /? is a polynomial.

LEMMA 7.2. L f̂. p = deg P and q = deg Q. Then we have q = v + It. Further,
p = u + l(t — 1) if u > v + I or u < v, and p < v + l(t — 1) — 1 otherwise.

PROOF. We have / (z) ~ cz"~u as z -*• oo. If « > v + / or « < u we obtain
h{z) ~ c*z"""-' as z -> oo, with c* = c(u - v)(u - v - 1) • • • (u - v - I + 1) ^ 0.
I f u < « < u + / w e have instead /i(z) = O(\z\~l~l) as z —>• oo. Hence we get
p — q — u — v — Hf u > v + I or u < v, and p — q < —I — \ otherwise. •

We now define g(z) = z — h(z) and d = degg. I f / is a polynomial, then
d e g / > M > it + 1. Thus d = degh = d e g / — I > 2 in this case. I f / has a
pole and k > 2, then /i has a multiple pole and again we find that d > 2. Finally if
k = 1 a n d / has at least one pole then either d > 2 o r / has the form (10). We may
therefore assume henceforth that d > 2, so that g is not constant and not a Mobius
transformation, and the Fatou-Julia iteration theory can be applied to g.

The zeros a; of / are then fixed points of g of multiplier 1, each with nij —
I — 1 = ntj — k attached parabolic basins [16, page 75]. Altogether there are thus
Y2j=\(mj — k) = u — sk parabolic basins of g attached to the zeros of / . If p < q,
then oo is also a fixed point of multiplier 1, with q — p + 1 parabolic basins attached
to it. This gives:
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LEMMA 7.3. With w = max{g — p + 1, 0}, the function g has L > u — sk + w
parabolic basins.

Since u = £^_ , m,- > M J we have s < u/M and thus u — sk > (1 — k/M)u.
Thus using Lemma 7.3 we get

(36) L>u-sk + w> ( 1 ju + w.

We now compute the number C of zeros of g', with multiplicities counted. To do
so we note that the zeros of g' are critical points of g and that g has 2d — 2 critical
points. Besides the zeros of g', the only critical points are multiple poles and possibly
the point at oo. The contribution from the poles is given by

{nj+l-l) = v + t(l - 1).

If oo is a critical point, then we denote by r its order, and we put r = 0 otherwise.
Then

(37) C = 2d - 2 - v - t(l - 1) - r < 2d - 2 - v - t(l - 1).

We shall see below that d 6 {p, q, q + 1), but we first note that if d = q + 1 then
d = v + tl + 1 and

2d - 2 - v - t(l - 1) = v + t(l + 1) = v + kt < (k + l)v.

Hence if d = q -f 1 we obtain

(38) C<(k+l)v-r <(k+l)v.

If d = q the same computation yields

(39) C <(k+l)v-2-r <(k+l)v-2.

Further, we have strict inequality in (38) and (39) unless v = t, that is, all poles off
are simple.

We now distinguish two cases, depending on whether or not g has a pole at oo.

Case 1 g(oo) = oo.
Then each parabolic basin of g contains a finite critical point of g which is not a

pole. These critical points are zeros of g' and thus, by hypothesis, have multiplicity at
least N. This gives

(40) NL<C.

This case now requires four subcases, depending on the relative sizes of u and v.
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Subcase (i) u < v.
Then Lemma 7.2 gives p = u + (t — 1)1 < q — v + tl, and we have d = q + 1 and

w = q — p + 1 = v — u + l + l = v — u + k.

Combining this with (36), (38) and (40) we obtain

N (1 J u + N(v - u + k) < {k + l)v.

This can be rewritten as

„ + (!
M \ N

Since u < v this implies that

V M N
and (11) follows.

Subcase (ii) v < u < v + I — 1.
T h i s t i m e L e m m a 7 . 2 g i v e s p < v + l(t — 1 ) — l = g — / — \ < q , a n d w e h a v e

d = q +I, and w = q-p + l>l + 2 . N o w ( 3 6 ) , ( 3 8 ) a n d ( 4 0 ) y i e l d

N (l-^\u

and thus

J N
Since v < u this implies that

V N
and (11) follows.

Subcase (iii) u = u + /.
Then p = M + (r — 1)/ = i; + tl = q, d = q + 1, and w = 1. In a manner similar

to that previously we deduce from (36), (38) and (40) that

N (1 ) u + N <(k+l)v = (k+l)u-(k+ 1)1
V M/

and thus

/ * * + l \ ( * + l ) / .
< 0.

/ * * + l \ ,
1 M < - 1

V M N ) ~) N

Again (11) follows.
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Subcase (iv) u > v + I + 1.
Then p = u + (t — 1)1 > v + tl = q,d = p , and w = 0. If p > q + 1, then oo is

a critical point of order p — q — 1. Thus we can take r=p—q —I in (37) and obtain

= M + (/ - 1)/ + tl - t(l - 1) - 1 = u + kt - k < u + kv - k

< u + k(u - k) - k = (k + 1)II - k2 - k.

Combining this with (36) and (40) we obtain N(\ - k/M)u < (k + \)u - k2 - k.
This yields (1 - k/M - (k + l)/N)u < -(k2 + k)/N < 0 and hence (11).

Case 2 g(oo) / oo.
T h e n p = q + 1, d = q , w = 0 , a n d u = v + l + l = v + k.
Now each of the parabolic basins of g attached to the a,, with at most one exception,

contains a finite critical point of g which is not a pole of g, and hence is a zero of g'.
Instead of (40) we thus only obtain

(41) N{L - 1) < C.

Since g(z) = g(oo) + O(z~'~l) we see that oo is a critical point of g, of order at least
/. Thus r > / in (39). We hence deduce from (36), (39) and (41) that

(42) N (1 J u - N < (k + l)v - 2 - /.

We observe further that if k = 1 then (42) is a strict inequality. For if k = 1 and g has
a critical point at oo then we may take r > I = 0 in (39), while if oo is not a critical
point we have (40) again.

Since / = k — 1 and v = u — k, (42) yields

N( 1 - — ) w -

and thus

(43)
N

again with strict inequality if k = I. If N < (k + I)2, then the right hand side of (43)
is negative and (11) follows.

It remains only to dispose of the subcase N > (k + I)2. Suppose that N > (k+ I)2

but that (11) does not hold. If k/M + (k+ l)/N = 1, then

i.Liil.i- '
M N k+1
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and thus M < k + 1, contradicting the hypotheses. If k/M + (k + l)/N < 1, then
the right hand side of (43) is positive and we obtain

^ 1 - (* + l)2/N = k(M-k-l)
U M{\ k/M (k + l)/N) ~U ~ 1 - k/M - (k + l)/N M{\ - k/M - (k

Thus u = k + 1 and v = 1. This implies, recalling that g(oo) is finite, that/ has the
form (10).

Finally suppose that N = (k + I)2. Then (43) yields

, _ o .

with strict inequality if & = 1. Assuming that (11) fails, we must therefore have k > 2
and equality in (44), which forces M = k + 1. Further, we must have equality in (43)
and in all inequalities leading to (43), in particular in (39), so that all poles of/ must
be simple. Since g(oo) is finite we have / (*'(oo) = 1, and applying Lemma 7.1 we
see that/ ( i ) must satisfy (33). Integrating k times and using the fact that M = k + 1
we get (10) again. •
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