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Abstract

From an integer-valued function / w e obtain, in a natural way, a matroid A//on the domain of/. We
show that the class 911 of matroids so obtained is closed under restriction, contraction, duality,
truncation and elongation, but not under direct sum. We give an excluded-minor characterization of
911 and show that 9H consists precisely of those transversal matroids with a presentation in which the
sets in the presentation are nested. Finally, we show that on an n-set there are exactly 2" members of
9H.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 35.

1. Introduction

From any function /: E -» Z, where £ is a finite set and Z is the set of integers,
we obtain a function with domain 2E whose value at A C E is max {/(a) | a G A)
if A is non-empty and min{/(a) | a G E) otherwise. This function is semimodular
and increasing and as in Chapter 7 of Crapo and Rota (1970) we obtain a matroid
Mj whose independent sets are exactly the subsets I of E such that max{/(a) | a
6 7} >\J\ for all non-empty subsets J of /. This paper investigates the class 9lt
of matroids obtained in this way. Firstly, we show that 911 consists exactly of
those matroids, all of whose minors are free or have a unique minimal non-trivial
flat. Secondly, we give an excluded minor characterisation of 911. In obtaining
this we prove 9tt closed under duality. Finally, we show that the members of 9H
are transversal and we use a result of Welsh (1969) to count the members of M.
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(21 Matroids whose ground sets are domains of functions 381

In general, we follow Welsh (1976) for matroid terminology. The ground set of
a matroid M will be denoted by E(M) or just E. If T C E, we shall sometimes
write M\T and M/T for, respectively, the restriction and contraction of M to
E\T. The rank and closure of T in M will be denoted by rk(T) and a(T)
respectively, and the subscript "cont" will be added to distinguish the rank and
closure in a contraction of M. A flat F in M is non-trivial provided F is
dependent. We call F a non-trivial extension of a flat H if H c F and F\H is a
non-trivial flat in M/H; otherwise, F is called a /ree extension of i / . Except where
otherwise stated, if | E \ — n, we will identify E with the set {1 ,2 , . . . , «} in such a
way that if / <j, then/(/) < f(j).

We use the following properties of 91L.

LEMMA 1. For any member A/̂

(i) / = {/,, i2,. • • ,is}, with /', < i2 < • • • < is, is independent in My exactly when
f(ir)>rforallr= 1,2, . . . , s;

(ii) / = {/,, i2,• • -,is), with i, < i2 < • • • < is, is independent in Mf exactly when
| / n {\,2,...,r}\^f(r)forallr= 1,2,...,n;

(iii) C — (c, , c 2 , . . . ,cs}, with c^ < c2< • • • <• cs, is a circuit in Mf exactly when
s - 1 >f(cr)>min{r, s - 1} for all r - 1,2, . . . , s\

(iv)/or each e in a minimal non-trivial flat F in Mf, f{e)< rk (F) .

PROOF, (i) If ir is the maximal element of a subset / of / , then r>\J\ and so, if
f(ir)>r, then max{f(x)\x E J) >\J\. Conversely, if / is independent,
{/„ / 2 , . . . , J , } C /ensures f( i r) > r.

(ii) For any k, let rQ be the minimum r for which {1 ,2 , . . . , r ) n / =
{/,, / j , . . . , ^ } . Then ik = r0 and, if k < / ( r 0 ) , we have / ( i A ) = / ( r 0 ) > ^ and / is
independent by (i). Conversely, if / is independent then, by (i), f(ir) > r>\I D
( l , 2 , . . . , r } | .

(iii) As s — 1 > f(cr) > min{r, 5 — 1 } for all r — 1 ,2 , . . . ,5-, we have
max{/(x) | x G C} = s — 1 and so C is dependent. But any non-empty subset
P C C of size r contains an element c^* cr and so m a x { / ( x ) | x G P} > r.
Hence each proper subset of C is independent. Conversely, if C is a circuit, then
{c,, c 2 , . . . , c r } is independent for r < s and so, by (i), f(cr)>r, but as C is
dependent f{cr) <^f(cs)<s.

(iv) As e is in some circuit C" C F, we have by (iii),/(e) < | C" | — 1 = rk(C') <
rk(F).

2. Characterisation by flats

We denote by 9H' the class of matroids having the property that each minor is
either a free matroid or has a unique minimal non-trivial flat.
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LEMMA 2. Each member M of 911' has a finite chain a( 0 ) = Fo C Fx C • • • C
Fk C E of flats where either Fi+, is the unique minimal non-trivial extension ofFt or
F,+, = E, the latter holding when F, has no non-trivial extensions. Each flat in M is
a direct sum of some F, and a free matroid.

PROOF. Unless M is free it has a unique minimal non-trivial flat. If Fo = a( 0)
is empty we write F, for this minimal non-trivial flat, otherwise it is Fo. Let us
suppose that the chain a( 0 ) — Fo C F, C • • • C Fi exists as required. Then either
there is a unique minimal non-trivial extension Fi+, of Fi or not. If not, either E is
a free extension of F,, or M has two minimal non-trivial extensions H, H' of F,. In
the latter case, since H n H' is a flat in Af, both H\H' and H'\H are
flats in M/(H n // ') . But / / and // ' are non-trivial extensions of F, in Af and
M/(H n //') £ 91L', so there is a unique minimal non-trivial flat of M/(H n # ')
contained in both H\H' and i / ' \ # , contradicting (H\H') n (H'\H) = 0.
Thus we inductively obtain the required chain of flats. For any flat F in M there
is a maximal / < k such that F, C F. Then F is a free extension of F,, that is, a
direct sum of Ft and the free matroid M \ (F\ /].).

We prove 911 D 911' by characterising the circuits of members of 911'. In the
next two results, the flats Fo, F, , . . . ,Fk are as specified in the preceding lemma.

LEMMA 3. For any M G 9R/ //ie circuits contained in F, Z>M/ no/ /« F,_, are exactly
the sets C satisfying | C\= rk(F,) + 1 anJ | C D F .̂|< rk(Fj)for all) < i.

PROOF. Again we proceed by induction. Either Fo = 0 or each element of Fo is
a loop C satisfying | C | = 1 = rk Fo + 1. Now suppose the circuits contained in Fj
but not Fj_, are as prescribed for ally < /'. If C is a circuit contained in F, but not
F,_,, then a(C) is a non-trivial flat, every element of which is in a circuit. From
the previous lemma, a(C) — Fj, for some/ Consequently a(C) = F,, and | C| =
rk(F,) + 1. Fory < /, if C n Ff•=£ C, then C n Fj is independent and so | C n F) \
— rk(C n F,) < r^/J-). Thus every circuit of Af is of the specified form. Con-
versely, suppose C is contained in F, but not F,_,, | C | = rk(F,) + 1 and | C n Fy. |
< r ^ ^ ) for ally < /. As C C F, it is dependent and so contains a circuit C". If
C CF, for some y < / , | C" | = | C n ^1^1 C n F .̂|< rkCF,). Thus \C'\^x\i(FJ)
+ 1, contradicting the proven property of any such circuit. Hence | C |= rk(F,)
+ 1 — | C | , and C = C", a circuit. We have inductively characterised all circuits
contained in some F,. But E is a free extension of Fk and so any circuit in E is also

LEMMA 4. 911D
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PROOF. For M G 911', letting F_, = 0 , we define an appropriate function on
the underlying set E of M as follows:

Jrk(/;) ife ^Fi\Fi_x for some/ >0,
/ (<?) ~ { if e(EE\Fk.

We prove Mf = M by considering the circuits in both. If C is a circuit in M then,
for some / > 0, C C F,, C £ Ft_ „ | C \ = rk(i=;.) + 1 and | C (1 Fj | < rk(/}) for all
y < /. Let C = {c,, c2,... ,Cj} with cl<c2< • • • < cs. Then for all r, /(cr) *s
/ ( c j = Tk(Fj) = | C | - 1 = s - 1. On the other hand, either cr G
.Fj \ JFJ_J, for some j < i. In the first case, f(cr) = rk(.Fj) = j — 1, and in the
second case f(cr) = rk(Fj) > | C n /;, |> r. We conclude that 5 - 1 >/(c r) s=
min{r, s — 1} for all r = 1,2,... ,s and so, by Lemma l(iii), C is a circuit in Mf.
Conversely, if C is a circuit in Mf the above pair of inequalities hold for each
cr E C, and so f(cs) = s - 1 = rk(/;), say. Then for ally <i,C C\ Fj= {cr \f(cr)
^Tk(Fj)} c {cf | r<rk(/ ; . )},giving|Cni=;. |<rk(^).Buti=|C|=rk(i- . )+ 1.
Hence C is a circuit in M.

In view of Lemma 4, to prove 9H' = 9H it suffices to show that 9IL is closed
with respect to taking minors and that each Mf G 9H is a free matroid or has a
unique minimal non-trivial flat.

LEMMA 5. Each Mf G 911 w a free matroid or has a unique minimal non-trivial
flat.

PROOF. Let H and H' be distinct minimal non-trivial flats in Mf with xk{H) <
rk(/f )• For e G H\H', by Lemma l(iv), /(e) < rk(//). For any maximal inde-
pendent subset / of H', I U e is independent. But max{/(x) | x G / U e } ^
max{rk(//'), rk(//)} = rk(//') < | / U e \, contradicting the independence of / U
e. Thus HCH' andH = H'.

LEMMA 6. Any restriction of a member oftyilis also in 911.

PROOF. Clearly if /: E -* Z defines Mf, thenf\T defines Mf\ T.

In order to show 911 closed with respect to taking contractions we prove 9H
closed under duality. We call a function/: £ - > Z a standard function if /(I) = 0
or l , a n d O < / ( r + l ) - / ( r ) < 1 for all r = l , 2 , . . . , n - 1.

LEMMA 1. Any matroid Mf is defined by a standard function.
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PROOF. Define

(r)+ 1 iff(r+ I) >g(r),
0 otherwise, o v ' *' [g(r) otherwise,

for r — 1,2,...,« — 1. Using induction on r, commencing with r0, the least r for
which / ( r ) s* 0, we see that f(r)> g(r). Consequently any independent set
/ = {/,, i2,.. .,is} in Mg has /', > r0 and so f(ir) > g(ir) > r, ensuring / indepen-
dent in Mf. Conversely, suppose / is independent in Mf. Then/(/ ,) > 1 and so if
either /, = 1 or /, > 1 we have g(ix)~^ 1. Assuming g(ir) > r we consider g(ir+l).
Either g(/ r + 1) > g(ir+i - 1) and g(ir+l -l)> g(ir) > r giving g(/ r + 1) s» r + 1,
or g(/ r + 1) = g(ir+\ ~ 1) and / ( / r + 1 ) < g( / r + 1 - 1) giving g(/ r + 1) = / ( / ,+ ,) > r
+ 1. In both cases we have g(ir) s* r for all r = 1,2,... ,s by induction. Conse-
quently / is independent in Mg.

LEMMA 8. (Mf)* is in 9 1 .

PROOF. We may assume / is a standard function. Let m — rk(£). Then
m -f(n). We prove that if/*: £ - » Z is defined by/*(1) - n - m,f*(r+ 1) = n
- m +f(r) - r, for all r= \,2,...,n- 1, then (Mf)* = Mf.. Now let B be an
w-element subset of E. Then it is routine to check that each statement in the
following list is equivalent to its predecessor. The equivalence of (v) and (vi) uses
the fact that / (« ) = m and f*(\) — n — m, and the equivalence of (vi) and (vii)
uses Lemma 1 and the fact that/* is monotonic non-increasing.

(i) B is a base of Mf,
(ii) \B n { l ,2 , . . . , r} | < / ( r ) for all r = 1,2,...,n;
(hi) | 5 n {/•+ l,r + 2,...,n}\>m - f(r) for all r = 1,2,...,«;
(iv) | 5 n { n - r + l , n - r + 2 n } | ^ m - / ( « - r ) for all r - 0, 1,...,«

- 1;
(v) | ( £ \ 5 ) n {AJ - r + 1, « - r + 2, . . . ,«} | < r - w + f(n - r) for all r =

0 , l , . . . , n - 1;
(vi) | ( £ \ B ) n { « - / • + 1, n- r + 2 , . . . ,n} | < / * ( « - r + 1) for all r =

1,2,...,n;
(vii) £ \ B is a base of M~.

LEMMA 9. yl/jj' contraction of a member o/9H « /« 91L.

PROOF. Mf- T=(Mf*\ T)*.

THEOREM 10. 9H = 91L'.
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3. Excluded minor characterisation

We characterise 911', and hence 911, by its excluded minors. For k = 2,3,...,
consider a set E which is the disjoint union of two ^-element subsets Ex and E2

and put 6= {EX,E2} U {C\cj) £ , , C$ E2,C CE, | C | = A: + 1).

LEMMA 11. For each k — 2 , 3 , . . . ,& is the collection of circuits of a matroid Nk on

E.

PROOF. Consider any two distinct members C,, C2 of Q with a common element
e. Then | (C, U C2) \ e \> k + 1 and so (C, U C2) \ e contains a member of S.

LEMMA 12. AT* g 911'.

PROOF. Both Ex and £2 are minimal non-trivial flats.

THEOREM 13. 91L' w //ie c/as.s of matroids having no minor isomorphic to Nk for

PROOF. Suppose that M is not in 911' but every proper minor of M is in 911'.
Then M has two minimal non-trivial flats Ex and E2, say. If E ¥= Ex U E2, choose
e G £ \ ( £ , U £ 2 ) and consider M\e. In this restriction both Ex and E2 are still
minimal non-trivial flats, contradicting the choice of M. Thus E — Ex U E2.

We now show that each of Ex and E2 is a circuit of M. If £ , is not, then M has
a circuit C C £,. Choose e EL EX\C and consider the contraction M/e. Again
Ex\e and E2\e are minimal non-trivial flats in M/e, contradicting our choice of
M. Thus Ex, and similarly £2 , is a circuit of M.

We now prove Ex and E2 are disjoint. If not, choose e E £, n £2 . In M / e both
£, \ e and £2 \ e are flats and circuits, and so are minimal non-trivial flats. Thus
Ex\e = E2\e ensuring Ex — E2, contradicting our initial choice of Ex and E2. So
E = Ex U E2.

Next we prove | Ex \ = | £ 2 1 . Suppose to the contrary that | Ex | < | E2 \, that is,
rk(£,) < rk(£2). Choosing e e E2 we consider the contraction M/e. In this
contraction E2 \ e is a circuit and a flat and so is a minimal non-trivial flat of
M/e. Also acont(£,) = a(Ex U e)\e is a non-trivial flat in M/e. Thus we have
E2\e<Z OaJLEJ. Now r k ^ J ^ x e ) = rk(£2) - 1 > rk(£.) and rkc o n t(£,) -
rk(£, U e) — 1 = rk(£,), since £, is a flat in M. Hence rk c o n , (£ 2 \e) >
rkconl(Ex). Thus E2\e = Ocont(Ex) = a (£ , U e)\e, ensuring that, in M, E2 con-
tains Ex. From this contradiction we can assume | Ex \>\ E2 \ ; similarly \E2\.

Ex | , giving | Ex \ = | E2 \ — k, say, for some k > 1.
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It now remains only to prove that the other circuits in M are exactly the subsets
of E of size k + 1 which contain neither Et nor E2. By supposing that we initially
specified £, as a non-trivial flat of minimal rank in M we deduce that each circuit
in M has at least k elements. Suppose that C is a third circuit of size k in M, then
C n E\ =£ 0 ^ C n £2. Hence a(C) is a minimal non-trivial flat of rank k — 1
in M and £, ¥= a(C). But on proceeding as before with a(C) in place of E2 we
show a(C) n £, = 0 , contradicting C D £, =̂  0 . So each circuit other than £,
or £2 has' at least k + 1 elements. We need only show rk(M) = k to prove all
(k + l)-element subsets of E dependent and the circuits are as specified. Choos-
ing e £ £ 2 and considering the contraction M/e, as above, we have E2\e C
a(E] U e) \e, ensuring E2 C a (£ , U e) and s o £ , U e spans M, giving rk(A/) =
rk(£, U e) = rk(£,) + 1 = A:. Consequently M = Nk, for some k > 1.

In the preceding section it was shown that 91L is closed under restriction,
contraction and duality. It is straightforward to check that, in addition, 911 is
closed under truncation and hence also under elongation. However, 9IL is not
closed under direct sum, for, although all uniform matroids are in 91L, the direct
sum of two uniform matroids each having rank and corank at least one has N2 as
a minor and so is not in 91L We now show that 9H is a sub-class of the class of
transversal matroids.

THEOREM 14. A matroid M is in 91L / / and only if M is the transversal matroid

M[(A,\i £ { l , 2 , . . . , w } ) ] of a family {At\i £ { l , 2 , . . . , m } ) of subsets of a set E

where A, D A2D • • • D Am.

PROOF. If M is transversal having a presentation of the specified type, then
define

[0 i f / £ i 4 , ,

f(j) = i ifjSAt\Ai+x for/ £ ( l , 2 , . . . , m - 1},

[m ifjGAm.

It is routine to check that Mj is equal to M. Conversely, if Mf G 91L, let
/4,- = {y G £ | / ( y ) > / } . Then again one can easily check that Mf is

As 91L is closed under duality, one can use the Ingleton-Piff construction (see,
for example, Welsh (1976), page 221) with the preceding result to obtain a simple
representation of a member of 9H as a strict gammoid. Moreover, if M 3= Mf

where/is a standard function, it is not difficult to show that M* is isomorphic to
the fundamental transversal matroid associated with the cobase B of M* where
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B= {/1,«2,...,/rk(A/)} with f(ij)=j for all j = 1,2,.. . , rk(M). Thus 9 1 is a
sub-class of the class of fundamental transversal matroids.

Welsh (1969) gave a lower bound on the number of transversal matroids on an
n-set S by constructing exactly 2" non-isomorphic transversal matroids on S. It is
straightforward to check that the union over all positive integers n of these sets of
matroids is precisely the class 9lt. Hence, by Theorems 1 and 2 of Welsh (1969),
we have that on an n-set there are precisely 2" non-isomorphic members of 9!t
and of these exactly (") have rank r.
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