MATROIDS WHOSE GROUND SETS ARE DOMAINS OF FUNCTIONS

JAMES OXLEY, KEVIN PRENDERGAST and DON ROW

(Received 13 October 1980)

Communicated by W. D. Wallis

Abstract

From an integer-valued function f we obtain, in a natural way, a matroid M_{f} on the domain of f. We show that the class \mathscr{T} of matroids so obtained is closed under restriction, contraction, duality, truncation and elongation, but not under direct sum. We give an excluded-minor characterization of \mathfrak{T} and show that \mathfrak{R} consists precisely of those transversal matroids with a presentation in which the sets in the presentation are nested. Finally, we show that on an n-set there are exactly 2^{n} members of ケ.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 35.

1. Introduction

From any function $f: E \rightarrow Z$, where E is a finite set and Z is the set of integers, we obtain a function with domain 2^{E} whose value at $A \subseteq E$ is $\max \{f(a) \mid a \in A\}$ if A is non-empty and $\min \{f(a) \mid a \in E\}$ otherwise. This function is semimodular and increasing and as in Chapter 7 of Crapo and Rota (1970) we obtain a matroid M_{f} whose independent sets are exactly the subsets I of E such that $\max \{f(a) \mid a$ $\in J\} \geqslant|J|$ for all non-empty subsets J of I. This paper investigates the class \mathfrak{M} of matroids obtained in this way. Firstly, we show that 9 consists exactly of those matroids, all of whose minors are free or have a unique minimal non-trivial flat. Secondly, we give an excluded minor characterisation of \mathfrak{N}. In obtaining this we prove \mathfrak{N} closed under duality. Finally, we show that the members of \mathfrak{N} are transversal and we use a result of Welsh (1969) to count the members of M.

[^0]In general, we follow Welsh (1976) for matroid terminology. The ground set of a matroid M will be denoted by $E(M)$ or just E. If $T \subseteq E$, we shall sometimes write $M \backslash T$ and M / T for, respectively, the restriction and contraction of M to $E \backslash T$. The rank and closure of T in M will be denoted by $\mathrm{rk}(T)$ and $\sigma(T)$ respectively, and the subscript "cont" will be added to distinguish the rank and closure in a contraction of M. A flat F in M is non-trivial provided F is dependent. We call F a non-trivial extension of a flat H if $H \subseteq F$ and $F \backslash H$ is a non-trivial flat in M / H; otherwise, F is called a free extension of H. Except where otherwise stated, if $|E|=n$, we will identify E with the set $\{1,2, \ldots, n\}$ in such a way that if $i<j$, then $f(i) \leqslant f(j)$.

We use the following properties of \mathfrak{T}.
Lemma 1. For any member M_{f} of \mathfrak{R},
(i) $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$, with $i_{1}<i_{2}<\cdots<i_{s}$, is independent in M_{f} exactly when $f\left(i_{r}\right) \geqslant r$ for all $r=1,2, \ldots, s$;
(ii) $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$, with $i_{1}<i_{2}<\cdots<i_{s}$, is independent in M_{f} exactly when $|I \cap\{1,2, \ldots, r\}| \leqslant f(r)$ for all $r=1,2, \ldots, n$;
(iii) $C=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$, with $c_{1}<c_{2}<\cdots<c_{s}$, is a circuit in M_{f} exactly when $s-1 \geqslant f\left(c_{r}\right) \geqslant \min \{r, s-1\}$ for all $r=1,2, \ldots, s$;
(iv) for each e in a minimal non-trivial flat F in $M_{f}, f(e) \leqslant \operatorname{rk}(F)$.

Proof. (i) If i_{r} is the maximal element of a subset J of I, then $r \geqslant|J|$ and so, if $f\left(i_{r}\right) \geqslant r$, then $\max \{f(x) \mid x \in J\} \geqslant|J|$. Conversely, if I is independent, $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subseteq I$ ensures $f\left(i_{r}\right) \geqslant r$.
(ii) For any k, let r_{0} be the minimum r for which $\{1,2, \ldots, r\} \cap I=$ $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Then $i_{k}=r_{0}$ and, if $k \leqslant f\left(r_{0}\right)$, we have $f\left(i_{k}\right)=f\left(r_{0}\right) \geqslant k$ and I is independent by (i). Conversely, if I is independent then, by (i), $f\left(i_{r}\right) \geqslant r \geqslant \mid I \cap$ $\{1,2, \ldots, r\} \mid$.
(iii) As $s-1 \geqslant f\left(c_{r}\right) \geqslant \min \{r, s-1\}$ for all $r=1,2, \ldots, s$, we have $\max \{f(x) \mid x \in C\}=s-1$ and so C is dependent. But any non-empty subset $P \subset C$ of size r contains an element $c \geqslant c_{r}$ and so $\max \{f(x) \mid x \in P\} \geqslant r$. Hence each proper subset of C is independent. Conversely, if C is a circuit, then $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ is independent for $r<s$ and so, by (i), $f\left(c_{r}\right) \geqslant r$, but as C is dependent $f\left(c_{r}\right) \leqslant f\left(c_{s}\right)<s$.
(iv) As e is in some circuit $C^{\prime} \subseteq F$, we have by (iii), $f(e) \leqslant\left|C^{\prime}\right|-1=\operatorname{rk}\left(C^{\prime}\right) \leqslant$ rk(F).

2. Characterisation by flats

We denote by \mathfrak{K}^{\prime} the class of matroids having the property that each minor is either a free matroid or has a unique minimal non-trivial flat.

Lemma 2. Each member M of \mathbb{R}^{\prime} has a finite chain $\sigma(\varnothing)=F_{0} \subset F_{1} \subset \cdots \subset$ $F_{k} \subseteq E$ of flats where either F_{i+1} is the unique minimal non-trivial extension of F_{i} or $F_{i+1}=E$, the latter holding when F_{i} has no non-trivial extensions. Each flat in M is a direct sum of some F_{i} and a free matroid.

Proof. Unless M is free it has a unique minimal non-trivial flat. If $F_{0}=\sigma(\varnothing)$ is empty we write F_{1} for this minimal non-trivial flat, otherwise it is F_{0}. Let us suppose that the chain $\sigma(\varnothing)=F_{0} \subset F_{1} \subset \cdots \subset F_{i}$ exists as required. Then either there is a unique minimal non-trivial extension F_{i+1} of F_{i} or not. If not, either E is a free extension of F_{i}, or M has two minimal non-trivial extensions H, H^{\prime} of F_{i}. In the latter case, since $H \cap H^{\prime}$ is a flat in M, both $H \backslash H^{\prime}$ and $H^{\prime} \backslash H$ are flats in $M /\left(H \cap H^{\prime}\right)$. But H and H^{\prime} are non-trivial extensions of F_{i} in M and $M /\left(H \cap H^{\prime}\right) \in \mathfrak{M}^{\prime}$, so there is a unique minimal non-trivial flat of $M /\left(H \cap H^{\prime}\right)$ contained in both $H \backslash H^{\prime}$ and $H^{\prime} \backslash H$, contradicting $\left(H \backslash H^{\prime}\right) \cap\left(H^{\prime} \backslash H\right)=\varnothing$. Thus we inductively obtain the required chain of flats. For any flat F in M there is a maximal $i \leqslant k$ such that $F_{i} \subseteq F$. Then F is a free extension of F_{i}, that is, a direct sum of F_{i} and the free matroid $M \mid\left(F \backslash F_{i}\right)$.

We prove $\mathfrak{K} \supseteq \mathfrak{K}^{\prime}$ by characterising the circuits of members of \mathscr{K}^{\prime}. In the next two results, the flats $F_{0}, F_{1}, \ldots, F_{k}$ are as specified in the preceding lemma.

Lemma 3. For any $M \in \mathfrak{M}$ ' the circuits contained in F_{i} but not in F_{i-1} are exactly the sets C satisfying $|C|=\operatorname{rk}\left(F_{i}\right)+1$ and $\left|C \cap F_{j}\right| \leqslant \operatorname{rk}\left(F_{j}\right)$ for all $j<i$.

Proof. Again we proceed by induction. Either $F_{0}=\varnothing$ or each element of F_{0} is a loop C satisfying $|C|=1=\mathrm{rk} F_{0}+1$. Now suppose the circuits contained in F_{j} but not F_{j-1} are as prescribed for all $j<i$. If C is a circuit contained in F_{i} but not F_{i-1}, then $\sigma(C)$ is a non-trivial flat, every element of which is in a circuit. From the previous lemma, $\sigma(C)=F_{j}$, for some j. Consequently $\sigma(C)=F_{i}$, and $|C|=$ $\operatorname{rk}\left(F_{i}\right)+1$. For $j<i$, if $C \cap F_{j} \neq C$, then $C \cap F_{j}$ is independent and so $\left|C \cap F_{j}\right|$ $=\operatorname{rk}\left(C \cap F_{j}\right) \leqslant \operatorname{rk}\left(F_{j}\right)$. Thus every circuit of M is of the specified form. Conversely, suppose C is contained in F_{i} but not $F_{i-1},|C|=\operatorname{rk}\left(F_{i}\right)+1$ and $\left|C \cap F_{j}\right|$ $\leqslant \operatorname{rk}\left(F_{j}\right)$ for all $j<i$. As $C \subseteq F_{i}$ it is dependent and so contains a circuit C^{\prime}. If $C^{\prime} \subseteq F_{j}$ for some $j<i,\left|C^{\prime}\right|=\left|C^{\prime} \cap F_{j}\right| \leqslant\left|C \cap F_{j}\right| \leqslant \operatorname{rk}\left(F_{j}\right)$. Thus $\left|C^{\prime}\right| \neq \operatorname{rk}\left(F_{j}\right)$ +1 , contradicting the proven property of any such circuit. Hence $\left|C^{\prime}\right|=\operatorname{rk}\left(F_{i}\right)$ $+1=|C|$, and $C=C^{\prime}$, a circuit. We have inductively characterised all circuits contained in some F_{i}. But E is a free extension of F_{k} and so any circuit in E is also in F_{k}.

Lemma 4. $\mathfrak{K} \supseteq \mathfrak{M}^{\prime}$.

Proof. For $M \in \pi^{\prime}$, letting $F_{-1}=\varnothing$, we define an appropriate function on the underlying set E of M as follows:

$$
f(e)= \begin{cases}\operatorname{rk}\left(F_{i}\right) & \text { if } e \in F_{i} \backslash F_{i-1} \text { for some } i \geqslant 0 \\ \operatorname{rk}(E) & \text { if } e \in E \backslash F_{k}\end{cases}
$$

We prove $M_{f}=M$ by considering the circuits in both. If C is a circuit in M then, for some $i \geqslant 0, C \subseteq F_{i}, C \nsubseteq F_{i-1},|C|=\operatorname{rk}\left(F_{i}\right)+1$ and $\left|C \cap F_{j}\right| \leqslant \operatorname{rk}\left(F_{j}\right)$ for all $j<i$. Let $C=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ with $c_{1}<c_{2}<\cdots<c_{s}$. Then for all $r, f\left(c_{r}\right) \leqslant$ $f\left(c_{s}\right)=\operatorname{rk}\left(F_{i}\right)=|C|-1=s-1$. On the other hand, either $c_{r} \in$ $F_{i} \backslash F_{i-1}$, for some $j<i$. In the first case, $f\left(c_{r}\right)=\operatorname{rk}\left(F_{i}\right)=s-1$, and in the second case $f\left(c_{r}\right)=\operatorname{rk}\left(F_{j}\right) \geqslant\left|C \cap F_{j}\right| \geqslant r$. We conclude that $s-1 \geqslant f\left(c_{r}\right) \geqslant$ $\min \{r, s-1\}$ for all $r=1,2, \ldots, s$ and so, by Lemma 1 (iii), C is a circuit in M_{f}. Conversely, if C is a circuit in M_{f} the above pair of inequalities hold for each $c_{r} \in C$, and so $f\left(c_{s}\right)=s-1=\operatorname{rk}\left(F_{i}\right)$, say. Then for all $j<i, C \cap F_{j}=\left\{c_{r} \mid f\left(c_{r}\right)\right.$ $\left.\leqslant \operatorname{rk}\left(F_{j}\right)\right\} \subseteq\left\{c_{r} \mid r \leqslant \operatorname{rk}\left(F_{j}\right)\right\}$, giving $\left|C \cap F_{j}\right| \leqslant \operatorname{rk}\left(F_{j}\right)$. But $s=|C|=\operatorname{rk}\left(F_{i}\right)+1$. Hence C is a circuit in M.

In view of Lemma 4 , to prove $\mathscr{R}^{\prime}=\mathfrak{R}$ it suffices to show that \mathfrak{R} is closed with respect to taking minors and that each $M_{f} \in \mathfrak{N}$ is a free matroid or has a unique minimal non-trivial flat.

Lemma 5. Each $M_{f} \in \mathscr{R}$ is a free matroid or has a unique minimal non-trivial flat.

Proof. Let H and H^{\prime} be distinct minimal non-trivial flats in M_{f} with $\operatorname{rk}(H) \leqslant$ $\operatorname{rk}\left(H^{\prime}\right)$. For $e \in H \backslash H^{\prime}$, by Lemma l(iv), $f(e) \leqslant \operatorname{rk}(H)$. For any maximal independent subset I of $H^{\prime}, I \cup e$ is independent. But $\max \{f(x) \mid x \in I \cup e\} \leqslant$ $\max \left\{\operatorname{rk}\left(H^{\prime}\right), \operatorname{rk}(H)\right\}=\operatorname{rk}\left(H^{\prime}\right)<|I \cup e|$, contradicting the independence of $I \cup$ e. Thus $H \subseteq H^{\prime}$ and $H=H^{\prime}$.

Lemma 6. Any restriction of a member of \mathfrak{N} is also in \mathfrak{N}.

Proof. Clearly if $f: E \rightarrow Z$ defines M_{f}, then $\left.f\right|_{T}$ defines $M_{f} \mid T$.

In order to show \mathfrak{R} closed with respect to taking contractions we prove \mathfrak{N} closed under duality. We call a function $f: E \rightarrow Z$ a standard function if $f(1)=0$ or 1 , and $0 \leqslant f(r+1)-f(r) \leqslant 1$ for all $r=1,2, \ldots, n-1$.

Lemma 7. Any matroid M_{f} is defined by a standard function.

Proof. Define

$$
g(1)=\left\{\begin{array}{ll}
1 & \text { if } f(1) \geqslant 1, \\
0 & \text { otherwise },
\end{array} \quad g(r+1)= \begin{cases}g(r)+1 & \text { if } f(r+1)>g(r) \\
g(r) & \text { otherwise }\end{cases}\right.
$$

for $r=1,2, \ldots, n-1$. Using induction on r, commencing with r_{0}, the least r for which $f(r) \geqslant 0$, we see that $f(r) \geqslant g(r)$. Consequently any independent set $I=\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ in M_{g} has $i_{1} \geqslant r_{0}$ and so $f\left(i_{r}\right) \geqslant g\left(i_{r}\right) \geqslant r$, ensuring I independent in M_{f}. Conversely, suppose I is independent in M_{f}. Then $f\left(i_{1}\right) \geqslant 1$ and so if either $i_{1}=1$ or $i_{1}>1$ we have $g\left(i_{1}\right) \geqslant 1$. Assuming $g\left(i_{r}\right) \geqslant r$ we consider $g\left(i_{r+1}\right)$. Either $g\left(i_{r+1}\right)>g\left(i_{r+1}-1\right)$ and $g\left(i_{r+1}-1\right) \geqslant g\left(i_{r}\right) \geqslant r$ giving $g\left(i_{r+1}\right) \geqslant r+1$, or $g\left(i_{r+1}\right)=g\left(i_{r+1}-1\right)$ and $f\left(i_{r+1}\right) \leqslant g\left(i_{r+1}-1\right)$ giving $g\left(i_{r+1}\right)=f\left(i_{r+1}\right) \geqslant r$ + l. In both cases we have $g\left(i_{r}\right) \geqslant r$ for all $r=1,2, \ldots, s$ by induction. Consequently I is independent in M_{g}.

Lemma 8. $\left(M_{f}\right)^{*}$ is in \mathfrak{R}.

Proof. We may assume f is a standard function. Let $m=\operatorname{rk}(E)$. Then $m=f(n)$. We prove that if $f^{*}: E \rightarrow Z$ is defined by $f^{*}(1)=n-m, f^{*}(r+1)=n$ $-m+f(r)-r$, for all $r=1,2, \ldots, n-1$, then $\left(M_{f}\right)^{*}=M_{f^{*}}$. Now let B be an m-element subset of E. Then it is routine to check that each statement in the following list is equivalent to its predecessor. The equivalence of (v) and (vi) uses the fact that $f(n)=m$ and $f^{*}(1)=n-m$, and the equivalence of (vi) and (vii) uses Lemma 1 and the fact that f^{*} is monotonic non-increasing.
(i) B is a base of M_{f};
(ii) $|B \cap\{1,2, \ldots, r\}| \leqslant f(r)$ for all $r=1,2, \ldots, n$;
(iii) $|B \cap\{r+1, r+2, \ldots, n\}| \geqslant m-f(r)$ for all $r=1,2, \ldots, n$;
(iv) $|B \cap\{n-r+1, n-r+2, \ldots, n\}| \geqslant m-f(n-r)$ for all $r=0,1, \ldots, n$ - 1 ;
(v) $|(E \backslash B) \cap\{n-r+1, n-r+2, \ldots, n\}| \leqslant r-m+f(n-r)$ for all $r=$ $0,1, \ldots, n-1$;
(vi) $|(E \backslash B) \cap\{n-r+1, n-r+2, \ldots, n\}| \leqslant f^{*}(n-r+1)$ for all $r=$ $1,2, \ldots, n$;
(vii) $E \backslash B$ is a base of $M_{f^{*}}$.

Lemma 9. Any contraction of a member of \mathfrak{N} is in \mathfrak{N}.
Proof. $M_{f} \cdot T=\left(M_{f}{ }^{*} \mid T\right)^{*}$.
Theorem 10. $\mathfrak{M}=\mathrm{R}^{\prime}$.

3. Excluded minor characterisation

We characterise \mathscr{R}^{\prime}, and hence \mathfrak{R}, by its excluded minors. For $k=2,3, \ldots$, consider a set E which is the disjoint union of two k-element subsets E_{1} and E_{2} and put $\mathcal{C}=\left\{E_{1}, E_{2}\right\} \cup\left\{C\left|C \not \supset E_{1}, C \not \supset E_{2}, C \subset E,|C|=k+1\right\}\right.$.

Lemma 11. For each $k=2,3, \ldots$, e is the collection of circuits of a matroid N^{k} on E.

Proof. Consider any two distinct members C_{1}, C_{2} of \mathcal{C} with a common element e. Then $\left|\left(C_{1} \cup C_{2}\right) \backslash e\right| \geqslant k+1$ and so $\left(C_{1} \cup C_{2}\right) \backslash e$ contains a member of C.

Lemma 12. $N^{k} \notin \mathfrak{N}^{\prime}$.

Proof. Both E_{1} and E_{2} are minimal non-trivial flats.

Theorem 13. \mathfrak{N}^{\prime} is the class of matroids having no minor isomorphic to N^{k} for $k=2,3, \ldots$.

Proof. Suppose that M is not in \mathscr{N}^{\prime} but every proper minor of M is in \mathscr{N}^{\prime}. Then M has two minimal non-trivial flats E_{1} and E_{2}, say. If $E \neq E_{1} \cup E_{2}$, choose $e \in E \backslash\left(E_{1} \cup E_{2}\right)$ and consider $M \backslash e$. In this restriction both E_{1} and E_{2} are still minimal non-trivial flats, contradicting the choice of M. Thus $E=E_{1} \cup E_{2}$.

We now show that each of E_{1} and E_{2} is a circuit of M. If E_{1} is not, then M has a circuit $C \subset E_{1}$. Choose $e \in E_{1} \backslash C$ and consider the contraction M / e. Again $E_{1} \backslash e$ and $E_{2} \backslash e$ are minimal non-trivial flats in M / e, contradicting our choice of M. Thus E_{1}, and similarly E_{2}, is a circuit of M.

We now prove E_{1} and E_{2} are disjoint. If not, choose $e \in E_{1} \cap E_{2}$. In M / e both $E_{1} \backslash e$ and $E_{2} \backslash e$ are flats and circuits, and so are minimal non-trivial flats. Thus $E_{1} \backslash e=E_{2} \backslash e$ ensuring $E_{1}=E_{2}$, contradicting our initial choice of E_{1} and E_{2}. So $E=E_{1} \cup E_{2}$.

Next we prove $\left|E_{1}\right|=\left|E_{2}\right|$. Suppose to the contrary that $\left|E_{1}\right|<\left|E_{2}\right|$, that is, $\operatorname{rk}\left(E_{1}\right)<\operatorname{rk}\left(E_{2}\right)$. Choosing $e \in E_{2}$ we consider the contraction M / e. In this contraction $E_{2} \backslash e$ is a circuit and a flat and so is a minimal non-trivial flat of M / e. Also $\sigma_{\text {cont }}\left(E_{1}\right)=\sigma\left(E_{1} \cup e\right) \backslash e$ is a non-trivial flat in M / e. Thus we have $E_{2} \backslash e \subseteq \sigma_{\text {cont }}\left(E_{1}\right)$. Now $\mathrm{rk}_{\text {cont }}\left(E_{2} \backslash e\right)=\operatorname{rk}\left(E_{2}\right)-1 \geqslant \mathrm{rk}\left(E_{1}\right)$ and $\mathrm{rk}_{\text {cont }}\left(E_{1}\right)=$ $\mathrm{rk}\left(E_{1} \cup e\right)-1=\mathrm{rk}\left(E_{1}\right)$, since E_{1} is a flat in M. Hence $\mathrm{rk}_{\text {cont }}\left(E_{2} \backslash e\right) \geqslant$ $\mathrm{rk}_{\text {cont }}\left(E_{1}\right)$. Thus $E_{2} \backslash e=\sigma_{\text {cont }}\left(E_{1}\right)=\sigma\left(E_{1} \cup e\right) \backslash e$, ensuring that, in M, E_{2} contains E_{1}. From this contradiction we can assume $\left|E_{1}\right| \geqslant\left|E_{2}\right|$; similarly $\left|E_{2}\right| \geqslant \mid$ $E_{1} \mid$, giving $\left|E_{1}\right|=\left|E_{2}\right|=k$, say, for some $k>1$.

It now remains only to prove that the other circuits in M are exactly the subsets of E of size $k+1$ which contain neither E_{1} nor E_{2}. By supposing that we initially specified E_{1} as a non-trivial flat of minimal rank in M we deduce that each circuit in M has at least k elements. Suppose that C is a third circuit of size k in M, then $C \cap E_{1} \neq \varnothing \neq C \cap E_{2}$. Hence $\sigma(C)$ is a minimal non-trivial flat of rank $k-1$ in M and $E_{1} \neq \sigma(C)$. But on proceeding as before with $\sigma(C)$ in place of E_{2} we show $\sigma(C) \cap E_{1}=\varnothing$, contradicting $C \cap E_{1} \neq \varnothing$. So each circuit other than E_{1} or E_{2} has at least $k+1$ elements. We need only show $\operatorname{rk}(M)=k$ to prove all ($k+1$)-element subsets of E dependent and the circuits are as specified. Choosing $e \in E_{2}$ and considering the contraction M / e, as above, we have $E_{2} \backslash e \subseteq$ $\sigma\left(E_{1} \cup e\right) \backslash e$, ensuring $E_{2} \subseteq \sigma\left(E_{1} \cup e\right)$ and so $E_{1} \cup e$ spans M, $\operatorname{giving} \operatorname{rk}(M)=$ $\operatorname{rk}\left(E_{1} \cup e\right)=\operatorname{rk}\left(E_{1}\right)+1=k$. Consequently $M=N^{k}$, for some $k>1$.

In the preceding section it was shown that \mathfrak{R} is closed under restriction, contraction and duality. It is straightforward to check that, in addition, \mathfrak{N} is closed under truncation and hence also under elongation. However, \mathscr{R} is not closed under direct sum, for, although all uniform matroids are in \mathfrak{N}, the direct sum of two uniform matroids each having rank and corank at least one has N^{2} as a minor and so is not in \mathfrak{N}. We now show that \mathfrak{R} is a sub-class of the class of transversal matroids.

Theorem 14. A matroid M is in \mathfrak{T} if and only if M is the transversal matroid $M\left[\left(A_{i} \mid i \in\{1,2, \ldots, m\}\right)\right]$ of a family $\left(A_{i} \mid i \in\{1,2, \ldots, m\}\right)$ of subsets of a set E where $A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{m}$.

Proof. If M is transversal having a presentation of the specified type, then define

$$
f(j)= \begin{cases}0 & \text { if } j \notin A_{1}, \\ i & \text { if } j \in A_{i} \backslash A_{i+1} \\ m & \text { if } j \in A_{m} .\end{cases}
$$

It is routine to check that M_{f} is equal to M. Conversely, if $M_{f} \in \mathscr{R}$, let $A_{i}=\{j \in E \mid f(j) \geqslant i\}$. Then again one can easily check that M_{f} is $M\left[\left(A_{i} \mid i \in\{1,2, \ldots, \operatorname{rk}(M)\}\right)\right]$.

As \mathscr{R} is closed under duality, one can use the Ingleton-Piff construction (see, for example, Welsh (1976), page 221) with the preceding result to obtain a simple representation of a member of $\mathfrak{T K}$ as a strict gammoid. Moreover, if $M \cong M_{f}$ where f is a standard function, it is not difficult to show that M^{*} is isomorphic to the fundamental transversal matroid associated with the cobase B of M^{*} where
$B=\left\{i_{1}, i_{2}, \ldots, i_{\mathrm{rk}(M)}\right\}$ with $f\left(i_{j}\right)=j$ for all $j=1,2, \ldots, \operatorname{rk}(M)$. Thus \mathfrak{M} is a sub-class of the class of fundamental transversal matroids.

Welsh (1969) gave a lower bound on the number of transversal matroids on an n-set S by constructing exactly 2^{n} non-isomorphic transversal matroids on S. It is straightforward to check that the union over all positive integers n of these sets of matroids is precisely the class \mathfrak{N}. Hence, by Theorems 1 and 2 of Welsh (1969), we have that on an n-set there are precisely 2^{n} non-isomorphic members of 9π and of these exactly $\binom{n}{r}$ have rank r.

References

H. H. Crapo and G.-C. Rota (1970), On the foundations of combinatorial theory: combinatorial geometries (M.I.T. Press, Cambridge, Massachusetts).
D. J. A. Welsh (1969), 'A bound for the number of matroids', J. Combinatorial Theory 6, 313-316.
D. J. A. Welsh (1976), Matroid theory (Academic Press, London).

Mathematics Department, IAS
Australian National University
Hydro Electric Commission

Canberra
Hobart
Australia

Mathematics Department
University of Tasmania
Hobart
Australia

[^0]: ©Copyright Australian Mathematical Society 1982

