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Static solutions

In this chapter a study of static solutions to the vacuum Einstein field equations

from the point of view of conformal methods is undertaken. Static and, more

generally, stationary solutions provide valuable physical and mathematical

intuition concerning the behaviour of solutions to the Einstein field equations.

Static solutions describe the exterior region of time-independent, non-rotating,

isolated bodies. Accordingly, they provide an interesting class of solutions to

analyse the structure of spatial infinity; see Chapter 20. In addition, some

particular static solutions (the Schwarzschild spacetime) are expected to describe

the asymptotic state of the evolution dictated by the Einstein field equations.

From a mathematical point of view, the results discussed in this chapter are

of particular interest as they lie at the interface of classical potential theory,

conformal geometry and general relativity. Throughout this chapter, the focus is

restricted to the asymptotic region of an asymptotically flat static spacetime.

Several of the key results for static spacetimes admit a suitable stationary

counterpart; the interested reader is referred to the literature for further details.

These generalisations of the theory are much more technically involved than the

original static version and they will not be considered here.

19.1 The static field equations

For a static spacetime it will be understood a solution to the Einstein field

equations Ric[g̃] = 0 endowed with a hypersurface orthogonal Killing vector ξ

which, in a suitable asymptotic region, is timelike. Using coordinates (t, y) =

(t, yα) adapted to this Killing vector, one has that ξ = ∂t. As ξ is hypersurface

orthogonal, then there exists a function v = v(y) such that

ξ� = g̃(ξ, ·) = v2dt.

Thus, v2 = g̃(∂t,∂t) is the square of the norm of ξ. It follows that the

hypersurfaces of constant coordinate t define a foliation of the spacetime. In what
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follows, it will be convenient to consider a frame {ea} adapted to the static

Killing vector and set e0 to be parallel to ξ; that is, one has ξ = ve0. The

spatial part of the frame, {ei}, spans the tangent bundle of the hypersurfaces

of constant t. Without loss of generality, the spatial frame can be parallely

propagated along the direction of e0 so that using the definition of the connection

coefficients one has that Γ̃0
a
i = 0. Let {ωa} be the associated coframe. One

readily finds that ω0 = vdt. It follows from this discussion that the metric g̃

takes the form

g̃ = v2dt⊗ dt+ h̃, v = v(y) > 0, h̃ = h̃αβ(y)dy
α ⊗ dyβ , (19.1)

where h̃ denotes a (negative definite) Lorentzian metric on the hypersurfaces of

constant time coordinate.

Derivation of the static equations

The equations satisfied by the fields v and h̃ appearing in the metric (19.1) can

be deduced using the frame formalism introduced in the previous paragraphs.

Observing that ξ0 ≡ 〈ξ�, e0〉 = v one concludes that ξa = vδa
0. It follows that

the Killing equation

∇̃aξb + ∇̃bξa = 0

takes the form (
∇̃avδb

0 + ∇̃bvδa
0
)
+ v
(
Γ̃a

0
b + Γ̃b

0
a

)
= 0.

As v is time independent, one concludes from setting a, b = 0 that Γ̃0
0
0 = 0.

Setting a = i and b = j one finds that Γ̃i
0
j+Γ̃j

0
i = 0 so that from the definition

of the extrinsic curvature, Equation (2.45), one concludes that Kij = 0; that

is, the surfaces of constant coordinate t are time symmetric. Accordingly, the

Einstein constraint Equations (11.13a) and (11.13b) reduce to the condition

r[h̃] = 0. (19.2)

A further condition can be obtained from the equation

∇̃0

(
∇̃aξb + ∇̃bξa

)
= 0.

Commuting covariant derivatives and using that the Killing equation implies

∇̃0ξb = −∇̃bξ0 = −∇̃bv

one finds that

∇̃a∇̃bv + vR̃0a0b = 0.

From the last equation, using the Gauss-Codazzi identity, Equation (2.47), one

concludes that

∇̃i∇̃jv = vr̃ij (19.3)
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506 Static solutions

where rij denotes the components with respect to {ei} of the Ricci tensor of the

3-metric h̃.

Equations (19.2) and (19.3) provide the required static Einstein field

equations for the fields v and h̃. After some further slight manipulations they

can be rewritten in tensorial form as

Δh̃v = 0, (19.4a)

r̃ij =
1

v
D̃iD̃jv, (19.4b)

where D̃i and r̃ij denote, respectively, the Levi-Civita connection and the Ricci

tensor of the 3-metric h̃. In what follows, a pair (v, h̃) solving the static

equations (19.4a) and (19.4b) will be called a static solution. A static

solution, expressed in terms of h̃-harmonic coordinates is analytic; see Müller

zu Hagen (1970).

Observe that discarding the field v, a solution to the static equations gives rise

to a solution to the time-symmetric Einstein constraints. This dual perspective of

static solutions as a spacetime and as time-symmetric initial data for a spacetime

will be used often. The context will dictate the appropriate point of view.

Equations (19.4a) and (19.4b) can be regarded as a three-dimensional analogue

of the Einstein field equations in which the curvature is coupled to a fictitious

matter field described by v. This interpretation also holds for other symmetry

reductions of the vacuum Einstein field equations, say, axial symmetry; see, for

example, Geroch (1971a, 1972a).

Asymptotic conditions and the Licnerowicz theorem

Of special interest are static solutions describing the asymptotic region of isolated

systems. For simplicity, it will be assumed that S̃ has a single asymptotic region

in which coordinates y = (yα) can be found such that

v = 1− m

|y| +Ok(|y|−(1+ε)), (19.5a)

h̃αβ = −
(
1 +

2m

|y|

)
δαβ +Ok(|y|−(1+ε)), (19.5b)

as |y| → ∞ where m �= 0 denotes the Arnowitt-Deser-Miser (ADM) mass and

ε > 0. The notation Ok has been described in the Appendix to Chapter 11.

The above decay conditions can be deduced from more primitive assumptions

which make no reference to asymptotic flatness; see Reiris (2014a,b). In order

to describe an isolated system – say, the exterior of a star – Equations (19.4a)

and (19.4b) need to be supplemented with suitable boundary conditions at an

interior boundary ∂S̃ – say, the surface of a star. An analysis of this type has

been carried out by Reula (1989) and Miao (2003). The role played by boundary

conditions in the determination of static solutions is nicely exhibited in the case
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where S̃ ≈ R3. In this case, it follows from Equation (19.4a) by integration by

parts that

0 =

∫
S̃
vΔh̃vdμ = −

∫
S̃
D̃ivD̃ivdμ,

so that D̃iv = 0 on S̃. This implies that v has to be constant on S̃. Moreover,

using (19.5a) one concludes that v = 1. Substituting into Equation (19.4a) one

finds that r̃ij = 0 so that h̃ must be flat – recall that in three dimensions

the curvature is fully determined by the Ricci tensor. Consequently, in order to

have static solutions other than the Minkowski solution one needs hypersurfaces

S̃ with a non-trivial topology or with some inner boundary ∂S̃. This result is

usually known as Licnerowicz’s theorem.

19.1.1 The conformal static field equations

In the remainder of this chapter, the discussion of static solutions will be

restricted to a suitable asymptotic region where the decay conditions (19.5a)

and (19.5b) hold. Accordingly, it is convenient to make use of the definition of

asymptotically Euclidean and regular manifolds given in Section 11.6.2. Hence,

one considers a function Ω on S ≡ S̃ ∪ {i} with Ω ∈ C2(S̃) ∩ C∞(S̃), Ω > 0 on

S̃ which conformally extends h̃ to a smooth metric

h ≡ Ω2h̃ on S,

in such a way that

Ω = 0, DiΩ = 0, DiDjΩ = −2hij , at i. (19.6)

In order to exploit the above conformal setting, it is convenient to rewrite

the static Equations (19.4a) and (19.4b) in terms of fields satisfying regular

equations in a neighbourhood of i. The procedure of constructing a system of

regular conformal static equations is similar in spirit to the one carried out

in Chapter 8 to obtain the conformal field equations. The key idea is to identify

quantities which in the conformally rescaled picture are both suitably regular and

which satisfy equations that are formally regular at i. In this spirit, the equation

obtained from combining the static Equation (19.4b) with the transformation

law of the three-dimensional Ricci tensor, Equation (5.16a), should be read not

as a differential condition for the components of a conformally rescaled metric

but rather as differential equations involving second derivatives of a quantity

associated to the conformal factor. Similar considerations need to be taken into

account when attempting to construct a conformal equation for the scalar field v.

Using the transformation law for the Yamabe operator, Equation (11.23), one

obtains (
Δh − 1

8
r[h]

)(
Ω−1/2v

)
= 0.
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This equation is formally singular at i unless it is possible to tie the behaviour

of Ω with that of v. Alternatively, one could try to find a regular equation for a

quantity which indirectly allows one to gain knowledge about v. These ideas are

explored in the following subsections.

Fixing the conformal gauge

The standard approach to obtain a set of regular conformal static field equations

relies on a specific choice of conformal gauge which explicitly prescribes the

conformal factor Ω in terms of the norm of the static Killing vector v; see,

for example, Beig and Simon (1980a) and Friedrich (1988, 2004, 2007). In the

following, the approach taken in the last two references will be followed. A general

version of the conformal static equations which retains the whole conformal

freedom has been given in Friedrich (2013).

It can be verified that the conditions (19.6) expressed in terms of physical

coordinates y = (yα) require Ω to behave like 1/|y|2 as |y| → 0. This observation

suggests, in turn, considering a conformal factor of the form

Ω =

(
1− v

m

)2

. (19.7)

As will be seen in Section 19.2, this is not the only possible way of fixing the

conformal freedom. The choice in Equation (19.7) fixes the value of the Ricci

scalar of the conformal metric h. This can be seen from the transformation law

of the Yamabe operator, Equation (11.23), by setting u = Ω1/2 and making the

replacements φ �→ Ω1/2, h′ �→ h, h �→ h̃ so that, on the one hand, one has

Lh[1] = Ω−5/2Lh̃

(
1− v

m

)
= − 1

m
Ω−5/2Δh̃v = 0,

while, on the other hand,

Lh[1] =

(
Δh − 1

8
r[h]

)
[1] = −1

8
r[h].

Hence, one concludes that r[h] = 0.

A decomposition of the conformal factor

Following the general discussion of Section 11.6.3, one has that the conformal

factor Ω satisfies (
Δh − 1

8
r[h]

)(
Ω−1/2

)
= 0, on S̃,

and |x|Ω−1/2 → 1 as |x| → 0. Here, and in what follows, let x = (xα) denote

some coordinates in a neighbourhood U ⊂ S with xα(i) = 0. Close to i one has

the representation

Ω−1/2 = ζ−1/2 +W, (19.8)
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with ζ, W smooth – confront this decomposition with the discussion in Section

11.6.4. In particular, one has(
Δh − 1

8
r[h]

)
W = 0, W (i) =

m

2
, (19.9)

and (
Δh − 1

8
r[h]

)
(ζ−1/2) = 4πδ[i]. (19.10)

From this last equation it follows that

ζ(i) = 0, Diζ(i) = 0, DiDjζ(i) = −2hij(i). (19.11)

One has that ζ is essentially the Green function of the Yamabe operator

and describes the local geometry in a neighbourhood of i, while W encodes

information of a global nature – in particular, its ADM mass m. Accordingly,

the functions ζ and W will be called, respectively, the massless part and mass

part of the conformal factor Ω. Given a conformal metric h, the decomposition

(19.8) is unique. Moreover, using the so-called Hadamard’s parametrix

construction, it can be shown that ζ and W are analytic if h is analytic;

see Friedrich (1998c, 2004) for further details about this last statement and

Garabedian (1986) for the underlying PDE theory. In particular, for the choice

of the conformal factor (19.7) it follows that the parametrisation (19.8) takes the

form

ζ =
1

μ

(
1− v

1 + v

)2

, W =
m

2
, μ ≡ m2

4
. (19.12)

It can be verified that the function ζ satisfies the asymptotic conditions (19.11)

and that W is, indeed, a solution of Equation (19.9).

Using the chain rule to rewrite Equation (19.10) as an equation for Δhζ and

taking into account the asymptotic conditions (19.11), one finds that

2ζς = DiζD
iζ, with ς ≡ 1

3
Δhζ, (19.13)

which is a regular equation in a suitable neighbourhood of i. In particular,

it can be verified that ς(i) = −2. Equation (19.13) is the analogue of the

conformal Einstein field Equation (8.24). It encodes a regularised version of the

transformation equation for the Ricci scalar. As will be seen in the following,

it can be interpreted as a constraint which is automatically satisfied if other

equations hold.

Equations for the curvature

To exploit the fact that one is working with a gauge for which r[h] = 0, it is

convenient to introduce an h-tracefree tensor sij such that

rij [h] = sij .
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510 Static solutions

Recalling that in three dimensions the Riemann curvature tensor rijkl is fully

determined by the Ricci tensor, it is then natural to interpret the tensors

rij and sij as describing, respectively, the geometric and algebraic three-

dimensional curvatures; see Section 8.3.1 for further discussion on these

notions in the context of the conformal Einstein field equations. If the zero

quantity

Ξij ≡ rij [h]− sij

vanishes, then the three-dimensional (contracted) Bianchi identity takes the form

Disij = 0. (19.14)

The fields ζ, ς and sij can be used to obtain a regular version of the formally

singular transformation law for the Ricci tensor; see Equation (5.16a). Rewriting

derivatives of the conformal factor Ω as derivatives of ζ one obtains

Sij ≡ DiDjζ − ςhij + ζ(1− μζ)sij = 0. (19.15)

Equation (19.15) will be read as a differential equation for ζ. To close the system

one needs differential equations for ς and sij . Suitable equations can be obtained

from the integrability conditions

DiSij = 0, D[kSi]j +
1

2
DlSl[khi]j = 0, (19.16)

encoding the three-dimensional second Bianchi identity in contracted and

uncontracted form, respectively. The identities (19.16) can be verified through a

direct computation and introducing the zero quantities

Si ≡ Diς + (1− μζ)sijD
jζ = 0,

Hkij ≡ (1− μζ)D[ksi]j − μ
(
2D[kζsi]j +Dlζhl[ksi]j

)
.

It follows from a further computation that Si = 0 and Hkij = 0 are equivalent

to the integrability conditions (19.16). The condition Hkij = 0 can be read as

an expression for the Cotton tensor

bjki ≡ D[kri]j −
1

4
D[krhi]j = 2D[kli]j ,

where lij denotes the three-dimensional Schouten tensor. In the remainder of

this chapter it is often more convenient to work with the dualised version of bjki,

bij ≡ 1
2biklεj

kl. A computation shows that

bij =
μ

1− μζ

(
sliεj

klDkζ −
1

2
slmεji

lDmζ

)
.
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19.1 The static field equations 511

Summary: the conformal static equations

In what follows, the conditions

Ξij = 0, Si = 0, Sij = 0, Hkij = 0 (19.17)

will be known as the conformal static equations. They provide an overdeter-

mined system of differential conditions for the fields hij , sij , ζ and ς. As will be

seen, the equations in (19.17) imply an elliptic system for the components of the

various conformal fields.

Remark. A direct computation yields the identity

Di

(
2ζς −DkζD

kς
)
= 2ζSi − 2SikD

kζ.

Thus, if Si = 0 and Sij = 0, then 2ζς − DkζD
kς is a constant. Evaluating at

i and using the known values of the various fields at this point, one concludes

that the expression in brackets must vanish. This argument shows that Equation

(19.13) plays the role of a constraint. Hence, it has not been included in the list

(19.17).

19.1.2 Spinorial version of the equations

To write the spinorial version of the conformal static equations, let sABCD =

s(ABCD) denote the spinorial counterpart of the trace-free tensor sij . The Bianchi

identity (19.14) takes the form

DABsABCD = 0.

In terms of the spinor sABCD the equation Hkij = 0 takes, after exploiting the

antisymmetry in the pair ki, the simple form

DA
QsBCDQ =

2μ

1− μζ
sQ(ABCDD)

Qζ. (19.18)

The spinorial transcription of equations Si = 0 and Sij = 0 is completely

direct. When working with spinors, the equation rij = sij is replaced by the

Cartan structure equations, Equations (2.41) and (2.42), for the 3-geometry with

an algebraic 3-curvature given by sij . These structure equations provide,

respectively, differential conditions for the coefficients of a frame and for the

associated spin connection coefficients; see, for example, Friedrich (2007). It will

often be convenient to express the various spinorial fields and the associated

equations in terms of their components (e.g. sABCD) with respect to some spin

dyad {εAA}.
For later use, let bABCDEF denote the spinorial counterpart of the Cotton

tensor bijk. Exploiting the antisymmetry in the indices jk, one obtains the

decomposition

bABCDEF = bABCEεDF + bABDF εCE , bABCD ≡ DQ
(AsBCD)Q. (19.19)
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Consequently, one has the symmetry bABCD = b(ABCD). Moreover, it can be

verified that

DABbABCD = 0.

In what follows, bABCD will be referred to as the Cotton spinor.

19.2 Analyticity at infinity

The conformal static Equations (19.17) allow one to show that, under some basic

regularity assumptions, there exist coordinates in a neighbourhood of the point

at infinity for which all the conformal fields are analytic. This result brings to the

forefront the inherent ellipticity of the equations and constitutes the foundation

of any further analysis of static solutions from a conformal perspective. The

result was originally proven by Beig and Simon (1980a). In the following, an

adaptation of this result will be given. One has:

Theorem 19.1 (analyticity of static solutions at infinity) Let (v, h̃)

denote a solution to the static Equations (19.4a) and (19.4b) such that Ω as

defined by Equation (19.7) satisfies the conditions (19.6) with hαβ = Ω2h̃αβ the

components of a C4,α metric for some coordinates x = (xα) in a neighbourhood

of i. Then there exist coordinates x′ = (x′α) defined in a neighbourhood of i such

that h′
αβ, ζ

′, ς ′ and s′αβ are analytic.

Remark. The regularity assumptions in this result are expressed in terms of

Hölder spaces; see the Appendix to this chapter.

Proof The proof exploits the fact that the Ricci operator of a Riemannian

metric expressed in harmonic coordinates is elliptic – the Lorentzian counterpart

of this observation has been discussed in the Appendix to Chapter 13. The

general theory of elliptic equations – see, for example, Garabedian (1986) – shows

that it is always possible to find a neighbourhood of i in which the equations

Δhx
′α = 0 (19.20)

have a solution x′α = x′α(x). The coefficients of the differential operator in

Equation (19.20) consist of hαβ and its derivatives so that they are of class C3,α.

The general theory of elliptic partial differential equations (PDEs) shows that

solutions of second-order elliptic equations gain two derivatives with respect to

the coefficients of the equation. Accordingly, one has that x′α = x′α(x) is C5,α.

This regularity is sufficient to invert the coordinates. Taking into account the

transformation law of the metric tensor under change of coordinates,

h′
αβ =

∂xγ

∂x′α
∂xδ

∂x′β hγδ,

it follows that h′
αβ is C4,α. Similarly, the field ζ ′ can be verified to be C4,α, while

ς ′ and s′αβ are C2,α. To conclude the proof, one needs to construct a system
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of elliptic equations for the various fields. In the remainder of the proof it is

assumed that all the fields are expressed in terms of the coordinates x′, and

the primes will be dropped from the expressions. Let γα
β
γ denote the Christoffel

symbols of the metric h and denote by γβ ≡ hαγγα
β
γ the associated contracted

Christoffel symbols. A discussion analogous to that of the hyperbolic reduction

of the Einstein field equations in generalised wave coordinates – see the discussion

in the Appendix of Chapter 13 – shows that

rαβ −D(αγβ) = sαβ

is an elliptic equation for the components hαβ of the metric h in the coordinates

(xα) if sαβ are known. To close the system one considers the equations

Sα
α = 0, DαSα = 0, DγHγαβ = 0.

Using the Bianchi identity (19.14) and the conformal static field equations to

remove all the second derivatives of the conformal fields which are not Laplacians,

one obtains a system of the form

Δh

(
hαβ , ζ, ς, sαβ

)
= F(hαβ , ζ, ς, sαβ , Dγhαβ , Dαζ,Dας,Dγsαβ), (19.21)

with F an analytic vector-valued function of its entries. Despite having a

Laplacian operator on the left-hand side, it is a priori not clear that the system

(19.21) is elliptic as Δh applied to hαβ and sαβ gives rise to further second-

order derivatives of hαβ which come from derivatives of the Christoffel symbols.

To verify ellipticity one needs to compute the determinant of the symbol of

(19.21). A calculation shows that this determinant is, in fact, proportional to

(hαβξαξβ)
13 so that one, indeed, has an elliptic system as hαβ are the components

of a Riemannian metric; compare the definition of ellipticity in Section 11.2. The

general theory of the regularity of solutions of elliptic systems shows that if one

has a C2,α solution to the above equation, then it must, in fact, be analytic in

U ; a discussion of this result is given in Morrey (1958).

Remarks

(i) The original proof in Beig and Simon (1980a) was carried out in a conformal

gauge obtained from writing the static metric (19.1) in the form

g̃ = e2Udt⊗ dt− e−2U ĥαβdy
α ⊗ dyβ ,

where U is a scalar field and ĥαβ denote the components of a Riemannian

3-metric. Their analysis shows that ω ≡ (U/m)2 and h′ ≡ ω2ĥ are analytic

in h′-harmonic coordinates. This gauge and the one used to prove Theorem

19.1 can be related by letting Ω′ ≡ ωeU . One has by analogy to Equation

(19.8) the split Ω′−1/2 = ζ ′−1/2 +W ′ with

ζ ′ =
ω

cosh2 U/2
, W ′ =

m sinhU/2

U
.
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It can be verified that the conformal metrics h and h′ are related to each

other via h = ϑ4h′ with ϑ ≡ 2W ′/m.

(ii) Kennefick and O’Murchadha (1995) have shown that the smoothness

assumption on the conformal metric made in Theorem 19.1 can be

deduced from weaker differentiability and decay conditions on the physical

3-metric h̃.

(iii) Theorem 19.1 can be further strengthened by considering h-normal coor-

dinates based on i. It can be verified that the coordinate transformation

relating the analytic coordinate system x′ and normal coordinates is also

analytic.

A remark concerning the notion of analyticity at i

As a consequence of the analytic behaviour ensured by Theorem 19.1 one has

that, for example, the field ζ can be expressed in a suitably small neighbourhood

U of i as a convergent series of the form

ζ =

∞∑
p=2

ζα2···αp
xα2 · · ·xαp , ζα2···αp

∈ R. (19.22)

The other conformal fields have similar expansions. An alternative description

of the above expansion can be obtained by introducing polar coordinates.

Accordingly, one defines

ρ2 ≡ |x|2 = δαβx
αxβ , ρα ≡ xα

|x| . (19.23)

The unit position vector ρα can be parametrised by means of some coordinates

θ = (θA) on the 2-sphere S2 so that one can write ρα = ρα(θ). In what follows it

will be assumed, for convenience, that the coordinates (θA) are analytic functions

of the original coordinates x – clearly, the coordinates (θA) cannot cover the

whole of S2. This fact will not play a role in the sequel. In terms of the coordinates

(ρ, θA) the expansion (19.22) takes the form

ζ =
∞∑
p=2

ζα2···αp
ρα2 · · · ραpρp.

Accordingly, ζ is also an analytic function of the coordinates (ρ, θA). Decom-

posing the product ρα2 · · · ραp (which depends only on the angular coordinates)

into symmetric, trace-free terms one obtains the usual expansion in terms of

spherical harmonics Ylm. This computation can be conveniently performed in

space spinors; see, for example, Torres del Castillo (2003).

Remark. Not every analytic function of (ρ, θA) is an analytic function of the

associated Cartesian coordinates. The standard counterexample for this is the

radial coordinate ρ as defined by Equation (19.23), whose second derivative with

respect to the coordinates (xα) is singular at i. To have analyticity with respect
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to the coordinates (xα) one needs the right combination of spherical harmonics

and powers of ρ.

A particular case of the above discussion concerns the conformal factor Ω.

From Equation (19.8) it follows that

Ω =
ζ

(1 + ζ1/2W )2
.

A direct computation taking into account the asymptotic conditions (19.11)

shows that while Ω is C2 at i, it will fail to be of class C3 unless W = 0 –

which, in the present gauge, means that m = 0. Thus, in general, the conformal

factor Ω is not analytic in the harmonic coordinates (xα) even if ζ is analytic. It

is, nevertheless, analytic in ρ.

19.2.1 A spacetime conformal completion of static solutions

Theorem 19.1 is a statement about the conformal structure of hypersurfaces of a

canonical foliation of a static spacetime. Thus, it is of natural interest to analyse

the consequences of this property from a spacetime perspective. Intuitively, one

expects that the nice conformal properties of the leaves of the foliation will lead

to a good spacetime conformal behaviour. As the spatial conformal factor is not

analytic with respect to the harmonic coordinates x = (xα), one cannot expect

analyticity of a spacetime conformal extension in terms of these coordinates.

Instead, one looks for extensions which are analytic in the associated radial

coordinate.

Following Remark (iii) after Theorem 19.1, it is assumed that the harmonic

coordinates x = (xα) are h-normal and centred at i. Writing θ = (θA), one has

that for θ = θ� fixed and s ∈ [0, s�) for s� ≥ 0 suitably small, xα(s) = sρα(θ�)

describes a geodesic passing through i. A function f : U → R evaluated along

one of these geodesics will be denoted by f(sρα). From xα = ρ ρα it follows that

dxα = ραdρ+ dρα = ραdρ+ ρ∂Aρ
αdθA,

so that, using the normal coordinates condition hαβx
α = −δαβx

α, one concludes

that

h = −dρ⊗ dρ+ ρ2k, (19.24)

where

k ≡ hαβdρ
α ⊗ dρβ = hαβ∂Aρ

α∂Bρ
βdθA ⊗ dθB

corresponds to the metric of the two-dimensional surfaces of constant ρ. In

particular, one has that k|ρ=0 = −σ – the negative definite standard metric

of S2.

Putting together the discussion of the previous paragraph and recalling that

h = Ω2h̃, one finds that the static metric (19.1) can be rewritten as

g̃ = v2dt⊗ dt− Ω−2dρ⊗ dρ+Ω−2ρ2k. (19.25)
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The claim is now that the conformal metric g ≡ Ξ2g̃ with

Ξ = Ω1/2

gives rise to a conformal extension of the static spacetime which is as regular

as one can possibly expect, that is, analytic in the coordinates (ρ, θA). From

Equation (19.25) one has that

g = Ωv2dt⊗ dt− Ω−1dρ⊗ dρ+ ρ2Ω−1k. (19.26)

Recalling that Ω = O(ρ2) and v = O(1), one finds that while the first and third

terms of the above metric are regular, the second one is singular. This singularity

is a coordinate artefact which can be removed by considering the null coordinate

u ≡ t+

∫ ρ�

ρ

ds

v(sρα)Ω(sρα)
,

for fixed ρα and ρ� > 0. Observe, in particular, that as a consequence of the

behaviour of Ω near i one has that u → −∞ as ρ → 0. The differential of the

null coordinate u is given by

du = dt− 1

vΩ
dρ+ λ,

where

λ ≡ λAdθ
A, λA ≡

∫ ρ�

ρ

∂A

(
1

v(sρα)Ω(sρα)

)
ds.

Substituting the above expressions into the conformal metric (19.26) yields

g = Ωv2du⊗ du+ v(du⊗ dρ+ dρ⊗ du)− Ωv2(du⊗ λ+ λ⊗ du)

− v(λ⊗ dρ+ dρ⊗ λ) + Ωv2λ⊗ λ+ ρ2Ω−2k,

which is regular whenever Ω = 0. Moreover, following the discussion of Section

19.2, the various metric coefficients are analytic in the coordinates (ρ, θA). The

conformal representation of static spacetimes given above shows that static

spacetimes admit a smooth conformal extension which includes a portion of null

infinity. However, this description is not suitable for a spacetime discussion of

spatial infinity. This issue will be elaborated in Chapter 20. The discussion of

this section can be extended to include stationary spacetimes; for a discussion

of the required considerations, see Dain (2001b).
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19.3 A regularity condition

As an application of the results on the analyticity of solutions to the conformal

static equations at i, in this section a proof is given of a property of the conformal

structure of static solutions which plays a central role in the discussion of

Chapter 20. The analysis of this section is best carried out in spinors and is

adapted from Beig (1991).

Before stating the main result of this section it is convenient to discuss some

ancillary consequences of the conformal static equations. In what follows, all

the spinors are expressed in terms of their components with respect to some

spin dyad {εAA} associated to the frame {ei} corresponding to the particular

realisation of harmonic h-normal coordinates at i.

Lemma 19.1 (behaviour of the symmetrised derivatives of ζ at i)

A solution to the conformal static equations satisfies

D(ApBp
DAp−1Bp−1 · · ·DA1)B1

ζ(i) = 0.

Proof For the cases p = 0, 1, 2, the result follows from a direct computation

using the conditions in (19.11), observing that h(ABCD) = 0. For higher order

derivatives, the result follows by induction, using that the spinorial version of

the equation associated to the zero quantity Sij is given by

DABDCDζ = ςhABCD + (μ− 1)ζsABCD, (19.27)

and using that DEF hABCD = 0 and h(ABC)D = 0.

Remark. Lemma 19.1 implies, in particular, that

D(ApBp
DAp−1Bp−1

· · ·DA1B1)ζ(i) = 0.

The main result of this section is the following:

Proposition 19.1 (behaviour of the derivatives of the Cotton spinor at

i) A solution to the conformal static equations satisfies

D(ApBp
DAp−1Bp−1 · · ·DA1B1bABCD)(i) = 0, p = 0, 1, 2, . . . . (19.28)

The original proofs of this result were given independently by Friedrich (1988)

and Beig (1991).

Proof The proof of this result follows from considering Equation (19.18) in the

form

(1− μζ)bABCD = 2μsQ(ABCDD)
Qζ. (19.29)
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Using the conditions in (19.11) one obtains bABCD(i) = 0. Repeated differenti-

ation and symmetrisation of Equation (19.29) yields

(1− μζ)D(ApBp
DAp−1Bp−1

· · ·DA1B1
bABCD)

− pμD(ApBp
ζDAp−1Bp−1

· · ·DA1B1
bABCD)

+ · · · − μD(ApBp
DAp−1Bp−1 · · ·DA1B1ζbABCD)

= D(ApBp
· · ·DA1B1s|Q|ABCDD)

Qζ

+ · · ·+ sQ(ABCDApBp
· · ·DA1B1

DD)
Qζ.

Using Lemma 19.1 it follows that every term in the above expression, save for

the first one in the left-hand side, vanishes when evaluated at i. This yields the

desired result.

Remark. Condition (19.28) has been called in Friedrich (1988), for reasons to

be elaborated in Chapter 20, the radiativity condition. In Friedrich (1998c) it

has been given the name regularity condition. In tensorial notation Equation

(19.28) takes the form

D{αp
Dαp−1

· · ·Dα1
bβγ}(i) = 0 p = 0, 1, 2, . . . .

Conformal transformation properties

Let ω denote a smooth function defined in a neighbourhood of i satisfying

ω(i) �= 0. From the conformal transformation properties of the Cotton tensor –

see Equation (5.19) – it follows that under the rescaling h �→ h′ = ω2h the

Cotton spinor satisfies

b′ABCD = ω−1bABCD.

Thus, b′ABCD(i) = 0 if bABCD(i) = 0. Using the transformation law of

the connection one finds that D′
A1B1

b′ABCD(i) = DA1B1
bABCD(i) as the

correction terms associated to the transition tensor involve bABCD(i) = 0.

Hence, D′
(A1B1

b′ABCD)(i) = 0. Proceeding inductively one concludes that

D′
(ApBp

D′
Ap−1Bp−1

· · ·D′
A1B1

b′ABCD)(i) = 0, p = 0, 1, 2, . . . .

Consequently, the regularity condition (19.28) is conformally invariant. This

conformal invariance allows the following reading of Proposition 19.1: the

conformal class of a 3-metric satisfying the static equations cannot be arbitrary.

More precisely, condition (19.28) is a necessary condition for a metric h to belong

to the conformal class of a static metric.

19.4 Multipole moments

In Newtonian gravity time-independent gravitational fields are characterised by

a sequence of multipole moments. It is desirable to have a similar characterisation

for time-independent solutions to the Einstein field equations describing isolated

bodies. One of the advantages of the conformal approach to static spacetimes
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is that it allows a geometric formulation of the notion of multipole moments.

Following the original treatment in Geroch (1970a,b) one defines a sequence

of tensor fields
{
P, Pi, Pi1i2 , . . .

}
in a neighbourhood U of i via the recursive

relations

P ≡ Ω−1/2(1− v),

Pi ≡ DiP,

Pi2i1 ≡ D{i2Pi1} −
1

2
Pri2i1 ,

Pip+1···i1 ≡ D{ip+1
Pip···i1} −

1

2
p(2p− 1)P{ip+1···i3ri2i1}, p = 2, 3, . . . .

The particular form of the lower order correction terms in the definition of the

tensors Pip+1···i1 has been chosen so as to ensure conformal invariance of the

definition of multipole moments to be given below – this observation follows from

a tedious computation which will not be further elaborated here. The multipole

moments of a static solution are then obtained by evaluating the above tensors

at i. To this end, choose a smooth coordinate system x = (xα) on U and denote

by Pα, Pα2α1
, . . . the components of the tensors with respect to these coordinates

and define the multipole moments of the static solution with respect to

the coordinates x to be the sequence {m, mα, mα2α1
, . . .} with

m ≡ P (i), mαp···α1
≡ Pαp···α1

(i), p = 1, 2, 3 . . . .

For a given p, the 2p quantities mαp···α1
are called the 2p-poles. In particular, m

is the monopole (the mass) and mα is the dipole moment. As the multipole

moments are expressed as the value of a tensor at a point, it follows that, under

a coordinate transformation x′ = (x′α(x)), the multipole moments transform as

m′ = m, m′
α = Aα

βmβ , m′
αp···α1

= Aαp

βp · · ·Aα1

β1mβp···β1
, (19.30)

where (Aα
β) are the components of 3×3 invertible real matrices; that is, (Aα

β) ∈
GL(3,R). Observe that the monopole is invariant under a change of coordinates.

For the particular choice of the conformal factor given by Equation (19.7) one

has that P = m so that DiP = 0 and accordingly mα = 0; in other words, in

the conformal gauge determined by (19.7) one is automatically in the centre of

mass.

The properties of the multipole expansions in Newtonian gravity raise the

question of to what extent the general relativistic multipole moments determine a

solution to the static equations, and vice versa. The construction described in the

previous paragraph can be thought of as mapping a static solution (v, h̃) to the

collection of multipoles {m, mα, mα2α1
, . . .}. Now, two collections of multipoles

{m, mα, mα2α1
, . . .} and {m′, m′

α, m
′
α2α1

, . . .} are said to be equivalent if

there exists (Aα
β) ∈ GL(3,R) such that the relations in (19.30) hold. In Beig

and Simon (1980a) the following has been proved:
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Theorem 19.2 (multipole theorem) If two static solutions (v, h̃) and (v′, h̃
′
)

lead to multipole sequences which are equivalent, then the static solutions are

isometric in a neighbourhood of i.

Although a detailed proof of the above theorem will not be provided, it is

of interest to discuss the basic underlying ideas. The fundamental problem is

the following: given a sequence of multipoles {m, mα, mα2α1
, . . .}, how can

one reconstruct the pair (v, h̃) solving the static equations? To answer this

question one first employs an inductive argument which relies on the definition

of the multipole moments, the conformal static equations and the commutator

of covariant derivatives to show that the values of the fields ζ, s, sαβ and any

of their covariant derivatives at the point i can be expressed in terms of the

multipole moments. Thus, one can compute the Taylor expansions (in harmonic

h-normal coordinates) of these fields around i. From the general theory of Taylor

expansions one knows that the expansions are unique. Moreover, it is a classical

result of Riemannian geometry that the sequence

{rαβγδ(i), Dηrαβγδ(i), Dη2η1
rαβγδ(i), . . .}

determines, in a unique way, the Taylor expansion of the components of the

metric hαβ – again, in h-normal coordinates (xα) centred at i; see, for example,

Günther (1975). A final argument shows that applying the above procedure to

two equivalent sequences of multipoles leads to two metrics which are isometric.

Now, given any set of multipole moments subject to the appropriate conver-

gence condition, it is natural to expect that there exists a static solution having

precisely those multipole moments. In other words, the sequence of multipoles

characterises (in a suitable) unique manner the static spacetime. As a result of

the analyses in Friedrich (2007) and Herberthson (2009) one has the following:

Theorem 19.3 (sufficient conditions on the sequence of multipoles

for the existence of a static solution) Let {m, mα, mα2α1
, . . .} denote the

components of a sequence of real valued, totally symmetric trace-free tensors

at the origin of R3 expressed in terms of Cartesian coordinates x = (xα). If

constants M, C > 0 can be found such that

|mαp···α1
| ≤ p!M

Cp
, (19.31)

then there exists a static, asymptotically flat spacetime having the multipole

moments {m, mα, mα2α1
, . . .}.

The proof of the above result goes beyond the scope of this book. Again, only

the basic underlying ideas are briefly discussed. The starting point of the analysis

is to exploit the analyticity of the solutions to the conformal static equations

provided by Theorem 19.1 to implement a complex analytic extension of

the whole setting. More precisely, the fields hαβ , ζ, ς, sαβ can be extended
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near i by analyticity into the complex domain and regarded as holomorphic (i.e.

complex analytic) fields on a complex analytic manifold SC. Restricting SC to

be a sufficiently small neighbourhood of i one can use similarly extended normal

coordinates x = (xα) centred at i to define an analytic system of coordinates on

SC which identifies the latter with an open neighbourhood of the origin in C3.

The original manifold S is then a three-dimensional real analytic submanifold

of SC. Under the analytic extension the main differential geometric concepts

and formulas remain valid. In particular, the extended fields, to be denoted

again by hαβ , ζ, s, sαβ , satisfy the conformal static vacuum field equations on

SC. In order to provide a geometric perspective of the problem, one considers

the function Γ ≡ δαβx
αxβ on S which extends to a holomorphic function on

SC satisfying the equation hαβDαΓDβΓ = −4Γ. While restricted to S, the

function Γ vanishes only at i. On SC its set of zeros is a two-dimensional complex

submanifold of SC,

Ni ≡ {p ∈ SC |Γ(p) = 0},

the so-called complex null cone at i. This cone is generated by the complex

null geodesics through i; see Figure 19.1. The analogy between the (spacetime)

conformal field equations and the conformal static field equations discussed in

Section 19.1.1 suggests the formulation of a characteristic initial value problem

for the conformal static field equations on the null cone Ni. The formulation of

this characteristic initial value problem requires the determination of suitable

initial data. An argument involving the idea of exact sets of fields – see Penrose

and Rindler (1984) – allows one to show that the basic data for this characteristic

problem are is given by the sequence of fields

{
sαβ(i), D{α1

sαβ}(i), . . . , D{αp···α1
sαβ}(i), . . .

}
.

Figure 19.1 Schematic representation of the complex null cone through i, Ni,
as described in the main text.
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The above null data can be obtained by repeated differentiation along the

direction of the complex null generators of Ni of the components of sαβ ; see, for

example, the discussion in Friedrich (2004, 2007).

Given the analyticity of the setting described in the previous paragraphs, one

can make use of the Cauchy-Kowalewskaya theorem to discuss the existence

of analytic solutions to this characteristic problem and to provide convergence

conditions on the null data which ensure the existence of a solution; see the

Appendix to this chapter. The convergence conditions thus obtained are similar

to the ones in Equation (19.31) of Theorem 19.3 and, in particular, ensure the

existence of a real static solution. This is the main result of Friedrich (2007).

To obtain the convergence condition on the sequence of multipoles one needs

to analyse the relation between the null data and the sequence of multipoles.

Inspection shows that the null data and the multipole moments are in a one-to-

one correspondence. This correspondence, however, is non-linear and implicit.

The detailed analysis of this correspondence in Herberthson (2009) allows the

transformation of the convergence conditions for the null data into convergence

conditions for the sequence of multipoles.

19.5 Uniqueness of the conformal structure of static metrics

As a final application of the conformal static equations, the extent to which the

conformal class of the 3-metric h̃ determines a solution to the static equations

will be analysed. This question was first analysed in Beig (1991) from where the

main ideas of the analysis are adapted. An alternative discussion of some aspects

of this problem is given in Friedrich (2008a,b).

The multipole Theorem 19.2 shows that a static solution is determined by its

multipole moments. Thus, it is natural to try to relate the multipole moments

to the conformal class of the metric h. In what follows, for p = 1, 2, 3, . . . define

βApBp···A1B1A0B0
≡ DQ

(Bp
DAp−1Bp−1

· · ·DA1B1
bA0B0ApQ)(i).

Using an inductive argument similar (albeit lengthier!) to the one leading to

Proposition 19.1 one obtains the family of identities

βApBp···A1B1A0B0
= 6μD(ApBp

· · ·DA2B2
sA1B1A0B0)(i), (19.32)

for p = 1, 2, 3, . . . with μ = m2/4; see Equation (19.12). The above identities

constitute the main tool for the reminder of the section. Observe that the

tensorial counterpart of the symmetrised derivatives of the spinor enter directly

in the definition of the multipole moments. The quantities βApBp···A0B0
have

good conformal properties. Recalling that under the rescaling h′ = ω2h with

ω(i) �= 0, one has the transformation rules

b′ABCD = ω−1bABCD, ε′AB = ω−1εAB.
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It follows that

β′
ApBp···A0B0

= ω−2(i)βApBp···A0B0 .

Consider now two solutions (h, sABCD, ζ, ς) and (h′, s′ABCD, ζ ′, ς ′) to the

conformal static equations such that

h′ = ω2h,

and consider the question of under which circumstances will the above two

solutions determine the same physical static solution (v, h̃) – modulo isometries.

The identities (19.32) show how the multipole moments of the two solutions

are connected to each other. One then needs further conditions that allow one

to constrain the relation between solutions further. In view of the conformal

nature of the problem, the natural object to look for those extra conditions

is the Cotton spinor. Proposition 19.1 and the identities (19.32) already

provide information about some of the derivatives of bABCD at i. The only

derivatives which have not yet been considered are divergences of the form

DPQD(PQDApBp · · ·DA1B1bABCD). A direct computation using Equations

(19.27) and (19.29) yields

DPQbPQCD(i) = 0, (19.33a)

DPQD(PQbABCD)(i) = 0, (19.33b)

DPQD(PQDEF bABCD)(i) = 0. (19.33c)

However, a lengthy computation reveals that

DPQD(PQDGHDEF bABCD)(i) = −24μD(GHsQEFA(i)sBCD)Q(i).

Defining, for convenience, OGHEFABCD ≡ D(GHsQEFA(i)sBCD)Q(i), a

computation using the definition of the quantities βApBp···A0B0
allows the

reexpression of this quantity in the form

OGHEFABCD =
1

36
βQ

(GHFEAβBCD)Q. (19.34)

The conformal transformation properties can be easily read from this last

expression. Namely, one has that

O′
GHEFABCD = ω−5(i)OGHEFABCD.

On the other hand, it can be checked that

D′PQD′
(PQD′

GHD′
EF b

′
ABCD)(i) = ω−3(i)DPQD(PQDGHDEF bABCD)(i).

From the above transformation rules, assuming that OGHEFABCD �= 0 one

concludes that

ω2(i) = μ′/μ.
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Observe that if OGHEFABCD = 0, no conclusion can be extracted from the anal-

ysis. As a consequence of Equation (19.34), the requirement OGHEFABCD �= 0 is

a condition on the conformal structure of the static solutions under consideration.

If it holds, then using the identities (19.32) one concludes that the two solutions

to the conformal static equations will have the same multipole moments if they

have the same mass. Moreover, as a consequence of the multipole Theorem 19.2,

they are isometric. The analysis of this section is summarised in the following

theorem, first proven in Beig (1991):

Theorem 19.4 (uniqueness of the conformal structure of static solu-

tions) Two solutions to the conformal static equations with the same mass, lying

in the same conformal class and satisfying OGHEFABCD �= 0 are isometric.

The condition OGHEFABCD �= 0 can be seen to be violated if the two static

solutions are axially symmetric about a common axis; see, for example, Beig

(1991). As discussed in Friedrich (2008a) this is, in fact, the only possibility.

More precisely, a static solution which admits a non-trivial rescaling leading to

a new static solution must be axially symmetric and admit a conformal Killing

vector. There exists a three-parameter family of such solutions. These have been

explicitly found in Friedrich (2008b).

The Schwarzschild solution

A case of particular interest is when h̃ is conformally flat. It then follows that

βApBp···A0B0
= 0 for all p, and the only non-vanishing mass multipole is the

mass m. Invoking, again, the multipole Theorem 19.2 it follows that for a given

value of m there exists only one solution, up to isometries, with this property –

namely, the Schwarzschild solution. An alternative derivation of the uniqueness of

the Schwarzschild spacetime among the class of conformally flat static solutions

which makes no use of the multipole theorem has been given in Friedrich (2004).

In this analysis the conformal static equations are explicitly integrated along

geodesics starting at i.

19.6 Characterisation of static initial data

An issue related to the questions discussed in the previous section concerns the

characterisation of initial data for a static spacetime – this question will be

of relevance in Chapter 20. More precisely, one is interested in the following

question: given a 3-metric h, under which circumstances does there exist in

the conformal class [h] another metric h̃ which, together with some scalar v,

constitutes a solution to the static equations?

As in the rest of the chapter, the above question is restricted to a suitable

neighbourhood of infinity. Proposition 19.1 shows that not every conformal class

will contain a static metric. In other words, condition (19.28) is a necessary
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condition for a metric h to be conformal to a static metric. Now, condition

(19.28) is not sufficient. The relations (19.33b) and (19.33c) show that there exist

further conditions (in fact, an infinite hierarchy of them) on the conformal class,

algebraically independent from (19.28), which need to be satisfied by a metric h

in order to be conformal to a static metric. The gap between a conformal class

of 3-metrics satisfying the regularity condition (19.28) and a conformal class

containing a static metric has been analysed in detail in Friedrich (2013).

The level of detail required to discuss the main result of Friedrich (2013)

goes well beyond the scope of this chapter, and only the key ideas are

briefly mentioned. If a metric h is conformal to a metric h′ solving the

conformal static equations, then writing h′ = ω2h for some suitable conformal

factor ω, it is possible to rewrite the conformal static equations as a highly

overdetermined system of differential equations for ω. To analyse the solvability

of the conditions one needs to consider the associated integrability conditions. As

already anticipated by (19.33b) and (19.33c), these integrability conditions give

rise, in addition to (19.28), to restrictions on the conformal structure which take

the form of an infinite hierarchy of differential conditions on the Cotton tensor

at i. These conditions can be expressed in terms of requirements on a covector

constructed from the 3-metric h. An interesting feature of the analysis is that

the overdetermined system involving the conformal factor ω is highly singular

at i. For this system to have a solution, a hierarchy of regularity conditions

need to be imposed on the singular part of the equation so that it admits a

smooth extension to a neighbourhood of i – this is reminiscent of a procedure

which arises in the construction of radiative initial data sets in Section 20.2.

Remarkably, the required regularity conditions turn out to be nothing else but

the conditions (19.28).

19.7 Further reading

A systematic analysis of time-independent solutions to the Einstein field

equations is provided in Beig and Schmidt (2000). This reference provides an

excellent point of entry to the extensive literature on static and stationary

solutions in general relativity. A survey of the various approaches to define

multipole moments for time-independent solutions to the Einstein field equations

can be found in Quevedo (1990). An analysis of global aspects of static and

stationary spacetimes can be found in Anderson (2000).

Several of the results discussed in this chapter admit a generalisation to the

case of stationary solutions. The definitions of multipole moments given by

Geroch (1970a,b) have been extended to the stationary case in Hansen (1974).

The analyticity of solutions of the conformal stationary field equations has been

analysed in Beig and Simon (1980b, 1981); see also Kundu (1981). However, in

this case the 3-metric h of a surface of constant time will not be analytic; see

Dain (2001b). Instead, the analyticity refers to the 3-metric γ of the quotient

space obtained from identifying points on the spacetime lying on the same orbit
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of the stationary Killing vector. The analysis of the convergence conditions for

null data of static solutions in Friedrich (2007) has been extended to the case

of stationary solutions in Aceña (2009). An alternative analysis of multipole

expansions of static solutions with the aim of obtaining convergence conditions

on sequences of multipoles has been given in Bäckdahl and Herberthson (2005a,b,

2006) and Bäckdahl (2007).

The analysis of the conformal static equations by means of the complex null

cone through i was first introduced in Friedrich (1988). Further extensions of

this method have been given in Friedrich (2004, 2007, 2013).

Appendix 1: Hölder conditions

Given 0 < α ≤ 1, a real valued function f on an open set U ⊂ Rn is said to satisfy

the Hölder condition with exponent α on U if there exists a non-negative

constant C such that

|f(x)− f(y)| ≤ C|x− y|α, for all x, y ∈ U .

If the above is the case, one writes f ∈ C0,α(U). The Hölder condition is a

stronger notion of continuity; that is, a function satisfying the Hölder condition

is continuous, but not all continuous functions satisfy the Hölder condition for

some α. More generally, one says that f ∈ Ck,α(U) if all its derivatives up to

order k satisfy the Hölder condition for a given α. The Hölder condition plays an

important role in the regularity of solutions to elliptic PDEs; see, for example,

Evans (1998) for further details.

Appendix 2: the Cauchy-Kowalewskaya theorem

The Cauchy-Kowalewskaya theorem asserts the local existence, in a neigh-

bourhood of t = 0, of a real analytic solution u(t, x) to the quasilinear first-order

initial value problem

∂tu = Aα(t, x,u)∂αu+B(t, x,u),

u(0, x) = u�(x),

where Aα(t, x,u), B(t, x,u) and u�(x) are real analytic functions of their

arguments; see, for example, Evans (1998) for further details. A discussion of the

various approaches to prove this result can be found in Shinbrot and Welland

(1976).
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