P

@ CrossMark

The Aeronautical Journal (2023), 127, pp. 41-56

;. ROYAL
doi:10.1017/aer.2022.45 AERONAUTICAL
SOCIETY

REGULAR PAPER

Verification framework for control theory of aircraft

O. A. Jasim'® and S. M. Veres*

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
*Corresponding author email: s.veres @sheffield.ac.uk

Received: 18 May 2021; Revised: 13 December 2021; Accepted: 8 April 2022

Keywords: Control theory; Higher order logic; Formal methods; Control theorems; Control systems of aircraft

Abstract

A control system verification framework is presented for unmanned aerial vehicles using theorem proving. The
framework’s aim is to set out a procedure for proving that the mathematically designed control system of the aircraft
satisfies robustness requirements to ensure safe performance under varying environmental conditions. Extensive
mathematical derivations, which have formerly been carried out manually, are checked for their correctness on a
computer. To illustrate the procedures, a higher-order logic interactive theorem-prover and an automated theorem-
prover are utilised to formally verify a nonlinear attitude control system of a generic multi-rotor UAV over a stability
domain within the dynamical state space of the drone. Further benefits of the procedures are that some of the
resulting methods can be implemented onboard the aircraft to detect when its controller breaches its flight envelope
limits due to severe weather conditions or actuator/sensor malfunction. Such a detection procedure can be used to
advise the remote pilot, or an onboard intelligent agent, to decide on some alterations of the planned flight path or
to perform emergency landing.

Nomenclature

b torque constant of the rotor

l aerodynamic force constant of the rotor
r position (translational) vector of x, y, z in the world frame
u control input vector

u, represents uncertainty and disturbances
q quaternions elements

1 symmetric and positive-definite inertia matrix
1 estimated matrix of the inertia matrix /
T time sub-domain

Fy total force of thrusters

\4 Lyapunov function

0 symmetric positive-definite matrix

K,. K, positive-definite diagonal gain matrices
Greek Symbol

T torque vector

T, disturbance torque vector

¢ roll of the aircraft

0 pitch of the aircraft

¥ yaw of the aircraft

w angular velocity vector

0} angular acceleration vector

& error vector

© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45
https://orcid.org/0000-0002-3934-6266
https://orcid.org/0000-0003-0325-0710
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2022.45&domain=pdf
https://doi.org/10.1017/aer.2022.45

42 Jasim and Veres

£ error rate vector

n error and error rate vector

Q rotor angular velocity

¢ length from the centre of mass of the multi-rotor to the rotor
y known positive constant bound

) positive constant

£ positive constant

Xmins Amax lower and upper constant bound, respectively

1.0 Introduction

Control law design for aircraft normally combines control engineering knowledge with tests of stability
and smoothness of control responses under disturbances. This often takes the form of an iterative process
of control law refinements accompanied with wind tunnel and in flight tests. Given a particular open
loop dynamical model, control engineering relies on mathematical theory that enables the design of
a flight controller. When the flight envelope is defined, it introduces numerical values for the design,
which need to be carried through derivations and proofs of stability and acceptable handling within the
flight envelope. In this paper manual derivations are replaced by theorem proving methods for robust
control performance. The procedures presented go beyond algebraic computation and use higher-order
logic, including handling of functionals, operators, stability and levels of smoothness measures. The
formal approach of proofs on a computer has two advantages: avoiding mistakes of manual mathematical
derivations and fast robustness calculations against parameters of the flight envelope required.

The approach taken in this paper fits into one of the three stages of formally verifiable controller
design as outlined in [1], where robust control theory verification is followed by verification of the soft-
ware used for implementation. A third stage is to prove that the quantisation affects on a digital controller
do not significantly affect the results in stage one of the controller theory used. In implementations of
aviation software, verification is often followed by redundancy-based safety analysis for critical sensors
and actuators using voting principles, the use and effect of these lies outside the scope of this paper.

Realtime code-verification normally consists systematically checking the correctness of the encoded
controller such as in [2, 3] and [4]. This paper focuses on verification of the control principles before it is
implemented in realtime code. An interactive theorem prover (ITP) is used for performance verification
under bounded nominal ambient conditions. Also monitoring of stability and performance are checked
in flight using an automated theorem prover (ATP) for excessive conditions, including some sensor or
actuator failures.

There have been prior initiatives on verification of safety-critical and cyber-physical systems. Such are
the European Integrated Tool Chain for Model-based Design of Cyber-Physical Systems (INTO-CPS)
[5], where a Functional Mockup Interface (FMI) has been developed for integrating the formal veri-
fication of Cyber-Physical Systems using the PVS (Prototype Verification System) [6] theorem prover
with model-based software to co-simulate these systems. This approach integrates simulated models in
model-based tools such as Modelica [7], Simulink/Matlab [8] or 20-sim [9] with the FMI interface to
verify the control system according to the required specifications using formal methods.

The FMI is also implemented in [10] using Isabelle/Unifying Theory of Programming (UTP) [11],
where Modelica is used to model the control system of a train, which is encoded in Isabelle/UTP
within an FMI framework for co-simulation. Another project is the ERATO Metamathematics for
Systems Design (MMSD) [12], where a framework is developed to use formal methods to verify
automotive-related applications. Other projects are conducted by the verification team at the NASA
Langley Research Center [13] such as [14, 15] and [16]. Though these approaches use formal methods
to verify control systems, the derivations of control laws are not covered by verification before imple-
menting them. In addition, there is an absence of onboard real-time stability monitoring of these systems
by formal methods.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 43

There have been several studies conducted to formally verify control systems. In [17], a framework
for reasoning about the transfer function and steady state errors in feedback control systems using the
higher-order-logic (HOL) Light [18] theorem prover is proposed. Adnan et al. [19] formalised the theory
of Laplace transforms using an ITP to analyse linear control systems. In [20], formal verification of
coordinate transformations is proposed for aircraft control systems using the Coq [21] theorem prover.
An autonomous vehicle controller is formalised and proven in [22] using the PVS theorem prover to
illustrate its correctness in terms of stability of the Jacobian matrix and then co-simulated using the
PVSio environment in the PVS prover. Denman et al. [23] presented a method for the implementation
of a formal Nichols plot analysis of a flight control system using the MetiTarski ATP [24] with the
aim of stability verification. Araiza-Illan et al. [25] proposed a framework for automatically translating
the system block diagrams modelled in Simulink into the Why3 [26] prover for verification. Verifying
hybrid control systems using differential dynamic logic can be carried out in the KeYmaera prover [27].
In [28, 29] abstractions of the closed-loop behaviour have been constructed for a class of controllers
using KeYmaera.

The framework proposed here is different from these approaches as we are verifying the correctness
of the manually derived control law of an aviation system at the design stage before the encoding and
testing/simulation step, which is followed by real-time monitoring of stability by an ATP onboard the
craft. To the best of our knowledge this initial verification step has not been carried out for robust control
systems at this level of HOL-complexity in any prior work.

The novelty of this paper is that it demonstrates that the presented combination of interactive theorem
provers are suitable for verifying the correctness of robust control theory for a prescribed flight envelope
of a rotary wing craft. Although prior work suggested this may be a possibility, this is a first evidence of
this kind. This involves formal stability analysis to guarantee system robustness under variable ambient
conditions. Also a method of continuous stability monitoring is proposed through an onboard automated
theorem prover. The latter methods are implemented in Isabelle [30] and MetiTarski [24]. The associated
HOL codes have been made available online for use by the aviation community.

Our verification framework has been applied to a control scheme of a generic quad-copter presented
in [31], which consists of a nonlinear attitude controller to deal with modelling uncertainty and external
disturbances. The design is based on the well-known dynamic inversion technique [32, 33]. Lyapunov’s
method [34] has been used as part of the attitude controller design and to analyse the system to ensure its
stability. We have applied our verification scheme to the attitude control system, including all definitions,
assumptions, formal derivations and performance proofs. Lyapunov stability of the control system is
formalised and proven in Isabelle/HOL.

We have implemented the onboard stability analysis in the MetiTarski ATP. This system is suitable to
check whether the aircraft is in its permitted flight envelope and it can inform the pilot or an autonomous
agent to perform some emergency action.

The paper is structured as follow: Section 2 describes theorem proving tools, where Isabelle and
MetiTarski provers are introduced; Section 3 presents the proposed verification framework; Section 4
demonstrates the applicability of the framework toa multi-rotor control system and describes onboard
stability monitoring; Section 5 concludes the work.

2.0 Theorem proving

Computer-based theorem proving relies on a set computational tools in some logical system that can
be used to prove the soundness and correctness of mathematical arguments. There are two main types
of theorem proving: Automated Theorem Proving (ATP), which proves mathematical statements auto-
matically without human interaction, and Interactive Theorem Proving (ITP), which automates steps of
formal proofs by aid of a developer guiding the process of proof. The automated steps rely on mathe-
matical logic and automated reasoning techniques. In this paper an ITP will be used for the verification
framework proposed. ITPs are proof assistants, which formally define and prove mathematical theorems.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

44 Jasim and Veres

Therefore, their user can implement a mathematical theory by defining assumptions and some valid log-
ical statements to start with. Then the ITP procedure is used to prove a sequence of statements, relying
on available formal theories, and also by using existing logical methods and techniques or some external
resources, such as ATP tools.

The distinction between ITP and ATP systems is not only that ATP systems fully automate proofs but
that ATPs tend to have restricted expressivity. Unlike ITPs, they cannot handle the highest order mathe-
matical theories. Instead, they tend to be used to prove less complex mathematical formulae containing
inequalities over real numbers, quantified variables, complex algebra and special functions. On the other
hand, ITP systems have the ability to aid formalising and proving mathematical theories involving higher
order logic, techniques of abstract mathematics, including the concept of convergence, continuity and
linear and nonlinear operators to represent dynamical systems.

To verify complex mathematical theories, ATPs can be utilised locally in an ITP to prove a step in
the proof by adding their packages to the ITP software. A large number of theorem provers are listed
on the “System on TPTP” [35] web site, including the most powerful ATPs that can be used to prove
mathematical statements automatically. A good example of a useful ATP, from a control engineering
point of view, is MetiTarski [24], which is a first-order logic (FOL) prover designed to work over the
field of real numbers on decidable problems.

Model checking is one of the well-known tools that can be applied to engineering models and to
formally verify and validate their correctness [36]. Systems are modelled as finite state transition sys-
tems, or timed automata, and their properties are expressed, for instance, in propositional temporal logic.
Checking of system properties is reduced to a graph search and exhaustive exploration of all possible
abstracted states. However, model checkers are not which structures to infinite dimensional state space
properties, and they cannot be used to prove the correctness of robust control systems. In contrast, ITPs
can be employed to verify infinite dimensional state space systems and other abstract mathematical
constructs.

2.1 Isabelle/HOL

Isabelle is an interactive higher-order-logic (HOL) theorem prover, a kind of proof assistant, based on
automated reasoning techniques and logical calculus. It is written using ML [37], a functional program-
ming language, in which rules are presented as propositions and the proofs are structured by combining
rules using the A-calculus. Isabelle provides the ability to express mathematical theorems of control
engineering in formulae of formal logic and prove them using the automated derivation tools provided.
When a proof is completed in Isabelle, one can be certain that the mathematical theorem at hand is valid.

Isabelle/HOL is one of Isabelle’s platforms with quantifiers over domains of variables and formal
semantics. Isabelle/HOL has a proof-language called Isar, which structures the proofs in a human read-
able and understandable mathematical formal text for both users and computers. The mathematical
formulae can be formalised and proven in Isar with the aid of Isabelle’s logical tools.

Examples of such tools are the simplifier, which performs operation and reasoning on equations;
the classical reasoner that carries out long chains of reasoning procedures; and algebraic decision pro-
cedures using advanced pattern matching by the package sledgehammer for automatically finding the
proofs based on already-proven theorems in Isabelle’s library. The latter also calls external FOL (first-
order-logic) provers (ATPs) and Satisfiability Modulo Theories (SMT) solvers [38]. Isabelle has been
chosen in this work for its rich logical and automation techniques since it has a large library, which
contains most of the mathematical theories that are useful in control systems theory proofs.

The use of Isabelle is justified as advanced robust and adaptive control theory heavily uses concepts of
convergence in limits, differentiation and integration, complex analysis, abstract vector spaces, spaces
of functionals and nonlinear operators, stability theory, and formal measures of control performance.
Isabelle also supports other logical systems such as Hoare logics for systems verification [39] in addition
to the ability to generate executable codes of the proven statements. There is a wide range of syntax in
Isabelle/HOL, the most common and useful Isabelle/HOL expressions and symbols are summarised in
Table 1.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 45

Table 1. Isabelle/HOL symbols and expressions

Expression Description

mapping from value to value or function to function

refers to “imply” in HOL

used to define a function with its corresponding variable types, e.g. real = real is

a function from real to real numbers

refers to “imply” in the Isar language of Isabelle. For instance x=0=y=x

means that x = 0 is an assumption and y = x is to be proven

! refers to mapping of a function into a set of functions. For instance x' A means that
x is a function which maps to another function in a set of functions A. For
nonlinear operator definition in HOL like mapping signal to another signal, see
prior work in [1]

A4 means “for all” or “for any” over a domain of variables

AN stands for “for universal all” which applies to all assumptions and/or proof

statements. For instance, /\ x. Px —> Rx means that x is extended to the implied

statement Rx while Vx. Px — Rx means for all x in the assumption only

o

3 means “there exist” or “there is” over a domain of variables

3! means “there is only one” over a domain of variables

A refers to the logical “and”

\% refers to the logical “or”

X the 1% time derivative of x (x” the 2™ time derivative of x)

|x| refers to absolute value of x

Xi returns the i element of the vector x

) an operator for the dot product of two vectors

*, an operator for the multiplication of a matrix and a vector

*g an operator for the multiplication of a scalar value and a vector
Kk an operator for the multiplication of two matrices

(At.xt) this is equivalent to the function x(¢) with dependency on an argument ()
norm(x) the Euclidean norm of a vector or a matrix

SUP(x) the supremum value of x over its domain set

2.2 MetiTarski

MetiTarski is a FOL automated theorem prover, which is designed as a combination of the resolution
prover Metis [40] and a decision procedure tool QEPCAD [41] to conduct proofs of theorems stated
algebraically over the field of real numbers. It can be utilised to prove universally quantified inequalities
of transcendental and other functions as well, for instance /n, log, exp, etc. MetiTarski reduces problems
to decidable ones by replacing some functions with their upper and lower bounds. It can be made to
perform proofs automatically with the aid of three reasoners: QEPCAD, Z3 [42] and Mathematica. It
can, for instance, be used to check the stability of an unmanned aerial vehicle (UAV) during flight, due to
its ability to prove inequalities, which occur in the theory of dynamical stability, at a reasonable speed.

3.0 A Control theory verification framework

A framework is introduced here to perform the verification steps of the control theory that was applied
at the stage of aircraft design. Following an engineer’s initial control design of an aircraft, a thorough
process can be started to verify the correctness of the control system using this framework. Such a com-
puterised verification process is able to deal with stability proofs of aircraft dynamics under actuators
constraints. It is able confirm or it can make flight envelope specifications more precise. In addition, its

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

46 Jasim and Veres

UAV Verification Framework

Aircraft Dynamics and
Coordinate
Axes/Transformations

Control System

Stability Analysis

HOL Syntax : Interactive Theorem

i | Prover (Isabelle/HOL)

Automated Theorem
FOL Syntax = i Prover (MetiTarski)

Figure 1. UAVs verification framework.

methods can be extended to onboard stability monitoring of aircraft to enhance the decision making pro-
cess for aircraft safety. The framework is intended as a complementary work to conventional verification
processes such as software and control code verification. It is not to be mixed up with control system
code verification, which concerns itself with the correctness of implementation in code and also with
numerical inaccuracies due to digital processing, sensor signal processing, control surface and engine
actuator errors.

An example framework is outlined in Fig. 1. It consists of two stages:

(i) The ITP represented by the Isabelle/HOL is used to prove the mathematical derivation of the
designed control system and its stability analysis.

(ii) The ATP represented by the MetiTarski prover is deployed to continuously check aircraft stability
during the flight.

To perform the first stage, the aircraft’s dynamical parameters need to be included in the Isabelle/HOL
prover to carry out the verification process. The work starts with formalising the aircraft’s dynamics in
the HOL syntax of the Isabelle prover. The aircraft’s formal dynamical theory, which need to be included
in an ITP representation, contains the following:

(a) the dynamical equations of motion,
(b) the coordinate system in the rigid body frame,
(c) the transformations between the world and body frames,

(d) the controller design and its stability analysis.

Other needed concepts are also formalised in HOL such as definitions of the time domain, signals,
real vectors and matrices with their properties, etc.

In a second stage, the aircraft’s stability analysis is to be formalised in the FOL syntax of the
MetiTarski prover for verification of stability conditions onboard the craft. The derivative of the
Lyapunov function is formalised in order to check that the Lyapunov stability criterion is satisfied for
the current state. If the criterion is not satisfied that can be indicative of the aircraft being outside its
nominal stability domain, i.e. it violates its flight envelope.

4.0 A Case study: multi-rotor verification

This section illustrates the verification stages within framework in some detail. The stages in Fig. 1
are considered in separate subsections. The Isabelle and MetiTarski codes of these demonstrations are
downloadable by aerospace engineers from an online repository [43].

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 47

qL,» @ ®q e
Tl
E 4 |g
: comp.
I
I
I

e i Tt S T e e e 7l

Figure 2. The inner control loop of the multi-rotor controller [31] for attitude control. q is the measured
and q, is the desired attitude, q, is its error in quaternions, § is angular error vector, w, w, are the angular
velocity and reference, K,, K,, are control gains, 1 ,7 are the inertia matrix and its estimate. I'(w) is a
cross-product matrix for the Coriolis forces such that T'(w)lw = w X lw is satisfied and u, is torque
disturbance of the attitude.

4.1 Verification using the Isabelle/HOL prover

The attitude controller of a generic multi-rotor UAV, as proposed in [31], is considered here. The air-
craft’s attitude dynamics are controlled by a robust nonlinear controller that takes into account the
dynamical modelling uncertainties and payload disturbances. Figure 2 illustrates the attitude controller.

Simulation cannot be used to fully prove that the UAV’s control system is robust for all possible flight
conditions within its flight envelope. To ensure correctness of the controller robustness stated in [31], the
controller design’s derivations and stability analysis are to be verified using the Isabelle/HOL prover.
The Isabelle/HOL software system is applied for this purpose due to its rich library of mathematical
theorems, which are required to perform the UAV’s control system verification.

The verification process using Isabelle/HOL is illustrated in Fig. 3, which consists of two parts:
formalisation (HOL Platform) and proof procedures (Proof Tools). The first part starts by formalis-
ing the multi-rotor UAV system into the Isabelle/HOL syntax such as the coordinate system, rotational
dynamics, time-domain functions, proposed assumptions and the aircraft’s stability analysis. The imple-
mentation of the control design and aircraft dynamics includes a series of Isabelle items such as
definition, lemma and theorem.

In this demo some new lemmas were needed to be stated and proven, which did not yet exist in
Isabelle as that library is still under development. The formalisation also required importing some proven
mathematical theories and lemmas from the prover’s library, which were used in formalising the control
system equations with the controller’s assumptions and definitions.

The theories implemented under an HOL formalism will be described here to illustrate the proof
procedures. The HOL.thy is at the core of HOL formalism, which includes definitions of real numbers
(real.thy), functions (fun.thy), sets (set.thy), etc. These are necessary in most formal procedures. The
Quaternions.thy can be used for quaternion definitions, operations and also to represent aircraft atti-
tude. A multi-variable analysis package Analysis.thy can be exploited for function operations over real
numbers. The Finite_Cartesian_Product.thy and Inner_Product.thy can be utilised for definitions and
operations over real vectors, L2_norm.thy and Norm_Arth.thy are used for real vector norms and their
operations, respectively.

A time sub-domain has been defined as T = {t| ¢ € [0, co}} and relied on in definitions of sets of
vector signals. For instance, the concept of a function of time (i.e. signal) over [0, co) and its mapping
to another signal is an operator. Formal nonlinear operators have been defined within Isabelle to express
unknown dynamics, also used in a previous work [1], to map signals to signals by dynamical operators.
These nonlinear operators are very important in descriptions and proofs of controller robustness. It is

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

48 Jasim and Veres

UAV components

| Coordination System ” ions of motion | | Control Iawl | Assumptions and definitions || Stability Analysis |
|
I
Quaternions 3D/6D UAV n X n matrices C Q i grati Inequalities Lyapunov
vectors time-domain Differentiation theory
| | I I | I | |
l l l l HOL Platform l I l
l quaternions.thy l l Analysis.thy l l Analysis.thy l l Fun.thy l l HOL.thy l l Deriv.thy l Orderings Fun.thy
- .thy
Function_Al set.thy Derivative Orderings
_Product.thy .th
Finite_Carte gebras.thy thy Y
X real.thy
L2 Norm.thy sian_Product Lyapunov
thy Topological fun
Norm_Arith.thy _Spaces.thy
Real_Vector N
Inner_Product o
_Spaces.thy
.thy
Proof tools
Automated Isabelle Proof Interactive
Theorem SMT Solvers Mechanisms (human-machine)
Provers (ATP) (auto, simp,..etc) Proof

Figure 3. Formalising and proving UAV’s controller in Isabelle/HOL theorem prover.

worth mentioning that in the Isabelle/HOL it was possible to define such operations using the “locale”
syntax [30].

The mentioned theory Analysis.thy includes definitions of real vectors
(Finite_Cartesian_Product.thy), vector norms (L2_norm.thy, Norm_Arth.thy) and their opera-
tions. These theories enable the definitions of the aircraft’s three-dimensional rotation vectors and
their norms including the torque, angular velocity and acceleration vectors, where each component of
a vector is represented as a continuous time-domain function for signals. The continuous functions
defined in Fun.thy, Function_Algebras.thy and Topological_Spaces.thy theories have been heavily
relied on.

Matrices are formalised in Matrix.thy, and their operations and derivations performed in Analysis.thy,
Finite_Cartesian_Product.thy and Real_ Vector_Spaces.thy. The rate change of the multi-rotor’s atti-
tudes, i.e. velocities and accelerations, are formalised by time derivatives in the theories Deriv.thy and
derivative.thy.

Multi-rotor controller design requires several robustness assumptions, which need inequalities over
the field of real-numbers. Fortunately, such inequalities have been defined in the Isabelle prover in the
theory Orderings.thy. This is an important feature for any robust control design.

The second part “Theorem Proving” in Fig. 1 is an interactive process between the designer/engineer
and the automated proving tools that the Isabelle prover supports. The role of designer/engineer is to
exploit the ITP step-by-step the achieve a proof, where the system is not able to find a proof automatically,
by simplifying the statement into several steps. Each step should be proven using the provided automated
tools before moving to the next one, otherwise the prover will not pass the statement. Examples of
the automated tools supported in Isabelle are: CVC4, Z3, SPASS, E prover, Remote_Vampire and SMT
solvers. In addition, Isabelle has its own automatic proving tools such as auto, simp, blast, etc. Most
of the control systems verified in this work required an interaction with the prover due to the design
complexity making it not possible for the prover to solve them automatically.

The Isabelle code used in the case study is too long to be stated here, only the relevant definitions
and proofs are shown, while the complete code can be found in an onlinerepository [43]. Formalisation
and proofs are illustrated in the remainder of this section.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 49

The multi-rotor attitude dynamics in [31],

Io+T(wlw+1,=T1, (1)

where I € R* is a symmetric and positive-definite inertia matrix of the craft about its mass centre.

T4(t) = [T4p (1) Tao (D) T4y ()] € N are unknown disturbances torques with ¢, 0 and ¥ being the roll,
pitch and yaw angles, respectively. T(r) = [74(2) 74(f) 7, ()]" € N is the torque vector of the onboard
controller in the body frame which produces the multi-rotor motion. These can be formalised by the
following code in Isabelle/HOL.:

definition "att_dyms w W ICTt 74 =Vt €T. Yw. w € D3_vec_set) A (Vi.((At. w$i) has_derivative

(At. w/$i))(at twithin T)) NI_mat INC_funCT ITw At =1%, W +C+ 74)"

and the torque vector 7 in [31],

Ty L2 —)
T=|1|= (- Q2+ Q) ,)
7y b(— 8 +Q;— 2 +Q)

is defined by bounding all rotor angular velocities €2; with their maximum value €2,,,, as

definition "rorg_funt = (A Q) Q2 Q3 Q4. | Q1 < Quax A | Q2 < Quax A | Q3 1< Quuax A | Q4 |< Quuax AT € D3_vec_set A 1$1 =
Conlx(Q3—Q0) A 182 =015 (- + Q) A 183 =b*(-Q} + Q2 - Q2 + QD))"

where ¢ is the length from the centre of mass of the multi-rotor to the rotor, and / and b are the
aerodynamic force and torque constants of the rotors. The control input u [31],

u=ao, + K& +KjE, 3)
and the control torque [31],
T=lu+u,+éw), “4)

are defined in the prover through the following code:

definition “cont_law (7 :: (real,3)vec) Ing u tg Char = (T = Ipar * u+ug + Cpg)”

definition “cont_u_def (u :: (real, 3)vec) . K, K, £é = (= w;gr +K, 0 € + Ky *, &)

ref

where 7 is an estimated matrix of the inertia matrix I of the craft, u represents a new input vector to
be designed later on in Equation (3), w(?) is the angular velocities vector, @(¢) and ®,(f) are the angular
acceleration and reference angular acceleration vectors, respectively. K, = diaglk,, k.,k.,] € N3 is a
positive-definite diagonal gain matrix setting the error gains in feedback and K, = diag|k,, k,,k,,]1 € R***
is a positive-definite diagonal gain matrix. [q., q., ¢.,]” is a term defined to reduce the the dimensions
of quaternions. ¢(w) is an estimate of ¢(@) = I'(w)/w as based on I and measured w. The additional term
u, is added to render the effects of uncertainty and disturbances in order to guarantee robustness against
these effects; u, will be defined later, to counter these, in Equation (14). The derivative of @ [31] is

o=1"Tu+I"u;+1I"[A®) — 1,]
=u+T"T—Du+TI"u,+1I"[A@) — 7,]
:u—{—l’lud -y (5)

where

y=[—I"Tu—I"A@) - 1] , A®) =Eé®)—c(®) (©6)

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

50 Jasim and Veres

is formalised in Isabelle/HOL based on the att_dyms, cont_u and cont_law (see the the repository [43]
for the details). The closed-loop error dynamics [31] is

1=An+Gly — I 'u,] 7N
where 5 = [£” éT]T € RO*! and
03><3]I3><3 O3><3
A= |:_K3><3 _K3x3] , G= [sts] > (®)
q w

are implemented as

lemma Eq29 :

assumes V. t € T”and”(set_of de finitions w wycs W w;ef uug é §/ .{;“” q q/ qr q:, qeTTq Ny L C Chay
AAGTZ QP Ky K, I Iiw)’

shows "7]/ =A%, n+ G *, (y— (matrix_inv(l) *, ug))”

proof -

have "f” = w:_fj —w” using assms ddot_error_fun_def set_of _definitions_-def by metis

thus ? thesis by (smt G_mat_def assms(2) exhaust3 set_of _definitions_def)

qed

The set_of _definitions in the above code are definitions, which rely on many available, pre-defined
definitions in Isabelle. The flight envelope assumptions proposed in [31] are as follows.

Assumption 1,

sup (@) < a. ©

Assumption 2,
)"minf ”1_1” fkmaw (10)
IT-r'1<s=<t, (11)

where Ay > 0 and Ay > 0 a lower and upper bound, respectively; § > 0 is a constant.
Assumption 3 ,

lzall <, 12)

where y > 0 is a known upper constant bound. The above assumptions are formalised in Isabelle/HOL
as follows:

definition "assumpl “’;e/ =((SUPteT. norm(w:ef)) <a)’
definition “assump2 I Iy = (I_mat I A Iyg-mat Ingy AN Apin < norm(matrix_inv(l)) A norm(matrix_inv(l)) < Apax A
norm(mat 1 — ((matrix_inv(I)) ** Ipy)) < 6)”

definition "assump3 (14 :: (real,3)vec) = (norm(ty) <7y)”

Stability analysis of the attitude controller as stated in Equations (38)—(47) [31] is implemented in
Isabelle/HOL using a set of definitions in (definition), several lemmas in (lemma) and short theorems in
terms of (theorem). This structure of using several lemmas and theorems during the proof is due to the
fact that the reasoning system of the theorem prover cannot handle long proofs with many assumptions,
i.e. the Isabelle system is unable to prove statements, which have many equations, if they are formalised
in only one lemma or theorem style. However, stability analysis starts by defining the candidate Lyapunov
function V [31],

Vi) =n"0n>0, Vn#0 (13)

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 51

which is formalised as a definition in Isabelle/HOL:

definition ”Lyapunov Vi = (Yt € T. if (n :: (real,6)vec) # 0 then (Ja. V() = (a :: real) A continuous_on D6_vec_setV A
V(n) > 0) else V(n) =0)”

where O € R%*® is a symmetric positive-definite matrix. Taking the candidate Lyapunov function V, the
time derivative of Lyapunov function is derived and the derivations in Equations (39)—(41) in [31] are
proven symbolically and detailed in the online repository. An outline is shown below:

s N

theorem Stb_Eq_39.41 :

assumes "Vn.n # 0” and ”Lyapunov V n” and "V (n) = ne(Qx*,n)” and "A_mat A” and ”r]’ = Ax,n+Gx,(y—(matrix_inv(l)*,uz))”
and (Yt € T. ((At. V(1)) has_derivative (At. 4 (m))(at t within T))”

shows "V’) =—me(Pxm)+2%(((nv: Q) v' G)e(y—matrix_inv(l) =, ug))”

proof -

qed

. J

The term u, [31],

%G@;, i 167Nl = u
L A

is defined then as the derivative in Equation (43) [31]. This is performed using the Cauchy-Schwartz
inequality (see “theorem Eq_43” in the repository). Based on the ¢ (7, ¢) definition, & > 0, A, > O,

¢,) > (15)

)‘min ’
and the upper bound of the norm of y derived in Equation (45) (31) (see “theorem Eq_45" in the repos-
itory), ¢£(n, t) in (15) is obtained (see “theorem Eq_46” in the repository). The terms u, and ¢ (7, t) are
implemented in the prover as “u,_def” and “zeta_def” respectively:

definition "u, _def u; G Q { 1 = (Vt € T. if(norm(transpose(G) *, (Q *, n)) = u) then (uy = ({/norm(transpose(G) *, (Q *,
n))) *4 (transpose(G) *, (Q *, 1)) else (ug = ({/p) * (transpose(G) =, (Q *, n))))”
definition “zeta_def ¢ (y :: (real,3)vec) = (¥ t€T.Je.e >0 A norm(y) <& — ¢ = &/Apin)”

Note that the short arrow — in the code refers to implies, while the longer — refers to convergence in
HOL.

Finally, based on all the above definitions and assumptions, it has been verified that the proposed
control system is asymptotically stable since the time derivative of Lyapunov function [31],

. A UN))

V() =—n"Pp+20"0G(y — "' —"—_G" 0, 16
() =—n"Pn+2y OG(y 1G7on] On) < (16)
V) =—n"Pn+29"QGy —I"' g(%’t)GTQn) <0. (17

is strictly negative for Vg # 0 where A’Q + QA = —P. It has also been proven that the tracking error
converges to zero as the time converges to infinity (|||| —> 0). The code below illustrates the symbolic
proof in the Isabelle theorem prover.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

52 Jasim and Veres

Autopilot Electronic Board

‘:
i
(Linux OS)
/ﬁ :
i
Autopilot System Interface MetiTarski Prover
i
i
Parameters from i
E hi i
mergency Scheme Autopilot Checking Stability i
== Region]
i
Emergency landing Formalising to i
A : i MetiTarski Format '
Pilot/Station I Checking Torques]
@ | Warning Messages boundaries 3
i
Pass Result (0,1 |
L"g i oy
\ S
1
i
|
/

Figure 4. Onboard verification framework of UAVs.

theorem Stb_Eq 4749 :

assumes "Vr. t € T” and “(set_of de finitions w wyer W szf ug & §/ §” q q’ qr q’, geTTany(C
Cha AAGT Z, Q P K; K,y I Ing)” and “assumpl w:ef
“Lyapunov V " and ”V(5) = ne (Q =, 17)” and (¥t € T. ((At. V(1)) has_derivative

” and "assump2 I In,” and “assump3 74" and "Vn. n # 0” and

(At. 14 (m))(at t within T))” and YW = u-— y + matrix_inv(l) %, ug” and "nl = A x, 0+ G x, (y — (matrix_inv(l) *, ug))” and
"V (@) = ~(7 0 (P,) +2 % (v Qv*G) o (y — matrix_in(l) %, ug))”

shows “norm(transpose(G) *, (Q *, n)) > p = 4 () <0”

and “norm(transpose(G) *, (Q #, 1)) < u = v () < 07 and ”((At.norm(n)) — 0)(at t within T)”

proof -

show “norm(transpose(G) *, (Q *, n)) > u = v () < 0” using assms Eq-19 rel_simps(93) by metis

then show “norm(transpose(G) *, (Q *, 1)) < u = v () <0” using assms Eq-19 rel_simps(93) by metis

show ”((At.norm(n)) — 0)(at t within T)” using assms by auto

qed

4.2 Onboard verification for a safe flight using MetiTarski

The control system of the UAV can be designed, simulated and verified at the modelling/design stage.
The verified controller can then be converted into code and implemented on the autopilot system, which
controls the aircraft trajectory. The aircraft can be exposed to gusts of wind, and the payload may also
vary. Both may cause, in the extremes, unstable flight when the flight envelope is violated. The autopilot
should provide a warning when the aircraft has entered an unstable region of its dynamical states as that
may cause a crash or damage. This monitoring of the occurrence of instability can be implemented in
an ATP tool, for instance the MetiTarski prover. The MetiTarski ATP has been chosen here to verify the
controller stability of the aircraft due to its ability to deal with algebraic inequalities over numerical real
numbers quickly. Unlike the previous verification stage using Isabelle, MetiTarski proves inequalities
automatically, without the need for any interaction with a pilot or engineer.

MetiTarski can be implemented on the autopilot’s electronic board such as PixHawk [44] or Navio2
[45] Raspberry Pi and many others. Interaction between the autopilot and MetiTarski is easy to create
in practice. A possible system architecture is illustrated in Fig. 4. The applicability of this approach is
demonstrated here in simulation by interfacing the Simulink/Matlab model with MetiTarski and testing
the stability of the control system. The multi-rotor model used was based on the realistic MathWorks
Simulink model from [46].

For the stability analysis stated in Equations (16) and (17), the time derivative of the Lyapunov func-
tion needs to be tested to check whether it is negative definite or not. If it is not negative definite, then

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

The Aeronautical Journal 53

this indicates that the control system is out of its stability region, hence the autopilot can pass a warning
message to the pilot to take some suitable action or perform emergency landing.

The verification process starts by formalising the stability Equations (16) and (17) into a FOL syntax.
The parameters of these equations are then passed from the autopilot system to the MetiTarski prover
via an interface. The test is conducted in the MetiTarski prover to test the condition (V(n) < 0). The
stability equations, Equations (16) and (17), were simplified using symbolic computations in Matlab
before formalising them into FOL syntax. The parameters included in the stability equations were passed
from Simulink/Matlab to MetiTarski to perform the monitoring. The following code illustrates stability
checking in the MetiTarski prover as based on Equation (16) (the full code can be found in the online
repository [43]:

fof(Stability_Eq47, conjecture,|E_1,E2,E3,E_ 4, E5 E_6, Phi,Theta] :?[Y_1,Y_2,Y_3,Zeta_E] :

Yoassumptions

(E-1 =0.0037 & E2 =0.004964 & E3 =0.014124 & E4 = 0.0504 & E_5 = 0.05748 & E_6 = 0.03166

& Phi > —1.5708 & Phi < 1.5708 & Theta > —1.5708 & Theta < 1.5708

& abs(Y_1) <= (0.04231 = (180.7904 + (0.9 * abs(E-4)) + (16 = abs(E-1))) + (171.47 % (0.332 + 0.4231)))

& abs(Y2) <= (0.04231 = (180.7904 + (0.9 * abs(E_5)) + (16 * abs(E-2))) + (171.47 % (0.332 + 0.4231)))

& abs(Y_3) <= (0.04231 = (180.7904 + (0.0064 = abs(E_6)) + (25 = abs(E_3))) + (171.47 % (0.332 + 0.4231)))
& Zeta_E > 0 & Zeta_E >= sqri(Y_12 + Y 2% + Y 3%)/171.045

YDoimplies

=>...<0)).

and for Equation (17),

e 3

fof(Stability_Eq49, conjecture,|[E_1,E2,E3,E_4, E.5 E_6, Phi,Theta) :?[Y_1,Y_2,Y_3,Zeta_E] :

Yoassumptions

(E-1=0.001227 & E2 = 0.001241 & E3 = 0.007062 & E_4 = 0.0168 & E_5 = 0.01437 & E_6 = 0.01583
& Phi > —1.5708 & Phi < 1.5708 & Theta > —1.5708 & Theta < 1.5708

& abs(Y_1) <= (0.04231 * (180.7904 + (0.9 * abs(E_4)) + (16 * abs(E_1))) + (171.47 % (0.332 + 0.4231)))

& abs(Y 2) <= (0.04231 * (180.7904 + (0.9 * abs(E_5)) + (16 * abs(E_2))) + (171.47 % (0.332 + 0.4231)))

& abs(Y 3) <= (0.04231 = (180.7904 + (0.0064 * abs(E_6)) + (25 = abs(E_3))) + (171.47 % (0.332 + 0.4231)))
& Zeta_E > 0 & Zeta_E >= sqri(Y_1> + Y 2% + Y 3%)/171.045

Yoimplies

=>....<0)).

\ J

The system entering an unstable region has been demonstrated in Simulink- Matlab by applying an
external force to the nonlinear multi-rotor’s dynamics to simulate a strong gust of wind. The control
system tried to overcome this dynamical change and it failed to keep the system stable because the
external force was high and continuous. Without stability monitoring, this could have lead to the craft
crashing.

The approach has been implemented not only to check Lyapunov stability but also to check if the
limits of the system’s robustness parameters have been exceeded. This has been achieved by check-
ing whether the maximum value of one or all of the rotor angular velocities 0 < 2; < Q,,.x have been
exceeded. This can be known from checking the torques for || T|| < T, Where T, can be obtained from
the known maximum angular velocity of each propeller 2., and Equation (2). In the simulation this
meant that the craft was unable to compensate against the external wind and caused the craft unable to
follow its prescribed flight path. For more details, see our previous work [47]. In such a situation the
pilot, or autonomous agent, may decide not to insist on the planned flight path and make the most of the
developing situation to save the craft by replanning.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.45

54 Jasim and Veres

All that has been demonstrated in simulation can also be implemented on a real UAV. This can be
achieved as follows. First, implement MetiTarski on the autopilot’s electronic board with the stability and
verification framework. Second, implement the interface between the autopilot and MetiTarski prover.
Finally, implement the emergency decision framework inside the autopilot code as in Fig. 4.

The steps of a single cycle of stability testing, in a Simulink free onboard environment, can be
implemented as follows:

« An interface is created for the autopilot which enables communication with the MetiTarski
prover.

o The required parameters are communicated by the autopilot to the MetiTarski.
o The interface formalises the stability condition in FOL for MetiTarski.
o MetiTarski tests stability and communicates the result to the autopilot through the interface.

« The autopilot informs the human pilot or the onboard decision making software.

Using these methods the autopilot can send warning messages to the pilot, or in case of an
autonomous mission, to an onboard intelligent software agent, to decide on a suitable counter
manoeuvre [48].

5.0 Conclusions

A novel verification framework has been introduced for safety-critical control systems by applying the
power of higher-order-logic-based interactive theorem provers and first-order logic-based automated
theorem provers to verify the control system of unmanned aerial vehicles and to ensure aircraft control
system stability and performance. The framework relies on two stages, the first is for verifying the design
of the control system and its stability and the second is onboard monitoring of the aircraft’s stability to
ensure flight safety.

The framework has been demonstrated on a robust attitude controller of a generic multi-rotor UAV
to verify the correctness of the design and stability analysis in addition to onboard monitoring of the
conditions of its dynamical stability while the aircraft is flying. The aircraft’s attitudes have been con-
trolled by a nonlinear robust controller, which was designed to take into account dynamical uncertainty
and external disturbances.

The methods needed in the verification stages go significantly beyond symbolic computation of
inequalities for the Lyapunov theory, which can be based on first order logic (FOL). To prove robust
control theory, higher order logic (HOL) concepts are needed such as quantification over sets of func-
tions and operators as used in Isabelle HOL. These techniques were not found in prior literature on
aviation control systems.

The paper illustrates the applicability and the power of interactive theorem provers relying on HOL.
The methodological approach is supported by working code in an online repository [43]. This has been
an initial effort that may encourage the use of such methods for control system verification in aviation
and for safety-critical systems in general in the future.

References

[1] Jasim, O.A. and Veres, S.M. Towards formal proofs of feedback control theory, 2017 21st International Conference on
System Theory, Control and Computing (ICSTCC), 2017, pp 43—48. doi: 10.1109/ICSTCC.2017.8107009.

[2] Feron, E. From control systems to control software, IEEE Control Syst. Mag., 2010, 30, (6), pp 50-71.
doi: 10.1109/MCS.2010.938196.

[3] Jobredeaux, R.J. Formal Verification of Control Software, PhD Thesis, Georgia Institute of Technology, 2015.

[4] Wang, T. Credible Autocoding of Control Software, PhD Thesis, Georgia Institute of Technology, 2015.

[5] INTO-CPS, [Accessed: 16 May 2021] (May 2021). URL http://projects.au.dk/into-cps/

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://doi.org/10.1109/ICSTCC.2017.8107009
https://doi.org/10.1109/MCS.2010.938196
http://projects.au.dk/into-cps/
https://doi.org/10.1017/aer.2022.45

(6]

(71

(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]

[36]
[37]
[38]
[39]
[40]

[41]

The Aeronautical Journal 55

Owre, S., Rushby, J.M. and Shankar, N. PVS: A prototype verification system, in: Kapur, D. (Ed.), Automated Deduction—
CADE-11, Springer, 1992, Berlin, Heidelberg, pp 748-752.

Tiller, M. Introduction to Physical Modeling with Modelica, vol. 615, Springer Science & Business Media, 2012, New York.
M. Inc., Simulink/Matlab, [Accessed: 16 May 2021] (May 2021). URL https://uk.mathworks.com/

20-sim, [Accessed: 16 May 2021] (May 2021). URL https://www.20sim.com/

Zeyda, F., Ouy, J., Foster, S. and Cavalcanti, A. Formalising cosimulation models, International Conference on Software
Engineering and Formal Methods, Springer, 2017, Berlin, Heidelberg, pp 453—-468.

Isabelle/UTP, [Accessed: 16 May 2021] (May 2021). URL https://www-users.cs.york.ac.uk/simonf/utp-isabelle/

ERATO Team, ERATO MMSD, [Accessed: 16 May 2021] (May 2021). URL http://www.jst.go.jp/erato/hasuo/en/

NASA Langley Formal Methods Research Program, [Accessed: 16 May 2021] (May 2021).
URL https://shemesh.larc.nasa.gov/fm/index.html

Denman, W. and Muiioz, C. Automated real proving in PVS via MetiTarski, International Symposium on Formal Methods,
Springer, 2014, pp 194-199.

Mudoz, C.A. Formal methods in air traffic management: The case of unmanned aircraft systems (invited lecture),
International Colloquium on Theoretical Aspects of Computing, Springer, 2015, pp 58-62.

Munoz, C.A., Dutle, A., Narkawicz, A. and Upchurch, J. Unmanned aircraft systems in the national airspace system: A
formal methods perspective, ACM SIGLOG News, 2016, 3, (3), pp 67-76.

Hasan, O. and Ahmad, M. Formal analysis of steady state errors in feedback control systems using hol-light, 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, pp 1423-1426. doi: 10.7873/DATE.2013.290.
Harrison, J. HOL Light: A tutorial introduction, in: Srivas, M. and Camilleri, A. (Eds), Formal Methods in Computer-Aided
Design, Springer, 1996, Berlin, Heidelberg, pp 265-2609.

Rashid, A. and Hasan, O. Formal analysis of linear control systems using theorem proving, in: Duan, Z. and Ong, L. (Eds),
Formal Methods and Software Engineering, Springer International Publishing, 2017, Cham, pp 345-361.

Ma, Z. and Chen, G. Formal derivation and verification of coordinate transformations in theorem prover
Coq, 2017 International Conference on Dependable Systems and Their Applications (DSA), 2017, pp 127-136.
doi: 10.1109/DSA.2017.29.

Huet, G.K.G. and Paulin-Mohring, C. The coq proof assistant: A tutorial, Tech Rep 178 [Online]. Available:
http://cs.swan.ac.uk/csoliver/ok-sat-library/OKplatform/ExternalSources/sources/Coq/Tutorial.pdf, National Institute of
Research in Information and Automation (INRIA), 2009.

Domenici, A., Fagiolini, A. and Palmieri, M. Integrated simulation and formal verification of a simple autonomous vehicle,
in: Cerone, A. and Roveri, M. (Eds), Software Engineering and Formal Methods, Springer International Publishing, 2018,
Cham, pp 300-314.

Denman, W., Zaki, M.H., Tahar, S. and Rodrigues, L. Towards flight control verification using automated theorem prov-
ing, in: Bobaru, M., Havelund, K., Holzmann, G.J. and Joshi, R. (Eds), NASA Formal Methods, Springer, 2011, Berlin,
Heidelberg, pp 89-100.

Paulson, L.C. Metitarski: Past and future, International Conference on Interactive Theorem Proving, Springer, 2012, pp
1-10.

Araiza-Illan, D., Eder, K. and Richards, A. Formal verification of control systems’ properties with theorem proving, 2014
UKACC International Conference on Control (CONTROL), 2014, pp 244-249. doi: 10.1109/CONTROL.2014.6915147.
Filliatre, J.-C. and Paskevich, A. Why3 — where programs meet provers, in: Felleisen, M. and Gardner, P. (Eds),
Programming Languages and Systems, Springer, 2013, Berlin, Heidelberg, pp 125-128.

Platzer, A. Differential dynamic logic for hybrid systems, J. Autom. Reason., 2008, 41, (2), pp 143-189.
doi: 10.1007/s10817-008-9103-8. URL https://doi.org/10.1007/s10817-008-9103-8

Aréchiga, N., Loos, S.M., Platzer, A. and Krogh, B.H. Using theorem provers to guarantee closed-loop system properties,
2012 American Control Conference (ACC), IEEE, 2012, pp 3573-3580. doi: 10.1109/ACC.2012.6315388.

Aréchiga, N. and Krogh, B. Using verified control envelopes for safe controller design, 2014 American Control Conference,
IEEE, 2014, pp 2918-2923. doi: 10.1109/ACC.2014.6859307.

Nipkow, T., Paulson, L.C. and Wenzel, M. Isabelle/HOL: A Proof Assistant for Higher-Order Logic, vol. 2283, Springer
Science and Business Media, 2002, Berlin, Heidelberg. doi: 10.1007/3-540-45949-9.

Jasim, O.A. and Veres, S.M. A robust controller for multi rotor UAV, Aerospace Sci. Technol., 2020, 105, 106010.

Spong, M.W., Hutchinson, S. and Vidyasagar, M. Robot Modeling and Control, vol. 3, Wiley, 2006, New York.

Sciavicco, L. and Siciliano, B. Modelling and Control of Robot Manipulators, Springer Science and Business Media, 2012,
Berlin, Heidelberg. doi: 10.1007/978-1-4471-0449-0.

Slotine, J.-J.E., Li, W. Applied Nonlinear Control, vol. 199, Prentice-Hall, 1991, Englewood Cliffs, New Jersey.

Sutcliffe, Geoff and Suttner, Christian, System on TPTP, [Accessed: 16 May 2021]. (2001). URL
http://www.tptp.org/cgi-bin/SystemOnTPTP

Clarke, E.M., Grumberg, O. and Peled, D. Model Checking, MIT Press, 1999, London.

Milner, R. A theory of type polymorphism in programming, J. Comput. Syst. Sci., 1978 17, (3), pp 348-375.

Barrett, C. and Tinelli, C. Satisfiability modulo theories, in: Handbook of Model Checking, Springer, 2018, pp 305-343.
Nipkow, T. Hoare logics in Isabelle/HOL, in: Proof and System-Reliability, Springer, 2002, Berlin, Heidelberg, pp 341-367.
Hurd, J. First-order proof tactics in higher-order logic theorem provers, Design and Application of Strategies/Tactics in
Higher Order Logics, number NASA/CP-2003-212448 in NASA Tech Rep, 2003, pp 56-68.

Brown, C.W. QEPCAD B: A program for computing with semi-algebraic sets using cads, ACM SIGSAM Bull., 37, (4), 2003,
pp 97-108.

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://uk.mathworks.com/
https://www.20sim.com/
https://www-users.cs.york.ac.uk/simonf/utp-isabelle/
http://www.jst.go.jp/erato/hasuo/en/
https://shemesh.larc.nasa.gov/fm/index.html
https://doi.org/10.7873/DATE.2013.290
https://doi.org/10.1109/DSA.2017.29
http://cs.swan.ac.uk/csoliver/ok-sat-library/OKplatform/ExternalSources/sources/Coq/Tutorial.pdf
https://doi.org/10.1109/CONTROL.2014.6915147
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/ACC.2012.6315388
https://doi.org/10.1109/ACC.2014.6859307
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-1-4471-0449-0
http://www.tptp.org/cgi-bin/SystemOnTPTP
https://doi.org/10.1017/aer.2022.45

56 Jasim and Veres

[42] De Moura, L. and Bjgrner, N. Z3: An efficient SMT solver, Tools and Algorithms for the Construction and Analysis of
Systems, 2008, Berlin, Heidelberg, pp 337-340.

[43] Jasim, O.A. and Veres, S.M. Isabelle and MetiTraski Code for Controller Verification of an Attitude Controller for Multirotor
UAV, [Accessed: 14 May 2021] (May 2021). URL https://github.com/ojrobotics/fvuav

[44] PixHawk, [Accessed: 16 May 2021] (2021). URL http://pixhawk.org/

[45] Emlid. Navio2, [Accessed: 16 May 2021] (May 2021). URL https://emlid.com/navio/

[46] Horton, B. Modelling simulation and control of a quadcopter, MATLAB Academic Conference. Australia and New Zealand,
2016, pp 4-14, [Accessed: 16 May 2021]. URL https://uk.mathworks.com/videos/modelling-simulation-and-control-of-a-
quadcopter-122872.html

[47] Jasim, O.A. and Veres, S.M. Nonlinear attitude control design and verification for a safe flight of a small-scale unmanned
helicopter, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019, pp 1652—
1657. doi: 10.1109/CoDIT.2019.8820310.

[48] Lusk, P.C., Glaab, P.C., Glaab, L.J. and Beard, R.W. Safe2ditch: Emergency landing for small unmanned aircraft systems,
J. Aerospace Inf. Syst., 2019, pp 327-339.

Cite this article: Jasim O. A. and Veres S. M. (2023). Verification framework for control theory of aircraft. The Aeronautical
Journal, 127, 41-56. https://doi.org/10.1017/aer.2022.45

https://doi.org/10.1017/aer.2022.45 Published online by Cambridge University Press

https://github.com/ojrobotics/fvuav
http://pixhawk.org/
https://emlid.com/navio/
https://uk.mathworks.com/videos/modelling-simulation-and-control-of-a-quadcopter-122872.html
https://uk.mathworks.com/videos/modelling-simulation-and-control-of-a-quadcopter-122872.html
https://doi.org/10.1109/CoDIT.2019.8820310
https://doi.org/10.1017/aer.2022.45
https://doi.org/10.1017/aer.2022.45

	Introduction
	Theorem proving
	Isabelle/HOL
	MetiTarski

	A Control theory verification framework
	A Case study: multi-rotor verification
	Verification using the Isabelle/HOL prover
	Onboard verification for a safe flight using MetiTarski

	Conclusions

