
ON THE ZEROS OF THE FRESNEL INTEGRALS 

ERWIN KREYSZIG 

1. Introduction. This paper is concerned with the Fresnel integrals 

cos(p2)dp, S(u) = sm(p2)dp 
o Jo 

in the complex domain. 
Recent research work in different Melds of physical and technical applica

tions of mathematics shows that an increasing number of problems require a 
detailed knowledge of elementary and higher functions for complex values 
of the argument. The Fresnel integrals, introduced by A. J. Fresnel (1788-
1827) in connection with diffraction problems, are among these functions; 
a small collection of papers of the above-mentioned kind is included in the 
bibliography at the end of this paper (3; 5; 7; 12; 13; 17; 19; 20; 22). Moreover, 
the Fresnel integrals are important since various types of more complicated 
integrals can be reduced (6) to analytic expressions involving C{u) and 
S(u). 

At the present time the detailed investigation of special functions for com
plex argument is still in its infancy. It has been limited, until now, to certain 
classes of functions, especially to those which have the advantage of possessing 
simple functional relations or of satisfying an ordinary differential equation; 
in the latter case the theory of differential equations can be used when con
sidering these functions. The Gamma function and the Bessel functions, 
respectively, are of this kind. The Fresnel integrals do not possess these 
advantageous properties and must therefore be treated by other methods. 

The Fresnel integrals have been considered from different points of view 
(1; 2; 4; 8; 9; 14; 16; 18), but, until a short time ago, for a real argument only. 
The first two investigations (10; 11) of these functions for complex values 
of the argument include some initial results about the zeros and also two 
small tables of function values. 

In this paper we shall prove some lemmas which yield a much more refined 
knowledge of the two integrals under consideration. Furthermore, we shall 
indicate relations to other known functions and develop new methods for 
investigating and computing the zeros of these integrals. We shall find large 
domains of the complex plane which cannot contain a zero of the Fresnel 
integrals. When determining the position of the zeros of a function it is always 
important to find (more or less accurate) approximate values for those zeros; 
then the computation up to the desired degree of accuracy can be done 

Received May 12, 1950. 
This work was supported by the National Research Council of Canada. 

118 

https://doi.org/10.4153/CJM-1957-016-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-016-9


THE ZEROS OF THE FRESNEL INTEGRALS 119 

schematically by means of the usual iterative methods. We shall see that in the 
case of the Fresnel integrals such approximate values (which are even of 
great accuracy) can be obtained in a simple manner. Also the more exact 
determination of the zeros will turn out to be relatively easy if appropriate 
representations of these functions are used. A table of the values of some 
zeros of the Fresnel integrals can be found at the end of the paper. 

2. Fundamental relations, asymptotic behaviour. It is advantageous 
to transform the integrals (1.1) by means of the substitution p2 = t. In this 
manner we obtain 

r^cos t dt, S(u) = \ rtdn / dt. 
o Jo 

Since we will primarily investigate the zeros of those functions the factor ^ 
becomes unessential, and we will therefore omit it. We write 

(2.1) C(z) = I t~hcostdt, 5(a) = I rhintdt 
Jo Jo 

where z = x + iy denotes a complex variable. The representations (2.1) will 
be used in what follows. 

For finite values of \z\ the Taylor series development of the integrands 
of (2.1) at z = 0 may be integrated term by term. We find 

(2.2) C(z) = ê £ 7 r - r ^ 1
T T r 

t^o (2m) \ (2m + J) 

SCO = ** Z (-1)" 2m+l 

w=0 (2m + l)!(2w + | ) 

The functions z~*C(z) and z~*S(z) are entire transcendental functions. C(z) 
and S(z) have a branch point at z = 0; from (2.2) we obtain the relations 

(2.3) C(zeikT) = eik*/2C(z), S(z eikT) = e'**"* 5(a). 

Furthermore, 
(2.4) C(z) = Clz), S(z) = 5(a). 

Hence we may limit our considerations to the first quadrant (x > 0, y > 0) 
of the a-plane. 

We now consider the asymptotic behaviour of the Fresnel integrals. In 
order that the limits 

tdt (2.5) C = lim I / "cos t dt, S = lim I t "sin 
2^oo Jo Z-->cn Jo 

exist, we must choose a path of integration which goes asymptotically parallel 
to the real axis (y = 0) to infinity. Then C and 5 have a uniquely determined 
finite value; transforming Euler's integral representation of the Gamma 
function in a suitable manner we find 

(2.6) C = 5 = 2-*r( i ) = V(?r/2) = 1.253 314 1 . . . 
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Using such a path of integration, we have 

(2.7) C(z) + c(z) = C, S(z) + s(z) = S, 

where 

J»QO /*CO 

r*costdt, s(z) = I f'smtdt. 
Integrating (2.8) by parts and using (2.7), we obtain the following series 
representation of the Fresnel integrals: 

(a) C(z) ~ C + z~i{a{z) cos z + b(z) sin z), 
(2.9) 

(b) S(z) ~ S + z~2( — b{z) cos z + a(z) sin z) 

where 

LEMMA 1. The series (2.9) ar£ asymptotic expansions of C(z) and S(z), 
respectively, for all complex values of z with the exception of pure imaginary 
ones. 

Proof. Let us assume that we have integrated (2.7) by parts a number ot 
times so that the integrated term finally obtained involves the power z~"'+'2. 
Then, when neglecting some numerical factor which does not interest us, the 
remaining integral is of the form 

J»0O /«CO 

r(m+vcostdt or J r(m+i)smtdt. 
We thus have to estimate the integrals 

K, = J r(w+*V to, K2 = J r ( w +Vto. 

Setting t = z -\- iw and / = z — iw, respectively, we obtain 

J»co 

(1 + iw/zY^e^dw, 
o 

/»oo 

K2 = - i r f V ( m + i ) (1 - iw/z)-(m+h)e-wdw. 
Jo 

If s is a not a pure imaginary number, i.e. |arg z\ < \-K — 7 or |arg z\ > 7̂r + 7, 
7 > 0, the inequality 

|1 ± iw/z\ > sin 7 

holds, and therefore 

J»oo 

(1 ± iw/zTlm+i)e~wa 
0 

wdw 

1 t7o 

Hence 

< (cosec 7) m+l 

fl*Kx = 0(z-""+i>), e"K2 = 0(z-'m+v). 
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The constant involved in the Landau symbol does not depend on arg z but 
depends on y and tends to infinity if y tends to zero. 

A value of z being given, the greatest possible accuracy is obtained if the 
number of terms of (2.9) is chosen so that the last term corresponds to the 
highest value of m for which 

(2.10) m< è î ( N 2 + i ) è + M 

still holds, as can easily be seen. 

3. Relations to other known functions. The relations of the Fresnel 
integrals to the incomplete gamma functions 

(3.1) (a) P (« , z) = J V v * - 1 * , (b) (2(0, z) = J V V * " 1 * = T(0) - P(<M) 

are of basic importance. Setting </> = \ and substituting t = iw and t = — iw, 
respectively, we obtain from (3.1a) 

( 3 2 ) C{z) = * [HP(è , iz) + i *P ( i - i s ) ] , 

5(s) = è [ÀP( i ,« ) + H P ( i , - i s ) ] . 

When computing a table of a special function the situation is very often as 
follows: For small arguments the Taylor series development at z — 0 can be 
used and for large values of \z\ the asymptotic expansion permits a simple 
calculation. The remaining difficulty consists in determining function values 
for arguments which are not very close to z = 0 but are too small to be 
calculated exactly enough by means of the asymptotic expansion. With respect 
to the Fresnel integrals we are just in such a situation, but we can overcome 
the difficulty by using the Nielsen representation (16, p. 84): 

(3.3) 0(*t, + h) = Q(*,z) - e-'t {-lAm ~ * ) ^ y ^ « . 

Setting <$> = \, t = iw, and t = — iw, respectively we obtain from (3.1b), 

( 3 4 ) c(z) = i[*-*0(i, iz) + ihQ(h - « ) ] , 
s(z) = i[ikQ(h M) + HQ(4 , -iz)], 

and from this and (3.3), 

c(z + h) = c(z) + Ï2-1 H ( P , ( * ) - P*(z)), 

HPl(z) + P2(2)) 
(3.5) 

s(z + h) = s(z) - 2-15T*(Pi 

where 

(3.6) I\{z) = 
-^ v^ •*/ w - A P ( W + 1, iA) 

= e Z> M i / ;™ 
w =0 \ 2 / * 

0(2) = ^ LJ l \ l / ~m 
m=0 \ 2 / ^ 
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•"(it. 
' 0 

By means ot (2.8) and (3.5) we are able to calculate the first differences of the 
function values of C{z) and S(z). Starting then from function values which 
can be simply obtained by using (2.2) or (2.9) we can immediately compute 
the desired function values of the Fresnel integrals. For the above-mentioned 
''medium" values of the argument this procedure is much better than a direct 
calculation by means of (2.2). From (3.1) we have 

o 
Starting from (3.7a) and using the recurrence relation 

P(m + 1, h) = mP(m, h) — e~hhm, 

the functions P(m + \,ih) and P(m + 1, —ih) occurring in (3.0) can be 
easily calculated. It is advantageous, of course, to choose a fixed value of h 
for a certain computation. 

For the sake of completeness we mention also the following relations: using 
the integral representation (15, p. 87) 

ot Kummer's function \Fi(a, c; z), setting a = \, c = | and / = d= iw, 

respectively, we obtain 

/3 8x C(z) = Vz[iFi(h I ; -iz) + i F i ( i i ; iz)] 

S(z) = iVz[iFi(h,h —iz) - JMh i;iz)]. 

It is known that the Fresnel integrals are also related to the error function 

2 Cz 

4>{z) = - e~t2dt; 
-ÏÏ J o 

substituting / = \/(zkiw) we have 

C(z) = \ir[v<l>W-iz) + i-^(Viz)] 
(3.H) 

S(z) = \ir[i-*<t>W-iz) + i"(j>Wtz)}. 

4. Domains which cannot contain zeros. Let us first give a simple proof 
of the fact that all zeros z(j*0) of the Fresnel integrals must be complex. 

LEMMA 2. The Fresnel integrals do not vanish for any real or purely imaginary 
argument different from zero. All zeros of these functions are simple and conjugate 
complex to each other in pairs. 

Proof. In consequence of (2.3) we may consider positive values of x only. 
From the form of the integrand of (2.1) it follows that 

C((4» + 1)TT/2) - C((4« - 1)TT/2) > 0, n = 1, 2, . . . , 

u n
 ( a ) C((4n + 3 W 2 ) - C((4n + l)x/2) < 0, \ 

{ } S((2n+ 1)TT) - S(2mr) > 0, ) " , i , - - - , 
W S{2nir) - S((2n - 1)TT) < 0, n = l , 2 , 
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Since #""5 is monotone, 

(a) \C((2n + 3)TT/2) - C((2n + 1)TT/2) | < \C((2n + 1)TT/2) 

(4.2) - C ( ( 2 w - l)7r/2)| 

(b) | 5 ( (» + 1)TT) - S(»*-)| < | 5 ( W T ) - S((n - l » ! , » = 1, 2, . . . . 

From (4.1b), (4.2b), and 5(0) = 0 it follows tha t S(x) ^ 0 for any real 
value of x 9e 0. In order to draw the same conclusion with respect to C(x) 
from (4.1a) and (4.2a) we have to prove tha t C(3TT/2) > 0. Using (2.6), 
(2.8) and integrating by parts , we find 

C ( 3 T T / 2 ) = V ( T T / 2 ) - V(2/37r) + 1 \ r*/2costdt. 
•J 3* /2 

Since t~b/2 is monotone, 

J
1 i(2ra+l)*72 | I / » ( 2 « + 3 ) T T / 2 

r5/2costdt\ > t~b/2costdt 
Consequently 

1,2, 

j" 
*J 3TT /2 

r 5 / 2 c o s tdt>0. 

Hence C(37r/2) > 0. This completes the proof tha t C(z) cannot vanish for 
real values of x ( ^ 0 ) . If z is a pure imaginary number all terms in (2.2) have 
the same sign; hence there cannot exist a pure imaginary zero of the Fresnel 
integrals. The existence of zeros follows from the fact tha t z*C(z) and z^S(z) 
are entire functions which are not of the kind of an exponential function. 
Since the integrands of the Fresnel integral have real zeros only the zeros of 
the integrals are simple. Since (2.2) has real coefficients the zeros of the Fresnel 
integrals are conjugate complex in pairs. This completes the proof of Lemma 2. 

We now consider the possibility of limiting the zeros of C(z) and S(z) to 
certain domains of the complex plane. 

T H E O R E M 3. The Fresnel integral C(z) cannot possess zeros in any of the 
strips which are parallel to the y-axis and correspond to the values 

0 < x < 7T, (4w - 1)TT/2 < x < (2w + 1)TT, n = 1 , 2 , . . . . 

The same is true for S{z) with respect to the strips parallel to the y-axis and 
corresponding to the values 

0 < x < 3TT/2, 2wir < x < (in + 3)TT/2, n = 1 , 2 , . . . . 

Proof. Because of (2.3) and (2.4) we may consider the first quadran t 
(x < 0, y < 0) of the 2-plane only. In order to prove the first of the two 
s ta tements we s tar t from the integral 

J
*x+iv 

f~*cos t dt. 
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Setting / = x + iw and (x + iw)~2 = a + ib we obtain 

J» v nv 

a sinh w dw — cos x I £ cosh w dw, 
0 t /0 

b sinh ze; dw + cos x I a cosh ze; dze/. 
o «/o 

Since x > 0 and 3/ > 0 we have a > 0 and 6 < 0 for all values of z under 
consideration. C(x) is real and not negative, cf. Lemma 2. We thus obtain 

9Î / > 0, $ CO) > 0 (2mr < x < (4w + 1)TT/2), 

and 
3 / < 0 ((4ra + 1)TT/2 < x < (2w + 1)TT), 

3 7 > 0 ((4w + 3)TT/2 < x < (2« 4- 2)TT). 

From this the statement on C(z) follows. The second part of Theorem 3 can 
be proved in a similar manner. 

It should be noticed that the idea of the proof of Theorem 3 can be applied 
to more general integrals of the type 

(4.3) C(z, a) = I Tacos tdt, 0 < a < 1 
Jo 

in order to obtain the same result on the zeros. Also the integrals 

(4.4) S(z, a) = I r t tsin tdt, 0 < a < 1 
t / 0 

may be considered in this manner, but the method is not applicable to inte
grals (4.4) having values of a between 1 and 2 (exclusively), since in this case 
3Î t~a > 0 and 3 t~a < 0 may not hold. Indeed, for sufficiently large values 
of a (<2) , S(zy a) has zeros also outside of the strips defined by 

{4M - 1)TT/2 < x < 2nw. 

5. Formulas of approximation for the zeros. From Theorem 3 we can 
draw the important conclusion that all zeros of C(z) and S(z) are at a sufficiently 
large distance from the origin z = 0. This fact enables us to use the asymptotic 
expansion (2.9) for a more detailed investigation of those zeros. 

As was pointed out in the introduction, it is always important to have 
approximation formulas for the position of the zeros of a function, since 
approximate values can yield the starting point for applying one of the usual 
iterative methods for a more accurate determination of those zeros. We will 
now derive simple approximation formulas for the zeros of C(z) and S(z). 

In consequence of (2.9) the zeros of the equation 

(5.1) sin z = — C\/z 

are first approximations of the zeros of C{z). Setting y/z = p + iq and using 
(2.6), we obtain from (5.1) 

(5.2) p = — y/{2/ir) sin x cosh y, q = — -\/(2/ir) cos x sinh y. 

https://doi.org/10.4153/CJM-1957-016-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-016-9


THE ZEROS OF THE FRESNEL INTEGRALS 125 

We consider the strip Sn: (2n — 2)TT < x < 2mr, y > 0, which is parallel to 
the y-axis. In consequence of Theorem 3, only the par t Sn' C Sn} defined by 
(2« — 1)TT < x < (4w — 1)TT/2, 3> > 0 can contain a complex zero of C(z). 
Sett ing 

H(z, a) = I r ° c o s tdt, | > a > 0 
•/o 

we have i / ( z , 0) = s i n s and H(z, J) = C(s). H(z,0) has real zeros and 
i f (s, ^) has complex zeros only. Hence, if a decreases monotonely from J to 0 
then, for a certain value a0 = ao(n), \ > a0 > 0 we must have a real zero 
zao of H(z, a) in 5 n a first time. Since, for all values of a, H(z, a) has a minimum 
a t x = (4n — l)7r/2 the zero zao must coincide with t ha t point. Hence, when 
denoting by xn the real par t of the zero of C(z) in Sn

f and setting 

(5.3) xn = (4« - 1)TT/2 - yn, 

because of continuity yn mus t be a small (positive) quant i ty . We have 

cos xn = —7» + 0(7»), sin xn = — 1 + 0(7^), 

where the functions indicated by the Landau symbol are small of higher order. 
The absolute values of the zeros of C(z)— even t ha t of the smallest one —are 
relatively large, cf. Theorem 3. Hence the same is t rue for the corresponding 
quant i t ies \p\. Sett ing 

cosh y = \ev + 0(e-y), sinh y = \ev + 0 ( 0 , 

the second term is thus small in comparison with the first one. Omit t ing the 
functions indicated by the Landau symbols and using 

(5.4) x = p — g = —(sin x cosh y — cos x sinh y), 
IT 

cf. (5.2), we obtain the following approximate expression yo<n for the imaginary 
par t yn of the zero of C(z) which is located in Sn: 

(5.5) yo,n = log (TTV(4W - 1)), » = 1, 2, . . . . 

From (5.3)-(5.5) and 

y = 2pq — — sin 2x sinh 2y, 
T 

cf. (5.2), we obtain a similar approximation x0>n for the real par t xn of the zero 
of C(z) which is located in Sn: 

(5.b) x o t l l - 2 ( 4 n - l ) x ' n - 1 , 2 , . . . . 

T h e degree of accuracy of these simple formulas (5.5) and (5.6) is relatively 
high. For the real and imaginary par t of the smallest zero of C{z) the error 
amounts to 2 per cent and 1 per cent, respectively. T h e accuracy increases 
rapidly with increasing values of \z\, as can easily be proved. 
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Comparing (5.5) and (5.6) we find 

LEMMA 4. The imaginary part yn of the nth zero of C(z) increases monotonely 
with n. We have 

(5.7) limyn/xn = 0. 

The difference yn between xn and {\n — 1)TT/2 decreases monotonely with 
increasing n and tends to zero if n tends to infinity. 

Using (5.1), the third term of (2.9) takes the form 

^z~'U2cosz = i(2z)~1\/(^w — z~l) 

which becomes arbitrari ly small if \z\ increases arbitrari ly. T h a t is, if the 
desired accuracy is not too great one may restrict oneself to the first approxi
mation of the zeros. 

In consequence of (2.9) the zeros of the equation 

(5.8) cos z = S\/z 

are the first approximation of the zeros zn* = xn* + iyn* of S(z). In a manner 
similar to the preceding one we obtain from (5.8) 

(5.9) yt.n = log (2TTVW), n = 1, 2, . . . 

and 

(o.lO) xo,n = 2mr — , n = 1, 2, . . . . 

These formulas are also of a relatively high degree of accuracy. For the smallest 
zero of S(z) the error is about 5 per cent for the imaginary pa r t and 1 per cent 
for the real par t . T h e error is much smaller for the larger zeros, e.g. about 
1 per cent for the imaginary par t and 0.3 per cent for the real par t of the 
second zero, etc. 

From (5.9) and (5.10) we find 

(5.11) limyn/xn = 0. 

6. More exact d e t e r m i n a t i o n of t h e zeros . In the preceding section 
first approximations of the zeros of the Fresnel integrals C(z) and S(z) were 
obtained from (2.9). As follows from Theorem 3 and (2.10) the expansion 
(2.9) permits also a more exact determinat ion of those zeros. In the case of 
the smallest zero (2.10) yields m — 2, i.e. the greatest possible accuracy is 
obtained if we take the constant term and the next 4 terms of (2.9) and deter
mine the smallest zero of the function thus obtained. In the case of the second 
zero we have from (2.10) m = 6, i.e. we have to t ake the cons tan t term and 
the next 12 terms of (2.9), etc. However, even the simplest of the equat ions 
which we obtain in this manner is too complicated and cannot be solved 
immediately. But there is another way which will turn out to be very simple. 
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Let us first consider the Fresnel integral C(z). We s ta r t from the values 
obtained from (5.5) and (5.6) and improve those values by applying the 
Newton method. T h e values z\%n thus obtained from zQ>n are more accurate 
approximations of the zeros of (5.1). We now apply the Newton method 
several times and, from step to step, we always take into account one more 
term of (2.9a). Let us denote by fp(z) the function which is obtained by taking 
the constant term and the next p terms of (2.9a). The zero of the equation 
fp(z) = 0 which is contained in the strip Sn' (cf. §5) will be denoted by zPttl. 
The derivative of fp(z) is given by the simple expression 

(6.1) /JO*) = *"*(coss + *„(*)), p = 1, 2, . . . , 

where hp(z) is of the form k\Z~p sin z or k2z~p cos z, k\ and k2 denoting certain 
constants ; all other terms drop out in pairs; hp(z) is small in comparison with 
cos z. If zP-itn denotes the zero of the equation fp_i(z) — 0 in Sn' thenfp(zp-.it.„) 
consists of one term only, namely, of the last term of (2.9a) under considera
tion. T h e function tan zPj7l, occurring as a factor in some of the Newton quot
i e n t s / / / , may be replaced by i\ this simplification is the same as tha t in the 
preceding section where we omitted the functions indicated by Landau 
symbols. 

In the case of the Fresnel integral S(z) the reasoning is exactly the same as 
in the case of C{z). 

The procedure yields a finite sequence Zi>n, z2>n, . . . of approximative values 
of the zero zn of C(z). T h e terms of this sequence are recursively determined 
by the following simple relation : 

(6.2) Zp+itn = zPtn + cp(2zp>n)-
p
} p = 1, 2, . . . , 

where 
c2q+1 = ( - 1 ) « 1 . 3 . . . (4<?+ 1), (y = 0 , 1 , . . . , 
c2g = ( - 1 ) ^ 1 . 3 . . . (4g - \)i, g = 1,2, . . . . 

For S(z) we similarly find 

(6.3) Zp+l,n = Zp,n + Cp(2Zp,n)~P, p = 1 , 2 , . . . , 

where the constants cp are the same as in the preceding formula. Of course 
the numerical values of the different correction terms are entirely different 
in both cases, since zp>n differs from the corresponding approximate value 
zPtn*. For every fixed value of p the corresponding correction term decreases 
monotonely with increasing n. Since, for fixed n and p, \zPtn*\ > \zPtn\, the 
absolute value of the correction term Cp(2zPtn*)~p is smaller than tha t of 
cp(2zPtn)~p, bu t greater than tha t of cp(2zPtn+i)~p. 

7. F u r t h e r propert ies of t h e zeros . From the preceding results we can 
draw some conclusions which might be of interest. Let us compare the zeros of 
C(z) with those of S(z). From (5.5), (5.6), (5.9), and (5.10) we find t ha t not 
only the sequences (yo.*), (yo,«*), (7»)» (7**), where 7 / = (4wir)"1log (2T\/?I), 
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are monotone, but also the sequences 3/0,1, 3>o,i*, 3̂ 0,2, 3>o,2*, . . . and 7!, 7!*, 
72, 72*, . . • • We thus obtain 

THEOREM 5. The zeros of C(z) and S(z) are (asymptotically) located on one 
and the same logarithmic curve, in alternating order \ this curve can be represented 
in the form 
(7.1) y = =b èlog27rx. 

In consequence of (5.3), (5.7) and (5.11), the series 
00 00 

(7.2) ZK\~\ ZkT1 

n==l n—l 

are minorants of the harmonic series. Hence the series 
00 00 

(7.3) £ kl-1-', E l£r1-', * > o, 
«==1 n—l 

converge, but the series (7.2) diverge. The functions z*C{z) and z*S{z) thus 
are entire functions of first order of divergence class. 

According to the order of z*C(z) and z*S(z) the exponent of the exponential 
function contained in the Weierstrass product of these functions can at most 
be a linear function of z. It can be proved that, in our case, this function is 
actually a constant. Since 

lim z-1/2C(z) = 2, lim s"3/25(s) = §, 
|z|->0 UUo 

the Weierstrass products of the Fresnel integrals have the form 

(7.4) c(2) = 2 2
i ' 2 n ( i - j ; ) ( i - 2 ; ) , 

n — l \ %n' \ 6n/ 

S(z) = îz^f{(l - Ù(l - Ù . 
n=l \ Zn / \ Zn / 

8. Distribution of the function values of the Fresnel integrals. Tables 
of the function values of the Fresnel integrals for complex values of the argu
ment have been communicated in (10; 11). Both functions have a similar 
behaviour which can be most simply described by characterising the geometric 
form of the surfaces F(C) and F(S) of the absolute value of C(z) and S(z). 

In consequence of the maximum principle, the real extreme values of C(z) 
and S(z) correspond to saddle points of F(C) and F(S). Because of (2.4), 
both surfaces are symmetric with respect to the x-axis. Any zero is a singular 
point of the surfaces which, in a small neighbourhood of such a point, behave 
like a circular cone Z; the angle between the generators of Z and the x^-plane 
is about J7r, as can be seen from the Taylor series development of C{z) and 
S(z) at a zero under consideration. Any other point which corresponds to a 
finite value of s is a regular point of the surfaces. It can be seen from (2.9) 
that the surfaces ascend rapidly for large y. The tangent of the angle a(z) 
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between the direction of maximum slope and the xy-plane is asymptotically 
given by the expression 

(8.1) tana(s) = i |s |~V. 

Along the lines y = const., the maximal slope decreases with increasing x. 
There exist real points of inflection of the curves C(x) and S(x) at x = mr — 8 (n) 
and x = (2n + l)ir/2 — Ô*(w), respectively, where ô(n) and ô*(n) are positive 
and monotonely decreasing functions of n. All these points are isolated 
parabolic points of the surfaces F(C) and F(S). The surfaces consist of domains 
of positive and negative Gaussian curvature which are bounded and separated 
from each other by curves whose points are parabolic ("parabolic curves"). 
These curves can be obtained from 

(8.2) 9t(/ /2//; //) - 1 = 0 , 
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(cf. 21), where / = C(z) or S(z), respectively. Through any zero there passes 
exactly one of those curves; the curves remain always in a neighbourhood 
of the curves of constant phase T/2 and 37r/2 with which they asymptotically 
coincide. 

9. Tables. The methods developed in this paper enable us to investigate 
and to calculate the zeros of the Fresnel integrals in a simple manner. 

We did not consider the functions c(z) and s(z) defined by (2.7). Although 
these functions are very simply related to the Fresnel integrals, their behaviour 
is different from that of C(z) and S(z). Since c(z) and s(z) also occur in connec
tion with many practical problems they should eventually be studied more in 
detail; this will be done in a subsequent paper. 

Zeros zn — xn =t iyn of C(z) 

n Xn yn n Xn yn n Xn yn n Xn yn n Xn yn 

1 4-62 1-68 11 67-53 3-03 21 130-36 3-35 31 193-20 3-55 41 256-03 3-69 
2 10-94 211 12 73-81 3-07 22 136-65 3-38 32 199-48 3-57 42 262-32 3-70 
3 17-24 2-34 13 8010 311 23 142-93 3-40 33 205-77 3-58 43 268-60 3-72 
4 23-53 2-50 14 86-38 315 24 149-21 3-42 34 212-05 3-60 44 274-88 3-73 
5 29-82 2-62 15 92-66 3-18 25 155-50 3-44 35 218-33 3-61 45 281-17 3-74 

6 36-11 2-71 16 98-95 3-22 26 161-78 3-46 36 224-62 3-63 46 287-45 3-75 
7 42-40 2-79 17 105-23 3-25 27 16806 3-48 37 230-90 3-64 47 293-73 3-76 
8 48-68 2-86 18 111-51 3-28 28 174-35 3-50 38 237-18 3-65 48 300-02 3-77 
9 54-96 2-92 19 117-80 3-30 29 180-63 3-52 39 243-47 3-67 49 306-30 3-78 
10 61-25 2-98 20 124-08 3-33 30 186-92 3-53 40 249-75 3-68 50 312-58 3-79 

Zeros zn* =* xn* + iyn* of S(z) 

n Xn y• * n Xn* yn* n Xn Vn* n Xn* yn* n Xn* yn* 

1 6-20 1-74 11 69-09 304 21 131-93 3-36 31 194-77 3-55 41 257-60 3-69 
2 12-51 2-16 12 75-38 3-08 22 138-22 3-38 32 20105 3-57 42 263-89 3-71 
3 18-81 2-37 13 81-66 3-12 23 144-50 3-41 33 207-34 3-59 43 270-17 3-72 
4 25-10 2-52 14 87-95 316 24 150-79 3-43 34 213-62 3-60 44 276-45 3-73 
5 31-38 2-63 15 94-23 3-19 25 15707 3-45 35 219-90 3-62 45 282-74 3-74 

6 37-67 2-72 16 100-52 3-22 26 163-35 3-47 36 226-19 3-63 46 289-02 3-75 
7 43-95 2-80 17 106-80 3-25 27 169-64 3-49 37 232-47 3-64 47 295-30 3-76 
8 50-24 2-87 18 113-08 3-28 28 175-92 3-50 38 238-75 3-66 48 301-59 3-77 
9 56-52 2-93 19 119-37 3-31 29 182-20 3-52 39 24504 3-67 49 307-87 3-78 
10 62-81 2-99 20 125-65 3-34 30 188-49 3-54 40 251-32 3-68 50 314-15 3-79 
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