
14
Deep-inelastic scattering from the nucleon

We proceed to a discussion of inclusive deep-inelastic electron scatter-
ing from the nucleon N(e, e′)DIS. Here both the four-momentum transfer
q2 and energy transfer ν = q · p/m become very large.1 It is through
these experiments, initially carried out at the Stanford Linear Accelerator
Center (SLAC), that the first dynamic evidence for a point-like sub-
structure of hadrons was obtained [Bj69, Fr72]. The structure functions
exhibit this point-like substructure through Bjorken scaling, which implies
Fi(q

2, ν) → Fi(q
2/ν) as q2 → ∞ and ν → ∞ at fixed q2/ν. To set the stage

for the discussion in this section, we first review some of our general con-
siderations on electron scattering [Qu83, Wa84] which form an essential
basis for what follows. The experimental deep-inelastic results are then
summarized [Fr72, Bj69, Qu83]. Finally, the quark–parton model is devel-
oped. It is through the quark–parton model that the deep-inelastic scaling
was first understood [Fe69, Bj69a, Ha84, Ai89, Ma90].2 The change of
the structure functions in nuclei (EMC effect) gives direct evidence for the
modification of quark properties in the nuclear medium [Au83], and this
is briefly discussed.

The kinematics for electron scattering employed in this section are
shown in Fig. 14.1. Here the four-momentum transfer is defined by3

q = k2 − k1 = p − p′

q2 = 4ε1ε2 sin2 θ

2
; lab (14.1)

1 We revert here to the previous notation where q denotes the momentum transfer in an

inclusive process.
2 QCD then allows a calculation of the corrections to scaling and the evolution equations

for doing this [Al77] are discussed, for example, in [Wa95].
3 Massless electrons are again assumed throughout this discussion.
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96 Part 2 General analysis
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Fig. 14.1. Kinematics in electron scattering; momenta are four-vectors.

We further define

ν ≡ q · p
m

= ε1 − ε2 ; lab

x ≡ q2

2mν
(14.2)

These are the energy loss in the lab frame and Bjorken scaling variable,
respectively.

The S-matrix for the process in Fig. 14.1 is given by

Sf i = − (2π)4

Ω
δ(4)(k1 + p − k2 − p′)eepū(k2)γμu(k1)

1

q2
〈p′|Jμ(0)|p〉 (14.3)

Here Jμ(x) is the local electromagnetic current operator for the target
system. With box normalization,4 momentum conservation is actually
expressed through the relation

(2π)3

Ω
δ(3)(k1 + p − k2 − p′)

.
= δk1+p,k2+p′ (14.4)

The incident flux in any frame where k1||p is given by

I0 =
1

Ω

√
(k1 · p)2
ε1Ep

(14.5)

Then for a one-body nuclear final state

Sf i ≡ −2πi δ(ε1 + Ep − ε2 − Ep′)δk1+p,k2+p′T̄f i

dσf i = 2π|T̄f i|2δ(Wf − Wi)
Ωd3k2

(2π)3

[
1

Ω

√
(k1 · p)2
ε1Ep

]−1

(14.6)

Here Wf = ε2 + Ep′ and Wi = ε1 + Ep are the total final and initial
energies, respectively. It follows that the differential cross section in any

4 That is, periodic boundary conditions in a big box of volume Ω.
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14 Deep-inelastic scattering from the nucleon 97

frame where k1||p is given in Lorentz invariant form by

dσ =
4α2

q4

d3k2

2ε2

1√
(k1 · p)2

ημνWμν (14.7)

In this expression the lepton and hadron tensors for unpolarized electrons
and targets, generalized to include arbitrary nuclear final states, are defined
by

ημν = −2ε1ε2
1

2

∑
s1

∑
s2

ū(k1)γνu(k2)ū(k2)γμu(k1) (14.8)

Wμν = (2π)3Ω
∑
i

∑
f

δ(4)(q + p′ − p)〈p|Jν(0)|p′〉〈p′|Jμ(0)|p〉Ep

The lepton tensor can be evaluated directly (recall the mass of the electron
is neglected)

ημν = −2ε1ε2
1

2
trace

(−ik1λγλ)

2ε1
γν

(−ik2ργρ)

2ε2
γμ

= k1μk2ν + k1νk2μ − (k1 · k2)δμν (14.9)

It follows from the definition in Eq. (14.8) that the lepton current is
conserved

qμημν = ημνqν = 0 (14.10)

The hadron tensor depends on just the two four-vectors (q, p) and is also
conserved; its general form is

Wμν = W1(q
2, q · p)

(
δμν − qμqν

q2

)

+W2(q
2, q · p) 1

m2

(
pμ − q · p

q2
qμ

)(
pν − q · p

q2
qν

)
(14.11)

With this background, let us proceed to further analyze the hadronic
response tensor. The Heisenberg equations of motion for the target are as
follows:

Ô(x) = e−iP̂ ·xÔ(0)eiP̂ ·x (14.12)

They can be used to exhibit the space-time dependence of a matrix element
taken between eigenstates of four-momentum

Wμν =
1

2π
(ΩE)

∑
i

∑
f

∫
eiq·zd4z〈p|Jν(z)|p′〉〈p′|Jμ(0)|p〉

=
1

2π
(ΩE)

∑
i

∫
eiq·zd4z〈p|Jν(z)Jμ(0)|p〉 (14.13)
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98 Part 2 General analysis

p´

pq

Fig. 14.2. Kinematics for crossed term.

Completeness of the final set of hadronic states has been used to obtain
the second line. Consider the matrix elements of the operators in the
opposite order∫

eiq·zd4z〈p|Jμ(0)Jν(z)|p〉 ∝
∑
f

(2π)4δ(4)(p + q − p′)〈p|Jμ(0)|p′〉〈p′|Jν(0)|p〉

(14.14)
Here the kinematics are illustrated in Fig. 14.2

p + q = p′

q0 = ε2 − ε1 < 0 (14.15)

One cannot reach a physical state under these kinematic conditions since
the nucleon is stable; thus the expression in Eq. (14.14) vanishes. One can
subtract this vanishing term in Eq. (14.13) and write Wμν as the Fourier
transform of the commutator of the current density at two displaced
space-time points

Wμν =
1

2π
(ΩE)

∑
i

∫
eiq·zd4z〈p|[Jν(z), Jμ(0)]|p〉 (14.16)

Introduce states with covariant norm5

|p
)

≡
√

2E Ω |p〉 (14.17)

Equation (14.13) can then be rewritten

−πWμν ≡ tμν = −1

4

∑
i

∫
eiq·zd4z

(
p|[Jν(z), Jμ(0)]|p

)
(14.18)

This expression is evidently covariant; it forms the absorptive part of the
amplitude for forward, virtual Compton scattering. Since the currents are
observables, their commutator must vanish outside the light cone. Thus
the only contribution to this integral comes from inside the light cone.

5 The norm of these states is
(
p |p ′

)
= 2E(2π)3δ(3)(p −p ′); this is Lorentz invariant.
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14 Deep-inelastic scattering from the nucleon 99

Fig. 14.3. Visual fits to spectra showing the scattering of electrons from hydrogen
at θ = 10o for primary energies 4.88 to 17.65 GeV. The elastic peaks have been
subtracted and radiative corrections applied. The cross sections are expressed in
nanobarns/GeV/steradian [Fr72].

In the Bjorken scaling limit, the dominant contribution to this integral
comes, in fact, from singularities on the light cone (see e.g. [De73]). This
observation forms the basis for a covariant, field theory evaluation of the
structure functions and systematic determination of corrections. The light-
cone analysis of this expression is discussed in more detail in appendix
I.

A combination of Eqs. (14.7), (14.9), and (14.11) yields the general form
of the laboratory cross section for the scattering of unpolarized (massless)
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100 Part 2 General analysis

Fig. 14.4. νW2 for the proton as a function of q2 and total C-M energy of the
proton and virtual photon W = [−(p − q)2]1/2 > 2 GeV at ω = 1/x = 4 [Fr72].

electrons from an unpolarized nucleon

d2σ

dΩ2dε2
= σM

1

m

[
W2(ν, q

2) + 2W1(ν, q
2) tan2 θ

2

]

σM =
α2 cos2 θ/2

4ε21 sin4 θ/2
(14.19)

Here σM is the Mott cross section.
A qualitative overview of the SLAC data on deep-inelastic electron

scattering from the proton is shown in Fig. 14.3 [Fr72]. On the basis of his
analysis of various sum rules, Bjorken predicted, before the experiments,
the following behavior of the structure functions in the deep-inelastic
regime [Bj69]

ν

m
W2(ν, q

2) → F2(x) ; q2 → ∞, ν → ∞

2W1(ν, q
2) → F1(x) (14.20)

Here the scaling variable is defined by

x ≡ q2

2mν
≡ 1

ω
(14.21)

These relations imply that the structure functions do not depend individ-
ually on (ν, q2) but only on their ratio. The scaling behavior of the SLAC
data is shown in Figs. 14.4 and 14.5 [Fr72].6 The first of these figures

6 These authors use W1,2 ≡ (1/m)W text
1,2 where W text

1,2 are the structure functions used here.
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14 Deep-inelastic scattering from the nucleon 101

Fig. 14.5. Structure functions 2mW1 and νW2 for the proton vs ω for C-M
energy W > 2.6 GeV and q2 > 1 (GeV/c)2, and using R = 0.18 [Fr72].

illustrates the independence from q2 at fixed ω = 1/x; the second shows
the extracted structure functions F1,2(x).7

Let us now turn to an interpretation of these experimental results.
The empirical data on deep-inelastic electron scattering can be under-
stood within the framework of the quark–parton model developed for that
purpose by Feynman and Bjorken and Paschos [Fe69, Bj69a]. The basic
concepts in the model are as follows:

• The calculation of the structure functions is Lorentz invariant. Go
to the C-M frame of the proton and incident electron with p = −k1.
Now let the proton move very fast with |p| → ∞. This forms the
infinite-momentum frame; it is illustrated in Fig. 14.6.

• Assume the nucleon is composed of a substructure of partons. The
proper motion of the parton constituents of the hadron (here a
proton) is slowed down by time dilation in the infinite-momentum

7 From the SLAC data the ratio of longitudinal to transverse cross section is given by

R ≡ σl/σt = 0.18 ± 0.10 where W1/W2 ≡ (1 + ν2/q2)σt/(σt + σl).

https://doi.org/10.1017/9781009290616.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.017


102 Part 2 General analysis

proton

electron

loentz
contracted

p

k1

q
k2

Fig. 14.6. Situation in frame where the proton is moving very rapidly with
momentum p = −k1 (the infinite-momentum frame).

frame. Thus the partons are effectively frozen during the scattering
process. The actual interaction between the partons is then not
important.

• Assume that the very-short-wavelength electrons scatter incoherently
from the constituents. Assume further that the constituent partons
have no internal electromagnetic structure and that the electrons
scatter from the charged constituents as if they are pointlike Dirac
particles.

• Assume that in the limit q2 → ∞, ν → ∞, the masses of the con-
stituents can be neglected. Assume also that the transverse momen-
tum of the parton before the collision, determined by the internal
structure of the hadron and the strong-interaction dynamics, can
be neglected in comparison with

√
q2, the transverse momentum

imparted as |p | → ∞.

We now know from subsequent developments, largely motivated by
these deep-inelastic electron scattering experiments and the success of
the quark–parton model, that the parton constituents of the hadron are
actually quarks (charged) and gluons (neutral).

The scaling results can be understood within the framework of the
impulse approximation applied to this model.8 The calculation of the cross
section is Lorentz invariant, and can be performed in any Lorentz frame,
in particular in any frame where p||k1. Go to the infinite-momentum
frame. The scattering situation is then illustrated in Fig. 14.7. In this
frame the ith parton carries the incident four-momentum

pinc = ηi p (14.22)

Here ηi is the fraction of the four-momentum p of the proton carried by
the ith parton. Evidently

0 ≤ ηi ≤ 1 (14.23)

8 This discussion is based on [Ha84, Ai89, Ma90, Wa95].
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14 Deep-inelastic scattering from the nucleon 103

p

k1

qk2
p´

ηip

ithparton

Fig. 14.7. Scattering in impulse approximation in the quark–parton model in
the infinite-momentum frame.

The incident hadron is now just a collection of independent partons. The
electron proceeds to scatter from one of the point-like charged partons.
We do not worry here about how the parton eventually gets converted
into hadrons in the final state (hadronization). Only the quarks are charged
with charges

qi ≡ Qi ep (14.24)

Now

Let fi(ηi)dηi be the number of quarks of type i with four-momentum
between ηip and (ηi + dηi)p.

The total four-momentum of the proton is then evidently given by

p = pgluons + pquarks

p = ζgp +
∑N

i=1

∫ 1

0
(ηip)fi(ηi)dηi (14.25)

Here ζg is the fraction of the total four-momentum of the proton carried

by all the gluons, and
∑N

i=1 is a sum over all types of quarks.
Cancellation of an overall factor of the four-momentum p from the last

of Eqs. (14.25) gives

1 = ζg +
∑N

i=1

∫ 1

0
ηifi(ηi)dηi (14.26)

Introduce a dummy variable x; this momentum sum rule can then be
written

1 = ζg +
∑N

i=1
ζi

ζi ≡
∫ 1

0
xfi(x)dx (14.27)

Now calculate the process in Fig. 14.7 using the analysis of inelastic
electron scattering presented at the beginning of this chapter. With the
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104 Part 2 General analysis

assumption of scattering from point-like Dirac particles, the S-matrix for
scattering from an isolated quark of type i is given by9

S (i) =
−i(2π)4eepQi

Ω2q2
δ(4)(p′ + q − ηip)ū(k2)γμu(k1)ū(p

′)γμu(ηip)

≡ − (2π)4i

Ω
δ(4)(p′ + q − ηip)T̄

(i) (14.28)

The incident flux is given by

I0 =
1

Ω

√
[k1 · (ηip)]2

ε1(ηiEp)
=

1

Ω

√
(k1 · p)2
ε1Ep

(14.29)

The cross section for inelastic electron scattering from a point-like quark
of type i, carrying four momentum ηip in the |p| → ∞ frame, in the impulse
approximation follows as

dσ(i) = 2π|T̄ (i)|2δ(Wf − Wi)
Ωd3k2

(2π)3
1

I0

=
4α2

q4

d3k2

2ε2

1√
(k1 · p)2

ημνW
(i)
μν (14.30)

Here the response tensor for scattering from such a quark is defined by10

W (i)
μν = −Q2

i Ep

∑
p′

1

2

∑
s1

∑
s2

ū(p′)γμu(ηip)ū(ηip)γνu(p
′)

×δp′,ηip−q δ(p′
0 − ηip0 + q0) (14.31)

With the use of momentum conservation and the neglect of the masses of
the participants, the energy-conserving delta function can be manipulated
in the following manner (and this is a key step in the development)

δ(p′
0 − ηip0 + q0) = 2p′

0 δ[p′2
0 − (ηip0 − q0)

2]

= 2p′
0 δ[p′2 − (ηip − q)2]

≈ 2p′
0 δ(2ηip · q − q2)

=
2p′

0

2p · q δ(ηi − x) (14.32)

Here x ≡ q2/2mν is the scaling variable introduced in Eq. (14.21). Hence

δ(p′
0 − ηip0 + q0) =

2Ep′

2mν
δ(ηi − x) (14.33)

9 To avoid confusion, we here suppress the subscripts on the S-matrix S
(i)
f i .

10 This assumes the target is unpolarized; polarization is discussed in the next chapter.
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14 Deep-inelastic scattering from the nucleon 105

The required traces are the same as those evaluated in ημν at the
beginning of this chapter, except that the initial momentum is ηip. Thus

W (i)
μν = Q2

i Ep
2Ep′

2mν
δ(ηi − x)

4

2Ep′2(ηiEp)

1

2

×
{
p′
μ(ηipν) + (ηipμ)p

′
ν − (ηip · p′)δμν

}
=

Q2
i

2mν
δ(ηi − x)

{
p′
μpν + p′

νpμ − (p · p′)δμν
}

(14.34)

Now use

p′ = ηip − q

qμημν = ημνqν = 0 (14.35)

Hence, again with the neglect of masses,

W (i)
μν

.
=

Q2
i

2
δ(ηi − x)

[
δμν +

2ηi
mν

pμpν

]
(14.36)

The symbol
.
= here indicates that the terms in qμ and qν have been

dropped because of Eq. (14.35).

An incoherent sum over all types of quarks with all momentum fractions
now gives the response tensor for the composite nucleon

Wμν =
∑N

i=1

∫ 1

0
dηifi(ηi)W

(i)
μν (14.37)

Substitution of Eq. (14.36) into Eq. (14.37) demonstrates that the response
functions now explicitly exhibit Bjorken scaling and allows one to identify
[see Eqs. (14.37), (14.20), and (14.21)]

F1(x) =
N∑
i=1

Q2
i fi(x)

F2(x) =
N∑
i=1

Q2
i xfi(x) = xF1(x) (14.38)

Not only do these expressions explicitly exhibit scaling, but they also
allow one to calculate the structure functions in terms of the charges of
the various types of quarks and their momentum distributions as defined
just below Eq. (14.24).

To proceed further, consider the nucleon to be made up of (u, d, s)
quarks, with charges listed in Table 14.1, and their antiparticles. It then
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106 Part 2 General analysis

Table 14.1. Quark sector used in discussion of deep-inelastic electron scattering
from the nucleon.

u d s

Qi 2/3 −1/3 −1/3

follows from Eq. (14.38) that

F
p
2 (x)

x
=

(
2

3

)2

[up(x) + ūp(x)] +

(
1

3

)2

[dp(x) + d̄p(x)]

+

(
1

3

)2

[sp(x) + s̄p(x)]

Fn
2 (x)

x
=

(
2

3

)2

[un(x) + ūn(x)] +

(
1

3

)2

[dn(x) + d̄n(x)]

+

(
1

3

)2

[sn(x) + s̄n(x)] (14.39)

Here an obvious notation has been introduced for the momentum distri-
butions fi(x) of the various quark types in the proton and neutron.

Strong isospin symmetry implies that the quark distributions should be
invariant under the interchange (d ⇀↽ u) and hence (p ⇀↽ n). Thus one
defines

up(x) = dn(x) ≡ u(x)

dp(x) = un(x) ≡ d(x)

sp(x) = sn(x) ≡ s(x) (14.40)

The quark contributions can be divided into two types: those from
valence quarks, from which the quantum numbers of the nucleon are
constructed; and those from sea quarks, present, for example, from (qq̄)
pairs arising from strong vacuum polarization or mesons in the nucleon.

u(x) = uV(x) + uS(x)

d(x) = dV(x) + dS(x)

s(x) = sV(x) + sS(x) (14.41)

Strong vacuum polarization should not distinguish greatly between the
types of sea quarks; hence it will be assumed for the purposes of the
present arguments that the sea quark distributions are identical

S(x) ≡ uS = ūS = dS = d̄S = sS = s̄S (14.42)
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Fig. 14.8. The difference Fp
2 −Fn

2 as a function of x, as measured in deep-inelastic
scattering at the Stanford Linear Accelerator [Ha84].
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Fig. 14.9. The ratio Fn
2/F

p
2 as a function of x, as measured in deep-inelastic

scattering. Data are from the Stanford Linear Accelerator [Ha84].

It follows that

F
p
2

x
=

4

9
uV(x) +

1

9
dV(x) +

4

3
S(x)

Fn
2

x
=

1

9
uV(x) +

4

9
dV(x) +

4

3
S(x) (14.43)

The SLAC data comparing the distribution functions F
p,n
2 is shown in

Figs. 14.8 and 14.9 (taken from [Ha84]). The neutron data were obtained
subsequently at SLAC using a 2

1H target. Evidently at small x the ratio
F
p
2/F

n
2 ≈ 1 and the sea quark distribution S(x) dominates the structure

function; at large x the ratio Fn
2/F

p
2 ≈ 0.25 and it is the valence u quark

distribution uV(x) that dominates.
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108 Part 2 General analysis

Consider the momentum sum rule. For simplicity, work in the nuclear
domain where the nucleon is composed of (u, d) quarks and their anti-
quarks. The contribution of these quarks to the momentum sum rule in
Eq. (14.27) takes the form

ζu ≡
∫ 1

0
x dx(u + ū)

ζd ≡
∫ 1

0
x dx(d + d̄) (14.44)

From the SLAC results [Ha84, Ma90] one finds the sum rules∫ 1

0
dxF

p
2 (x) =

4

9
ζu +

1

9
ζd = 0.18∫ 1

0
dxFn

2 (x) =
1

9
ζu +

4

9
ζd = 0.12 (14.45)

These results, together with Eq. (14.27), then imply

ζu = 0.36 ζd = 0.18

ζg = 0.46 (14.46)

Hence one observes that the gluons carry approximately one-half of the
momentum of the proton.

We close this section with a very brief discussion of the EMC effect.
This material is from [Au83, Mo86, Bi89, Dm90]. The most naive picture
of the nucleus is that of a collection of free, non-interacting nucleons. In
this picture the structure function one would observe from deep-inelastic
electron scattering from a nucleus would be just N times the neutron
structure function plus Z times that of the proton. It is an experimental
fact, first established by the European Muon Collaboration (EMC), that
the quark structure functions are modified inside the nucleus [Au83].

It is known that nucleons in the nucleus have a momentum distribution.
The most elementary nuclear effect on the structure functions for the
nucleus A involves a simple average over the single-nucleon momentum
distribution

W (A)
μν (P , q) =

A∑
i=1

∫
d3p|φi(p)|2W (1)

μν (p, q) (14.47)

We note an immediate difficulty in the extension of the theoretical analysis
to an A-body nucleus; this expression is clearly model dependent in the
sense that the integration is not covariant. It is only with a covariant
description of the nuclear many-body system that one can freely transform

https://doi.org/10.1017/9781009290616.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.017


14 Deep-inelastic scattering from the nucleon 109

0
χ

0.9

F
fe 2

/ F
n 2

1.0

1.1

1.2

1.3

0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 1.0

0.8

0.9

10

11

12

13

14

F2Fe
N

F2D
N

χ

Fig. 14.10. (a) A comparison of calculations of the effect of Fermi smearing on
the ratio R [Bi89]; (b) The ratio R in a relativistic version of this single-particle
model compared with some early experimental data [Mo86].

between Lorentz frames, and, in particular, go to the |p| → ∞ frame where
the parton model is developed.

It will be assumed that Eq. (14.47) holds in the laboratory frame. Define
the following ratio

R ≡ FFe
2 (x)/A

FD
2 (x)/2

(14.48)

This is the ratio of the structure function for iron (per nucleon) to the
structure function for deuterium (per nucleon). Calculations of R based
on Eq. (14.47) are shown in Fig. 14.10 (a). R is calculated assuming the
response function W (1)

μν (p, q) for a free nucleon is unmodified in the nuclear
interior [Bi89]. Note that this Fermi smearing effect is sizable for large x.

The result of a relativistic version of this single-particle model is shown
in Fig. 14.10 (b), along with some of the representative early experimental
data [Mo86].
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