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On Polynomial Invariants
of Exceptional Simple Algebraic Groups
A. Elduque and A. V. Iltyakov

Abstract. We study polynomial invariants of systems of vectors with respect to exceptional simple algebraic
groups in their minimal linear representations. For each type we prove that the algebra of invariants is integral
over the subalgebra of trace polynomials for a suitable algebraic system (cf. [27], [28], [13]).

1 Introduction

Throughout the paper the ground field F will be assumed to be algebraically closed of
characteristic zero.

Let V be a finite dimensional module over an algebraic group G (we denote it by G : V );
then G acts on the algebra F[V ] of polynomial functions from V to F as follows: if φ ∈ G
and f = f (y) ∈ F[V ], then ( f · φ)(v) = f

(
φ(v)
)

. The subalgebra of fixed functions
F[V ]G is called the algebra of polynomial invariants; if V is the direct sum of several copies
of a G-module W with the diagonal action of G (denote V = W ⊕ · · · ⊕W︸ ︷︷ ︸

k

= W k), then

F[V ]G is called the algebra of invariants of the system of k vectors of G : W .
Although invariants of systems of vectors for classical linear groups are known for a long

time [29], the case of exceptional simple algebraic groups has not been studied well enough:
the generators (First Main Theorem) and relations between them (Second Main Theorem)
are known only for the minimal (simple) module over a simple algebraic group of type G2

[27] (for a conceptual explanation and a new proof of the result in [27] see [9]).
It is well-known that simple modules of minimal dimension for any type of exceptional

simple algebraic group can be associated with a certain algebra or, more precisely, an (al-
gebraic) system, that is, a vector space A endowed with a finite number of multilinear op-
erations. In particular, such a group turns out to be either the automorphism group of the
associated system or at least its identity component.

If A is any finite dimensional system, let xi be the projection of Ak onto the i-th sum-
mand; in particular, x1, . . . , xk lie in the system (over the ring F[Ak], hence over F by re-
striction of scalars) Pol(Ak,A) ' F[Ak] ⊗F A of polynomial mappings from Ak to A (with
pointwise operations). The system of generic elements Fk(A) of rank k is defined as the
subsystem over F generated by x1, . . . , xk. In particular, if A is a simple algebra generated
≤ k elements, then Fk(A) is a free affine algebra of type A and rank k [18].
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Polynomial Invariants 507

Now, let g(y1, . . . , yr) be one of the multilinear operations of A and let B be a subsystem
of A. If we replace r − 1 variables in g with some elements in B, then we get a linear
operator in EndF A called a multiplication operator. For example, if A is an algebra and g
is the multiplication, then in this way we get two operators Lb : y → by and Rb : y → yb.
Denote by MA(B) the subalgebra of EndF A generated by all such operators. In particular,
M(A) = MA(A) is called the multiplication algebra. A subsystem B ⊆ A is said to be ad-
nilpotent, if MA(B) is nilpotent.

Also, for g(y1, . . . , yr) as above and any i ∈ {1, . . . , r} we get a multilinear mapping
from Ar−1 to EndF A:

E = E(y1, . . . , yi−1, yi+1, . . . , yr) : yi → g(y1, . . . , yr).

The composition of E with u1, . . . , ui−1, ui+1, . . . , ur ∈ Fk(A) gives a polynomial mapping

E1(x1, . . . , xk) = E(u1, . . . , ui−1, ui+1, . . . , ur)

from Ak to EndF A. Denote by Multk(A) the subalgebra of Pol(Ak, EndF A) ' F[Ak] ⊗F

EndF A generated over F by all such mappings. Obviously, any values of y1, . . . , yk in A
define uniquely a homomorphism from Multk(A) to M(A). Moreover, if the values belong
to a subsystem B, then the image of Multk(A) is contained in MA(B).

Next, for every E ∈ Multk(A) the mapping TrA(E), where TrA(x) is the trace of a linear
operator x ∈ EndF A, belongs to F[Ak]. Moreover, it is easy to check that TrA(E) is an
invariant of the automorphism group G of A; the subalgebra Tr[Ak] generated by 1 and all
such elements is called the algebra of trace polynomials of A of rank k (cf. [13], [20]).

Proposition 1 Let A be a finite dimensional system, then Tr[Ak] is a finitely generated alge-
bra over F.

Proof Observe that P = Tr[Ak], B = Fk(A) and Multk(A) (⊆ Pol(Ak, EndF A)) are homo-
geneous. Denote by P+ the sum of the homogeneous components of P of positive degree,
then P+ is an ideal of P spanned by all TrA(E), where E ranges over the sum C of homoge-
neous components of Multk(A) of positive degree.

Next, in Pol(Ak,A) ' F[Ak] ⊗F A we consider the F-subsystem B̃ = PB = B + P+B
(PB is the P-submodule of Pol(Ak,A) generated by B) and its ideal B̃+ = P+B. Similarly, in
Pol(Ak, EndF A) we consider the subalgebra C̃ = C + P+C and its ideal C̃+ = P+C .

Since the number of operations of the system A is finite, there is r ∈ N such that every
operation on A depends on ≤ r variables. By induction on m ∈ N it is easy to prove
that every homogeneous component Bs of B of degree s ≥ rm is contained in the subspace
spanned by elements E · b where b ∈ B and E ranges over the m-th power of C :

∑
s≥rm

Bs ⊆ Cm · B.

Indeed, if m = 1, then it is evident; next, Bs for s ≥ rm+1 is spanned by b = g(b1, . . . , bl),
where g = g(y1, . . . , yl) is an operation of A and b1, . . . , bl are homogeneous elements in
B. We need to show that b ∈ Cm+1 · B; we may assume that l ≥ 2. By definition, l ≤ r,
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hence, for some i ∈ {1, . . . , l} there is bi with degree being not less than rm; by induction,
it belongs to Cm · B, hence, b ∈ Cm+1 · B.

Denote n = dimF A; by Cayley-Hamilton’s theorem (e.g., [21, p. 18]), every element in
C is integral over P+ of degree≤ n; obviously, C̃ has the same property, hence C̃/C̃+ is a nil
algebra of index n, and by Nagata-Higman’s theorem [21, p. 149], it is nilpotent. Let m be
the nilpotency index, then C̃m ⊆ C̃+ and, therefore, every homogeneous component Bs of
degree s ≥ rm is contained in the P-module Q generated by Bt , t < rm:

B̃ = P
(∑

t<rm

Bt

)
,(1)

so that
C̃ = P

( ∑
t<(r−1)rm

Ct

)
=
∑

t<(r−1)rm

Ct + P+C̃.

Taking traces, we prove that P is generated by the homogeneous elements in P of degree
≤ (r − 1)rm. Since these form a finite dimensional F-subspace of P, we conclude that P is
finitely generated.

Therefore, if G is the group of automorphisms of a system A, then Tr[Ak] is a homoge-
neous affine subalgebra of F[Ak]G.

Coming back to the simple algebraic group of type G2, this group is represented as the
automorphism group G = Aut(O) of the Cayley-Dickson algebra O (e.g., [23]). Every
element x ∈ O satisfies the equation

x2 − tr(x)x + n(x) = 0,

where tr(x) is the trace of a (which is one fourth of the trace of the operator of left or right
multiplication by a). As a G-module, O is the direct sum of the trivial one F · 1 and the
simple module O ′ = {a ∈ O | tr(a) = 0} (dimF O ′ = 7). The generators of the algebra of

invariants F[Ok]G (F[O ′k]G) are trace polynomials (cf. [27]).
On the other hand, let O3 = Mat3(O) = O⊗F Mat3(F) be the algebra of 3× 3-matrices

over O. Define an involution a⊗ b 7→ ā ⊗ b>, where b 7→ b> is the matrix transposition.
The subspace H(O3) of symmetric elements with the symmetrized multiplication a ◦ b =
1/2(ab + ba) is a central simple Jordan algebra A of dimension 27, which is called the Albert
algebra [15].

Every x ∈ A satisfies a cubic equation:

x3 − tr(x)x2 + S(x)a − N(x) = 0,(2)

where tr(x), S(x),N(x) ∈ F and tr(x) is one ninth of the trace of the multiplication by the
element x. The group G = Aut(A) is simple of type F4 (e.g. [15]) and A is the direct sum of
the trivial G-submodule F ·1 and the simple one, A ′ = {a ∈ A | tr(a) = 0}, dimF A ′ = 26.

The group M of linear automorphisms of A which preserve the norm N(x) is a simple
group of type E6 and A is a simple M-module of minimal dimension [14]. Also, M has an
outer automorphism µ of second order that defines the contragredient representation of
M in EndF A; denote this module by A∗.
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In the next section we will consider an algebra A with involution where the identity
component of Aut(A) is M; as an M-module, A is the direct sum of A, A∗ and two copies
of the one-dimensional trivial M-module; A is called the Chevalley algebra (cf. [26]).

In the final section we will consider the Freudenthal triple system T; as a vector space it
coincides with A and it is endowed with two 3-linear operations; the automorphism group
of T is a simple algebraic group of type E7 which acts irreducibly on T [7], [5].

If L is a simple Lie algebra of type E8, then G = Aut(L) is a simple group of type E8 [16,
p. 281] and L is a G-module of minimal dimension.

One of the main results of this work is about the null-cone of G : V for a finite dimen-
sional module V over an algebraic group G; let us recall the definition. Let P be a subalgebra
of F[V ]G; for a point y ∈ V denote by πP(y) the fibre of P at point y, this is the level set of
the subalgebra P at the point y:

πP(y) := {y ′ ∈ V | f (y) = f (y ′) ∀ f ∈ P}.

If P = F[V ]G, then πP(0) is called the null-cone of G : V [19, p. 196].

Theorem 1 Let A be the system associated with a minimal irreducible representation of an
exceptional simple algebraic group, that is, A ∈ {O,A,A,T,L}, and let G = Aut(A).

A point x = (a1, . . . , ak) ∈ Ak belongs to the null-cone G : Ak iff the subsystem Ax

generated by a1, . . . , ak in A is ad-nilpotent.

The next proposition, which goes back to Hilbert [8] enables us to rewrite Theorem 1 in
terms of trace polynomials.

Proposition 2 Let V be a finite dimensional module over a linearly reductive algebraic group
G and let P be a homogeneous affine subalgebra of F[V ]G. Then F[V ]G is a finitely generated
P-module if and only if

πP(0) = πF[V ]G (0).(3)

Now, pick x = (a1, . . . , ak) ∈ πTr[Ak](0), then the subsystem Ax generated by a1, . . . , ak

is ad-nilpotent. Indeed, the condition x = (a1, . . . , ak) ∈ πTr[Ak](0) implies that the trace
of any element E(a1, . . . , ak), where E(x1, . . . , xk) ∈ Multk(A), is zero, and this forces that
any element in MA(Ax) is nilpotent, hence, this finite dimensional associative algebra is
nilpotent, therefore, Ax is ad-nilpotent, and conversely. So, we get the following statement
which is equivalent to Theorem 1.

Corollary 1 Let A be the system associated with the minimal irreducible representation of
an exceptional simple algebraic group, let G = Aut(A). Then F[Ak]G is a finitely generated
module over Tr[Ak].

In fact, this is a new result only for the Chevalley algebra and the Freudenthal triple
system; indeed, for A = O it follows from [27], [28], the case A = A was considered
in [13] and for the adjoint representation of a linearly reductive algebraic group it was
done in [22]. We will prove the similar statement for a wide class of simple algebras which
includes A (Theorem 2) and for T (Theorem 3).
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It was conjectured in [20, Conjecture 1] that F[Ak]Aut A is integral over Tr[Ak] for any
finite dimensional simple algebra (that is, a system with just one bilinear multiplication).
Thus, Corollary 1 (as well as Corollary 2 in the next section) gives a proof of (an obvious
generalization of) this conjecture for some systems. The idea of considering the null-cone
and applying Hilbert’s theorem to prove this conjecture was formulated too in [20, Con-
jecture 1∗].

With the same notations as in the previous corollary, let G◦ be the identity component
of G, then G◦ is a simple algebraic group; since G/G◦ is finite, F[Ak]G◦ is integral over
F[Ak]G, hence, since F[Ak]G◦ is an affine algebra (e.g. [19, Section 3.4]), it is a finitely
generated module over Tr[Ak].

Now, if we replace the generators x1, . . . , xk in trace polynomials with the projectors
x ′1, . . . , x

′
k onto the corresponding simple G◦-submodule V ⊆ A, we will get a subalgebra

Tr[V k] of F[V k]G◦ and the latter one is a finitely generated module over it. Thus, Corol-
lary 1 provides an effective way to construct a “significant” part of polynomial invariants of
exceptional simple algebraic groups. The problem whether there are invariants of a differ-
ent type is unsolved so far (except for the cases mentioned above).

Next, if f (x1, . . . , xk) ∈ Fk(A), then for all u1, . . . , uk ∈ Fk(A) we have f (u1, . . . , uk) ∈
Fk(A). In other words, such a replacement of variables defines an algebra endomorphism
of Fk(A) and, conversely, every endomorphism has such a form (the Fk(A) is a free algebra
of rank k in the variety of algebras generated by A).

Notice that an endomorphism of Fk(A) induces an endomorphism φ of F[Ak] (the re-
placement of the variables x1, . . . , xk with elements in Fk(A)). Moreover, the subalgebra
of invariants F[Ak]G is stable under φ, that is, F[Ak]G is a fully characteristic subalgebra of
F[Ak]. Therefore, it makes sense to describe generators of F[Ak]G as a fully characteristic
algebra (in classical terms we are looking for typical generators [29]).

For example, by [27], [28], the algebra F[Ok]G is generated tr(x1). In the case of the
Albert algebra, the fully characteristic subalgebra P generated by tr(x1) satisfies (3), there-
fore, the algebra F[Ak]G is a finitely generated module over P. If A is a simple Lie algebra,
then the same holds for the fully characteristic subalgebra of F[Ak]G generated by tr(R j

x1 ),
j ∈ {2, . . . , dimF(A)}.

2 Structurable Algebras and Invariants of E6

First of all, let us recall the definition of structurable algebra [1].
Let A be an algebra over F with an involution x 7→ x̄. Then it is decomposed into

the direct sum of the subspaces of symmetric and skew-symmetric elements, that is, A =
H(A) +̇ S(A). Then A is said to be a structurable algebra if it satisfies the following identities
(∀x, y ∈ A, ∀a, b, c ∈ H(A), ∀s ∈ S(A)):

(s, x, y) = −(x, s, y);(4)

(a, b, c)− (b, a, c) = (c, a, b)− (c, b, a);(5)

2/3
[
[a2, a], b

]
= (b, a2, a)− (b, a, a2),(6)

where [a, b] = ab − ba and (a, b, c) = (ab)c − a(bc) are the commutator and associator
respectively.
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If A is unital (one can join 1 in the external way, putting 1̄ = 1), then (4)–(6) are
equivalent to the following identity

[Tz,Vx,y] = VTzx,y −Vx,Tz̄ y,

where Vx,y ∈ EndF A, Vx,yz = (xȳ)z + (zȳ)x − (zx̄)y and Tz = Vz,1.
Note that the class of structurable algebras includes Jordan algebras where the involution

is the identity mapping (in particular, the Albert algebra) and alternative algebras with an
involution (for example, O).

Also, since the involution is regarded as an additional operation on A, subalgebras and
ideals are (by definition) closed by the involution, automorphisms and derivations com-
mute with the involution and so on. For example, the algebra of generic elements Fk(A) is
generated as an algebra over F by x1, . . . , xk, x̄1, . . . , x̄k.

Now we will give an important example of structurable algebra. Let N(x, y, z) be
the complete linearization of the norm N(x) in the Albert algebra A (see (2)), where
N(x, x, x) = 6N(x); since tr(xy) is a Killing form of A, we can define a quadratic map-
ping from A to A∗, x 7→ x#, where tr(x# y) = 1/2N(x, x, y) (here x# y is the product of
elements in the Albert algebra); also, put a × b = (a + b)# − a# − b#. Consider the direct
sum of A, A∗ and two copies of F written in the matrix form:

A =

(
F A

A∗ F

)
.

Next, define the multiplication on A:

(
α1 a1

b1 β1

)
·

(
α2 a2

b2 β2

)
=

(
α1α2 + (a1, b2) α1a2 + β2a1 + b1 × b2

α2b1 + β1b2 + a1 × a2 (b1, a2) + β1β2

)

and an involution (
α a
b β

)
=

(
β a
b α

)
.

This algebra A is a structurable one (the algebra of an admissible triple [1]), it is called the
Chevalley algebra (cf. [26]). From the definition of A it follows easily that the automor-
phism group of A consists of two components: M and τM, where τ is an automorphism
of period 2 which swops the lines and columns and for all a ∈ A and g ∈ M we have
τ
(
g(a)
)
= µ(g)

(
τ (a)
)
, where µ is an outer automorphism of M (see the Introduction).

Let A be a unital structurable algebra; denote by Inder(A) the algebra of inner deriva-
tions of A (spanned by derivations Da,b, see [1]), then Instrl(A) = TA + Inder(A), where
TA = {Ta | a ∈ A}, is a subalgebra of the Lie algebra EndF(A)(−). Also, on the vector space

K(A) = S(A) +̇ A +̇ Instrl(A) +̇ A∼ +̇ S(A)∼,

where A∼ ' A, S(A)∼ ' S(A), one can define the structure of a Z-graded Lie algebra of
length 5 [1] (the Kantor-Koecher-Tits construction for structurable algebras). In particular,
the component K1(A) (K−1(A)) is equal to A (A∼); we will also make use of the following
properties of the multiplication [a, b] on K(A):
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(a) K(A) is generated by A ∪ A∼;
(b) for all a ∈ A and b ∈ A∼

[a, b] = Va,b ∈ Instrl(A) = K0(A).

Let φ be an automorphism of the graded Lie algebra K(A), then its restriction to
K1(A) = A is an autotopy of the structurable algebra A [2]. It means that there exists
φ̂ ∈ EndF(A) such that for all x, y, z ∈ A we have

φ(Vx,yz) = Vφ(x),φ̂(y)φ(z).(7)

The set of all autotopies of A is a group Γ(A) called the structure group of A (a closed
subgroup of GL(A)) [2, p. 135]; φ 7→ φ̂ is an automorphism of Γ(A) of period 2; besides,
the automorphism group of A is the subgroup of all elements in Γ(A) which fix the identity
element of A [2, p. 134]:

Aut(A) = {φ ∈ Γ(A) | φ(1) = 1},

Conversely, by [2, Proposition 12.3, Corollary 8.6], every autotopy φ of A can be ex-
tended uniquely to an automorphism φ̃ of the graded Lie algebra K(A) and this defines an
isomorphism of Γ(A) onto the automorphism group of the Z-graded Lie algebra K(A).

Observe that the elements 1 ∈ L1 = A, 2 ∈ L−1 = A∼ and 2T1 ∈ L0 = Instrl(A)
form a standard basis of a simple 3-dimensional Lie subalgebra H of K(A) (in particular,
the Z-grading is defined by the action of the semisimple element 2T1). Summarizing, we
get the following statement.

Lemma 1 Let AutH

(
K(A)

)
be the subgroup of all automorphisms of the Lie algebra K(A)

which fix the elements in H (the group of automorphisms over H), then for every ψ ∈
AutH K(A) the restriction ψ|A to the graded component K1(A) = A is an automorphism
of the structurable algebra A and every automorphism of A has such a form.

Now we are going to prove an analog of Theorem 1 for structurable algebras.

Theorem 2 Let A be a finite dimensional simple structurable algebra and let G = Aut(A).
Then a point x = (a1, . . . , ak) ∈ Ak is in the null-cone G : Ak iff the subalgebra Ax =
algF{a1, . . . , ak} ⊆ A generated by a1, . . . , ak is nilpotent.

Proof If x is an element in the null-cone, then for every f ∈ Tr[Ak] we have f (a1, . . . , ak)=
0, hence, Ax is a nilpotent subalgebra of A.

Conversely, suppose that Ax is nilpotent.

Lemma 2 Let B be a nilpotent subalgebra of a structurable algebra A, then

MB(A) = algF{Rb, Lb | b ∈ B} ⊆ EndF(A)

is nilpotent.
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Proof Consider the algebra A as a structurable bimodule N over B, then the split null
extension C = B +̇ N [24, p. 485] is a solvable structurable algebra; by [25] it is nilpotent,
hence, MB(C) is nilpotent. Notice that MB(A) ' MB(N) is a homomorphic image of
MB(C), therefore, MB(A) is also nilpotent.

We continue the proof of Theorem 2. Denote L = K(A); by [1, Corollary 6], the algebra
L is simple. Next, let Bx be the subalgebra of A generated by Ax and the identity element 1,
consider the subalgebra of L

K̃(Bx) = S(Bx) +̇ Bx +̇(TBx +̇ alg{Da,b | a, b ∈ Bx}) +̇ B∼x +̇ S(Bx)∼;

it is equal to the sum of H and the ideal I of K̃(Bx) generated by Ax ∪ A∼x . By the previous
lemma every element in I is ad-nilpotent (that is, for all a ∈ I the operator of adjoint
multiplication ad(a) : b 7→ [b, a] in EndF L is nilpotent), since so are its homogeneous
components (we use here Engel-Jacobson’s theorem [16, Theorem 2.1]).

Let K be the automorphism group Aut(L) of the algebra L without grading; note that K
is a closed subgroup of GL(L) and its Lie algebra L(K) is the derivation algebra Der(L) [11,
13.2], where elements in K act by conjugation (the adjoint representation of K). Since L is
simple, all derivations of L are inner, i.e.,

Der(L) = ad(L) = {ad(a) | a ∈ L} ' L.

Denote by N the normalizer NK(I) = {φ ∈ K : φ(I) ⊆ I} of I in K; notice that the
normalizer in GL(L) of any subspace is a closed subgroup in GL(L), hence NK(I) is closed
in K:

NK(I) = K ∩ NGL(L)(I).

Next, let S be the subgroup generated by exp
(
ad(a)

)
, for all a ∈ I; observe that S is a closed

connected subgroup of Aut(L) [11, 7.5]; also, S ⊆ N , hence S lies in the identity component
N◦ of N . Moreover, S is a normal subgroup of N consisting of unipotent linear transfor-
mations of L; hence, by [11, 19.5], S lies in the unipotent radical R = Ru(N) = Ru(N◦).
Thanks to [11, 13.1] the Lie algebra L(S) contains ad(I), hence ad(I) ⊆ L

(
Ru(N◦)

)
.

Next, consider the subgroup P generated by exp
(
ad(a)

)
where a ranges over the strongly

nilpotent elements in H; by [10, p. 55], P is a closed connected subgroup of K and its Lie
algebra is equal to H [6, p. 175], hence P is a simple algebraic subgroup of K. Moreover, its
generators keep I being invariant, hence P ⊆ N◦ and, therefore, P lies in a Levi factor Q of
N◦ [11, 30.2].

By [22, 2.6 and 2.3], in K◦ there is a one-parametric subgroup λt , t ∈ F∗ = F \ {0},
such that:

(a) limt→0 λt (a) exists for all a ∈ L(N◦);
(b) limt→0 λt (a) = 0 for all a ∈ L(R);
(c) λt (a) = a for all a ∈ L(Q).

Recall that ad(H) ⊆ L(Q), hence, by (c), ∀t ∈ F∗ λt fixes all elements in ad(H) and,
therefore, it fixes all elements in H. It means that λt is an automorphism of the graded Lie
algebra L and, by Lemma 1, the restriction of λt onto A = L1 is an automorphism of A for
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all t ∈ F∗. From (b) and since ad(I) ⊆ L(R), it follows that 0 lies in the closure of the orbit
of x and hence x lies in the null-cone of G : Ak. The theorem is proven.

Proposition 2 yields immediately the following statement.

Corollary 2 Let A be a finite dimensional simple structurable algebra and let G = Aut(A).
Then F[Ak]G is a finitely generated module over Tr[Ak].

It is known [4] that a finite-dimensional structurable algebra A has a Killing form
〈x, y〉 = TrA(Lx̄y+ ȳx) and the radical (the maximal solvable ideal) of A coincides with the
radical of the form. Also, by [25] the radical of A is nilpotent. Observe that for A = A we
have TrA(Lx) = 2 trA(x), where trA(x) is the sum of the diagonal entries of x. For every
subalgebra B ⊆ A if trA(b) = 0 for all b ∈ B, then B is nilpotent: indeed, suppose that B is
not nilpotent, then B is an ideal of the structurable algebra F · 1 +̇ B, so by [4, Theorem 7]
there is a nonzero idempotent e = ē in B. Now by [4, Theorem 11] we have TrA(Le) 6= 0,
hence, trA(e) 6= 0, a contradiction.

Let tr[Ak] be the subalgebra of F[Ak]G generated by 1 and trA(u), where u ∈ Fk(A).
Corollary 2 can then be transformed into the following statement.

Corollary 3 Let G = Aut(A), then F[Ak]G is a finitely generated module over tr[Ak].

Proof From (1) it follows that given an homogeneous basis Ω of
∑

i<2m Fk(A)t , and any
x = (a1, . . . , ak) ∈ Ak, the subalgebra Ax is spanned by the elements f (a1, . . . , ak), where
f ranges over Ω. Let D denote the subalgebra of tr[Ak] generated by 1 and trA(u), where
u ∈ Ω. Then

πF[Ak]G (0) = πTr[Ak](0) ⊆ πtr[Ak](0) ⊆ πD(0),

since D ⊆ tr[Ak] ⊆ Tr[Ak]. But given any x = (a1, . . . , ak) ∈ πD(0) and any f ∈ Fk(A),
f (a1, . . . , ak) is a linear combination of the elements u(a1, . . . , ak), where u ranges over Ω,
and hence trA

(
f (a1, . . . , ak)

)
= 0. From the comments above and Lemma 2 it follows

that Ax is ad-nilpotent, so x ∈ πTr[Ak](0) = πF[Ak]G (0). Now, by Proposition 2, F[Ak]G is a
finitely generated D-module, so a finitely generated module over tr[Ak] too.

Now, let us consider the M-module

Ak ⊕ (A∗)k ' (A⊕ A∗)k ⊆ Ak.

Recall that the connected component of Aut(A) is M, hence, F[Ak]M is also a finitely
generated module over tr[Ak]. Let y1, . . . , yk (z1, . . . , zk) be the projectors onto the direct
summands of Ak (respectively, (A∗)k); if we replace the generic elements xi of A in the trace
polynomials in tr[Ak] with

(
0 yi

0 0

)
or

(
0 0
zi 0

)

for all i ∈ {1, . . . , k}, we will get invariants in F[Ak⊕ (A∗)k]M. Denote by P the subalgebra
generated by them; obviously, F[Ak ⊕ (A∗)k]M is a finitely generated module over P.
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Also, from the definition of the multiplication of A it easily follows that the generators
of P are obtained in the following way.

Let S+, S− be the minimal sets of polynomials satisfying

1. y1, . . . , yk ∈ S+, z1, . . . , zk ∈ S−;
2. if aσ, bσ ∈ Sσ , then aσ × bσ ∈ S−σ for all σ ∈ {+,−}.

Then the set of polynomials trA(ab), where a ∈ S+, b ∈ S−, generates P.

3 Invariants of E7

Let us recall first the definition of Freudenthal triple system (cf. [5]). On the vector space
A define two forms (cf. [3, p. 192], [5, p. 87]):

ν(x) = 4αN(a) + 4βN(b)− 4 trA(a#b#) +
(
αβ − trA(ab)

)2
,

〈x, y〉 = trA

(
(sx)ȳ

)
= αδ − βγ + trA(ac)− trA(bd)

where

x =

(
α a
b β

)
, y =

(
γ c
d δ

)

and s is the generator of the subspace S(A):

s =

(
1 0
0 −1

)
.

It is known [7], [5] that the group of invertible linear transformations E ⊆ EndF A

preserving ν and 〈∗, ∗〉 is a simple algebraic group of type E7.
Denote by ν(x, y, z, t) the complete linearization of ν(x), where ν(x, x, x, x) = 24ν(x).

Since 〈x, y〉 is nondegenerate, we may define a 3-linear operation (x, y, z)1 on A:

〈x, (y, z, t)1〉 =
1

2
ν(x, y, z, t).

The vector space A with the operation (x, y, z)1 and the form 〈x, y〉 is a Freudenthal triple
system. For us it is more convenient to replace the form 〈x, y〉 with a 3-linear operation

(x, y, z)2 = 〈x, y〉z.

Denote by T the vector space A with the operations (x, y, z)1, (x, y, z)2.

Lemma 3 The automorphism group Aut(T) is equal to E.

Proof Let φ ∈ Aut(T), then φ
(
(x, y, z)2

)
=
(
φ(x), φ(y), φ(z)

)
2
= 〈φ(x), φ(y)〉 · φ(z),

on the other hand, since φ is linear, φ
(
(x, y, z)2

)
= 〈x, y〉φ(z) for all x, y, z ∈ T. Hence,

〈φ(x), φ(y)〉 = 〈x, y〉.
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Next,

ν
(
φ(x), φ(y), φ(z), φ(t)

)
= 2〈φ(x),

(
φ(y), φ(z), φ(t)

)
1
〉 = 2〈φ(x), φ

(
(y, z, t)1

)
〉

= 2〈x, (y, z, t)1〉 = ν(x, y, z.t),

hence, φ ∈ E.
Conversely, since 〈x, y〉 is nondegenerate, we get E ⊆ Aut(T), therefore, E = Aut(T).

Lemma 4 The group E lies in Γ(A). Also, let F∗ be the multiplicative group of the ground
field F ⊆ EndF(A), then Γ(A) = F∗ · E.

Proof By (2.16) in [3], for all x, y, z ∈ A

(x, y, z)1 = 2Vx,sy(z)− 〈y, z〉x − 〈y, x〉z − 〈x, z〉y.(8)

Also, Ls ∈ Γ, there L̂s = −Ls [2, Section 11]. Hence, if φ ∈ E, then we put φ̂ = LsφLs and
equality (7) follows from (8), therefore, φ ∈ Γ.

Next, pick φ ∈ Γ(A) and put a = φ(1); then, by [5, Theorem 3], there is ψ ∈ E such
that ψ(a) = β1, where β4 = ν(a). Hence, the composition of autotopies 1/β ∈ F∗, ψ and
φ fixes 1, hence, it is an automorphism of A [2, Corollary 8.6] and, therefore, belongs to E.

The multiplication operators of T have the following form:

(∗, y, z)i : x 7→ (x, y, z)i ;

(x, ∗, z)i : y 7→ (x, y, z)i ;

(x, y, ∗)i : z 7→ (x, y, z)i ,

where i ∈ {1, 2}. So, the subalgebra Multk(T) ⊆ Pol(Tk, EndF T) is generated by
{(∗, a, b)i , (a, ∗, b)i, (a, b, ∗)i | i = 1, 2; a, b ∈ Fk(T)} and the algebra of trace polyno-
mials Tr[Tk] is defined as

algF{1,TrT(E) | E ∈ Multk(T)} ⊆ F[Tk]E.

We will prove now Corollary 1 for A = T; by Proposition 2 this will complete the proof
of Theorem 1.

Theorem 3 The algebra F[Tk]E is a finitely generated module over the algebra of trace poly-
nomials Tr[Tk].

We divide the proof into several steps.
Let A be a simple structurable algebra and let Γ(A) be the structure group of A; also,

denote by A∼ the Γ(A)-module, where every φ ∈ Γ(A) acts as φ̂. First of all, we need to
describe generators of the algebra F[(A ⊕ A∼)k]Γ(A); it is convenient to do it in terms of
pairs .
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Definition 1 (cf. [17]) The direct sum of two vector spaces P = P+ ⊕ P− equipped with
two 3-linear operations: σ ∈ {+,−}

Pσ × P−σ × Pσ −→ Pσ,

(aσ, b−σ, cσ) 7→ {aσ b−σ cσ} is called a pair (−σ means +, if σ = − and −σ = −, other-
wise).

The subpair Fk(P) of generic elements of a pair P of rank k is generated in the pair

Pol(Pk, P) = (F[Pk]⊗F P+)⊕ (F[Pk]⊗F P−)

by 2k projectors xσi (i ∈ {1, . . . , k}, σ ∈ {+,−}). Next, the algebra Multk(P)
(≤ Pol(Pk, EndF P)) is generated by multiplication operators (σ ∈ {+,−}):

{∗ b−σ cσ}, {aσ ∗ cσ}, {aσ b−σ ∗},

where aσ, cσ ∈ Fk(P)σ , b−σ ∈ Fk(P)−σ .
Finally, the algebra of trace polynomials Tr[Pk] is generated by 1 and TrP(E), where

E ∈ Multk(P). Notice that for any φ ∈ EndF P we have a decomposition

φ(a+, a−) =
(
φ+(a+) + φ−,+(a−), φ+,−(a+) + φ−(a−)

)
,

where φσ ∈ EndF Pσ and φσ,−σ ∈ HomF(Pσ, P−σ). Therefore, by taking traces,

TrP(φ) = TrP+ (φ+) + TrP−(φ−).(9)

Also, for any E ∈ Multk(P), both E+ and E− belong to Multk(P) (we identify EndF Pσ with
a subalgebra of EndF P in the usual way).

Like in Proposition 1 one can show that Tr[Pk] is affine.
For a structurable algebra A define a pair P = P+ ⊕ P− letting P+ = A, P− = A∼ and

{a+ b− c+} = Va+,b−c+, {a− b+ c−} = Va−,b+ c−

for aσ, bσ, cσ ∈ Pσ , σ ∈ {+,−}. By definition, the automorphism group of P consists of all
pairs (φ, φ̂), where φ ∈ Γ(A), and, therefore, it is isomorphic to Γ(A).

Proposition 3 Let A be a simple structurable algebra, then F[(A ⊕ A∼)k]Γ(A) = F[Pk]Γ(A)

is a finitely generated module over Tr[Pk].

Proof Let x = (a1, b1, . . . , ak, bk) ∈ Pk and let M+ ⊕M− be the subpair of P generated by
the elements a1, . . . , ak ∈ P+, b1, . . . , bk ∈ P−. Since P = A ⊕ A∼ is contained in the Z-
graded Lie algebra L = K(A), we may consider the subalgebra M generated by a1, . . . , ak ∈
A = L1 and b1, . . . , bk ∈ A∼ = L−1. From the definition of multiplication [a, b] in L [1]
it follows that M =

∑2
i=−2 Mi , where M1 = M+, M−1 = M−, M0 = [M1,M−1] and

M±2 = [M±1,M±1].
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Now, suppose that x ∈ πTr[Pk](0), let us prove that M is ad-nilpotent; because of Engel-
Jacobson’s theorem [16, Theorem 2.1] it suffices to show that ad(a) is nilpotent for all
a ∈ M0, since the homogeneous elements in nonzero components are clearly ad-nilpotent.
But

[M1,M−1] ⊆ vectF{Va,b | a ∈ M+, b ∈ M−},

therefore, by our hypothesis on x, for all u ∈ M0, TrA(un) = TrA∼(un) = 0. Hence, ad(u)
acts nilpotently on L±1 and, since L is generated by L1 ∪ L−1, by the Jacobi identity, it acts
nilpotently on the whole L.

So M is a nilpotent subalgebra and it is homogeneous (invariant under T1). Also, A is
simple, therefore, by [1], L is also simple; like in the proof of Theorem 2 we can show that
x belongs to the null-cone of G0 : L, where G0 is the subgroup of Aut(L) which keeps T1

being fixed, that is, the automorphism group of the Z-graded Lie algebra L. Recall that G0

is precisely the structure group Γ(A) [2], so Proposition 2 completes the proof.

The linear mapping Ls ∈ EndF A is invertible, where (Ls)−1 = Ls; taking a ∈ A∼ to
sa ∈ T, we identify the vector spaces A∼ and T. It defines an isomorphism φ 7→ LsφLs

from EndF T onto EndF A∼.
Now let P = A⊕A∼ and consider the linear bijection ψ from T2k to Pk ' Ak ⊕ (A∼)k

given by
ψ : (a1, . . . , a2k) 7→ (a1, . . . , ak, sak+1, . . . , sa2k);

it induces corresponding identifications:

ψ̂ : F[Pk] −→ F[T2k]

f 7→ f ◦ ψ

ψ̃+ : Pol(Pk,A) −→ Pol(T2k,T)

f 7→ f ◦ ψ

ψ̃− : Pol(Pk,A∼) −→ Pol(T2k,T)

f 7→ Ls ◦ f ◦ ψ

ψ̄+ : Pol
(

Pk, EndF(A)
)
−→ Pol

(
T2k, EndF(T)

)
f 7→ f ◦ ψ

ψ̄− : Pol
(
Pk, EndF(A∼)

)
−→ Pol

(
T2k, EndF(T)

)
f 7→ Ls ◦ ( f ◦ ψ) ◦ Ls

where the latter line should be understood as follows:

ψ̄−( f )(a1, . . . , a2k) = Ls ◦ f (a1, . . . , ak, sak+1, . . . , sa2k) ◦ Ls.

Notice that for any f ∈ Pol(Pk, EndF A) and g ∈ Pol(Pk, EndF A∼),

ψ̂
(
TrA( f )

)
= TrT

(
ψ̄+( f )

)
and ψ̂

(
TrA∼(g)

)
= TrT

(
ψ̄−(g)

)
.(10)
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The isomorphism Pk ' Ak ⊕ (A∼)k defines an isomorphism F[Pk] ' F[Ak] ⊗F

F[(A∼)k], which in turn provides F[Pk] the structure of a bigraded algebra, so that we
can speak of the degree in Ak and the degree in (A∼)k. Let ∆k be the subspace of F[Pk]
spanned by the elements f (x)g(y) (' f (x) ⊗ g(y)), where x (respectively, y) is the pro-
jector of Pk onto Ak ((A∼)k), for homogeneous f and g of the same degree. That is, ∆k

is the subspace of F[Pk] spanned by all homogeneous polynomials f = f (x, y) such that
degx f = degy f . Obviously, it is a subalgebra of F[Pk]; moreover, F[Pk]Γ(A) ⊆ ∆k because

F[Pk]Γ(A) is homogeneous, the scalars F∗ lie in Γ(A) and for all α ∈ F∗, a ∈ A and b ∈ A∼

the mapping α takes a to αa and b to α−1b.
Let ∆̂k be the image of∆k under ψ̂, then ∆̂k is spanned by all homogeneous polynomials

with the degree in the first k projectors being equal to that of the last k ones. Put Λk =
∆̂k ∩ F[T2k]E.

Proposition 4 The mapping ψ̂ restricts to an algebra isomorphism from F[Pk]Γ(A) onto Λk.

Proof For all f ∈ F[Pk]Γ(A) and φ ∈ E (⊆ Γ(A))

(
ψ̂( f ) · φ

)
(a1, . . . , a2k) = ψ̂( f )

(
φ(a1), . . . , φ(a2k)

)
= f
(
φ(a1), . . . , φ(ak), sφ(ak+1), . . . , sφ(a2k)

)
= f
(
φ(a1), . . . , φ(ak), φ̂(sak+1), . . . , φ̂(sa2k)

)
= ( f · φ)(a1, . . . , ak, sak+1, . . . , sa2k)

= f (a1, . . . , ak, sak+1, . . . , sa2k)

= ψ̂( f )(a1, . . . , a2k)

so ψ̂( f ) ∈ Λk. In the other way, if f ∈ Λk and g ∈ ∆k with ψ̂(g) = f , since g ∈ ∆k, it is
invariant under the action of F∗ ⊆ Γ. Also, for all φ ∈ E:

(g · φ)(a1, . . . , a2k) = g
(
φ(a1), . . . , φ(ak), φ̂(ak+1), . . . , φ̂(a2k)

)
= g
(
φ(a1), . . . , φ(ak), sφ(sak+1), . . . , sφ(sa2k)

)
= f
(
φ(a1), . . . , φ(ak), φ(sak+1), . . . , φ(sa2k)

)
= ( f · φ)(a1, . . . , ak, sak+1, . . . , sa2k)

= f (a1, . . . , ak, sak+1, . . . , sa2k)

= ψ̂(g)(a1, . . . , ak, sak+1, . . . , sa2k)

= g(a1, . . . , ak, ak+1, . . . , a2k) since L2
s = id,

as required.

Now, pick a homogeneous h ∈ F[Tk]E and define f in F[T2k]E letting

f = h(x1, . . . , xk) h(xk+1, . . . , x2k).
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Obviously f ∈ Λk, hence there is a g ∈ F[Pk]Γ(A) such that ψ̂(g) = f . By Proposition 3,
g is integral over Tr[Pk], so if we show that ψ̂(Tr[Pk]) ⊆ Tr[T2k], then we will have f to
be integral over Tr[T2k], which yields (replacing xk+i with xi for all i ∈ {1, . . . , k}) h2, and
hence h, to be integral over Tr[Tk]. Therefore, this will complete the proof of Theorems 3
and 1.

The isomorphisms above obtained from ψ allow us to define a linear mapping

ψ̃ : Pol(Pk, P) −→ Pol(T2k,T)

by means of
ψ̃( f , g) = ψ̃+( f ) + ψ̃−(g)

for all f ∈ Pol(Pk,A) and all g ∈ Pol(Pk,A∼), and in exactly the same way we define a
linear mapping

ψ̄ : Pol
(
Pk, EndF(A)⊕ EndF(A∼)

)
−→ Pol

(
T2k, EndF(T)

)
.

Lemma 5 ψ̃
(
Fk(P)

)
⊆ F2k(T) and ψ̄

(
Multk(P)

)
⊆ Mult2k(T).

Proof Let z1, . . . , z2k be the projections (generic elements) in T2k. Then since L2
s is the

identity, it follows that ψ̃(xi) = zi and ψ̃(yi) = zk+i for all i ∈ {1, . . . , k}.
Hence, by (8), if f , g, h ∈ F2k(T), then V f ,Ls◦gh ∈ F2k(T). Therefore, for all f1, f2 ∈ F+

k
and all g ∈ F−k (where Fk(A⊕A∼) = F+

k ⊕F−k ), if ψ̃( f1), ψ̃( f2) and ψ̃(g) belong to F2k(T),
then

ψ̃(V f1,g f2) = ψ̃+(V f1,g f2)

= (V f1,g f2) ◦ ψ = V f1◦ψ,g◦ψ f2 ◦ ψ

= Vψ̃( f1),Ls◦ψ̃(g)ψ̃( f2) ∈ F2k(T).

In the same way, for all f ∈ F+
k , g1, g2 ∈ F−k , if ψ̃( f ), ψ̃(g1) and ψ̃(g2) belong to F2k(T)

then

ψ̃(Vg1, f g2) = ψ̃−(Vg1, f g2)

= Ls ◦ (Vg1, f g2) ◦ ψ = Ls ◦Vg1◦ψ, f◦ψg2 ◦ ψ

= −VLs◦g1◦ψ,Ls◦ f◦ψLs ◦ g2 ◦ ψ since Ls ∈ Γ and L̂s = −Ls

= −Vψ̃(g1),Ls◦ψ̃( f )ψ̃(g2) ∈ F2k(T) by (8).

So, the first part is proven. Next, from the above it follows that for all aσ, cσ ∈ Fσ
k and

b−σ ∈ F−σk (σ = ±):

ψ̃({aσ, b−σ, cσ}) = σVψ̃(aσ),Ls◦ψ̃(b−σ)ψ̃(cσ),

so by (8), the operators ψ̄({aσ, b−σ, ∗}), ψ̄({aσ, ∗, cσ}), and ψ̄({∗, b−σ, cσ}) belong to
Mult2k(T), therefore, ψ̄

(
Multk(P)

)
⊆ Mult2k(T).
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Recall that P+ = A and P− = A∼; by (9) for any x ∈ EndF P

TrP(x) = TrA(x+) + TrA∼(x−) = TrT(x+) + TrT(x−),

hence, for all E ∈ Multk(P)

ψ̂
(

TrP(E)
)
= ψ̂
(
TrA(E+)

)
+ ψ̂
(
TrA∼(E−)

)
= TrT

(
ψ̄+(E+)

)
+ TrT

(
ψ̄−(E−)

)
∈ Tr[T2k]

where we have used (10). Hence, φ̂(Tr[Pk]) ⊆ Tr[T2k], as required, and this concludes the
proof of Lemma 5 and, therefore, of Theorems 3 and 1.
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y Computación

Universidad de la Rioja
26004 Logroño
Spain

Present address (A. Elduque):
Departamento de Matemáticas
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