CoO mun Chian
Institut de Physique, Université de Constantine B.P. 260 , Constantine , Algeria

For inverse scattering theories, it is well known that in order to guarrantee the existence and uniqueness of the solution, drastic restrictions mast be imposed on the soattering potential or on the scattering data collected from experiments (see for example Nowt on I966) . The existing theories in their original form such as the Goldman Lovitan or the Marohente equations therefore cannot be used in a straightforward manner and some further steps toward simplifications have to be considered.

In inelastic scattering problems where many coupled channels must be taken into account to construct various elements of the scattering matrix the problem become much more ocmplioated both from thetheoretical and experimental point of $\nabla 10 w$. The present work deal only with the energy fixed case and show that a solution can nevertheless be obtained by using on one hand the oonventional technique of the Abelian transformation which has been extensively applied in the JWKB approach to the one channel problem (see for example a general review by Back I97I f with on the other some results obtained reoentiy concerning a system of coupled differential equations (Cav I982 I).

The case of two states approximation which may be interresting for its possible applications is investigated starting from the results of the direct problem (Ca I984 II) but its possible extension to the general case of a finite number of coupled channels will be omitted for space limetation.

The mathematical description of the 2 states problem for simplicity, is assumed to be, in matrix notation :

$$
\begin{array}{lll}
& (L+U) Y=0 \\
y_{1}=\binom{y_{0}}{y_{1}} & L=\left(\begin{array}{cc}
L_{0} & 0 \\
0 & L_{1}
\end{array}\right) \\
L_{i}=\frac{d^{2}}{d t^{2}}+k_{i}^{2}-\frac{l(l+1)}{r^{2}} & U=\left(\begin{array}{cc}
U_{00} & U_{01} \\
U_{10} & U_{11}
\end{array}\right)
\end{array}
$$

where we continue to keep the notations and conventions of Ref II . The interaction matrix U is generally symmetric se that we may set
$U_{01}=U_{10}=B, \quad B \quad \begin{aligned} & \text { will be referred to as the coupling } \\ & \text { function of the system. }\end{aligned}$
Let δ_{l}^{t} be the proper phase schift 1.e. the phase schift one would have after separation of the coupled equations With the following definitions :

$$
\begin{aligned}
& I_{ \pm}\left(S_{ \pm}, E\right)=\log \frac{r\left(S_{ \pm}\right)}{S_{ \pm}} \\
& S_{ \pm}^{2}=r^{2}\left\{1-\frac{1}{2 E}\left[\frac{1}{2}\left(U_{00}+U_{11}\right) \pm \frac{1}{2}\left[\left(\Delta R_{+}^{2} \Delta U\right)^{2}+4 B^{2}\right]^{1 / 2}\right]\right\} \\
& \Delta k^{2}=k_{1}^{2}-k_{0}^{2} \quad \Delta U=U_{11}-U_{\infty} \\
& E=\text { incident energy }
\end{aligned}
$$

and using the technique of Abelian transformation we obtain:

$$
\begin{gathered}
I \pm-\alpha_{ \pm}=\frac{2}{k \pi} \int_{S_{ \pm}}^{\infty} \frac{1}{\left(b^{2}-S_{ \pm}^{2}\right)^{1 / 2}} \frac{d S_{l}^{ \pm}}{d b} d b \\
k^{2}=\frac{1}{2}\left(k_{0}^{2}+k_{1}^{2}\right) \quad b=\frac{1}{k}(l+1 / 2) \quad \alpha_{ \pm}=\log \frac{E}{E \mp \Delta k^{2}}
\end{gathered}
$$

The various elements $U_{i j}$ of the interaction matrix J are therefore related to the quantities $I \pm$ by a system of 2 equations :

$$
\begin{align*}
U_{00}+U_{11} & =\frac{1}{2 E}\left\{2-\left(e^{-2 I_{-}}+e^{-2 I_{+}}\right)\right\} \\
\left(\Delta R^{2}+\Delta U\right)^{2}+4 B^{2} & =\frac{1}{4 E^{2}}\left[e^{-2 I_{-}}-e^{-2 I_{+}}\right]^{2} \tag{1}
\end{align*}
$$

In the one channel arse, the diagonal terms $U_{i u}$ are often referred to as the interaction potential of the fth channel which is described by an equivalent homogeneous equaion. They can usually be inferred by other means, for arampile for sufficiently strong attractive forces, J_{i} can field a discrete energy spectrum . Therefore they can be evaluated from the wave function corresponding tochannel 1 . ParticularIf, it is reasonable to assume that the J_{00} term while is related to the ground state can be attained by this way. The two equations in (1) are then sufficient in principle to load to tho unlownis J_{11} and B provided that $d S_{l}^{\frac{1}{l} / d b}$ can be determined fran experimental data.

In order to simplify the presentation, we shall limit ourselves to the case of "near resonance " ($\left.1, \theta . \Delta k^{2} \simeq 0\right) f o r$ which $\alpha_{ \pm}$is sot equal to zero. Assuming then that the elasti and inelastic partial cross section Q_{i}°. $Q^{\prime} \ell$ are known, it can be shewn that $\partial_{l} I_{l}$ are given by the following equations:

$$
\begin{align*}
& \delta_{l}^{+}=P_{1}+\delta_{l}^{-} \quad \text { (2) } \quad P_{1}=\sin ^{-1}\left[\frac{2 k_{0}}{[(l+1) \pi]^{1 / 2}} \frac{Q_{1 l}^{1 / 2}}{\operatorname{Siq} 2 \varepsilon}\right] \\
& \sin ^{2} \varepsilon=\frac{d^{2}}{c^{2}+d^{2}} \quad \cos ^{2} \varepsilon=\frac{c^{2}}{c^{2}+d^{2}} \quad f_{0}=\frac{f_{0}^{2}}{4 \pi(2 l+1)} \frac{a_{1} \hat{c}+Q_{0} \hat{\theta}}{\cos ^{2} \varepsilon} \\
& \left(\cos 2 P_{1}+\operatorname{Fg}^{2} \varepsilon\right) \sin ^{2} \delta_{l}^{-}+\frac{1}{2} \sin 2 P_{1} \sin 2 \delta_{l}^{-}+\left(\sin ^{2} P_{1}-f_{0}\right)=0 \tag{3}
\end{align*}
$$

The quantities $d f_{l}^{ \pm} / d l$ needed in the determination of $I \pm$ are then given by:

$$
\begin{aligned}
& d \delta_{l}^{+} / d l=2\left(\sin 2 \delta_{l}^{+}+\operatorname{rg}^{2} \varepsilon \operatorname{six} 2 \delta l\right)^{-1}\left[g_{0}-\frac{g_{1}}{\left(1-\delta_{1}\right)^{1 / 2}} \sin e \delta_{l}^{+}\right] \\
& d \delta_{l} / d l=2\left(\sin _{d l} \delta_{l}^{+}+\operatorname{tg}^{2} \varepsilon \operatorname{\Delta in} 2 \delta \rho\right)^{-1}\left[g_{0}+\frac{g_{1}}{\left(1-f_{1}\right)^{1 / 2}} \operatorname{tg}^{2} \varepsilon \sin 2 \delta_{l}^{+}\right] \\
& g_{0}=-\frac{k_{0}^{2}}{4 \pi(2 l+1)^{2}} \frac{1}{c_{01}^{2} \varepsilon}\left[(l l+1)\left(\frac{d Q_{1} l}{d l}+\frac{d Q l}{d l}\right)-\left(Q_{1 l}+Q_{Q}\right)\right] \\
& \left.g_{1}=\frac{1}{2} \frac{k_{0}}{[(2 l+1) \pi] / 2} \frac{1}{\sin 2 \varepsilon} \frac{1}{Q_{1}^{1 / 2}}\left(\frac{1}{2} \frac{d Q_{l} l}{d l}-\frac{1}{2 l+1} Q_{1 l}\right)\right) f_{1}=\frac{k_{0}^{2}}{(2 l+1) \pi} \frac{Q_{1} l}{\sin ^{2} \varepsilon}
\end{aligned}
$$

The quantity ε is related to an arbitrary parameter n (see Ref II) which mast bo chosen according to the validity condition of the theory :

$$
\begin{equation*}
\frac{B}{\Delta k^{2}+\Delta U}<\frac{1}{\alpha^{2}(n)}(2 n+1 / 4) \tag{4}
\end{equation*}
$$

Assume first that the element J_{41} is mona a prier i. The following algorithm is needed te solve the problem :
(1) Let $\{r\}$ be the set of positive values of real number . To each elemerch of this set correspond an element of the set $\left\{I_{ \pm}(E, n)\right\}$
(ii) Let $\left\{m_{j}\right\}$ be a subset of $\{n\}$ such that the first equation of system (1) is verified.
(iii) Corresponding to each nj yo can now compute the
 of (1) and for each case check the validity conduition (4). The appropriate value \mathbf{n}_{0} is then the one for which this condition is satisfied best . The non existence of such no mean on the ether hand that we mast ge over to the second crier separation of the equations as indicated in Ref I .

The case where beth J_{11} and B are unknown is obviously more complicated but nevertheless treatable, the results are summarised below : Define

$$
V_{ \pm}=\frac{1}{2}\left\{U_{11} \pm\left[\left(\Delta k^{2}+\Delta U\right)^{2}+4 B^{2}\right]^{1 / 2}\right\} ; \quad A_{l}=\left(\frac{i}{\mu}\right)^{1 / 2}\left(\delta_{l}^{ \pm}-\delta_{l}^{(c)}\right)
$$

$\delta^{(0)}$
In which μ is the reduced mass, $\delta_{l}^{(0)}$ is the oonveational JWKB phase shift corresponding to the potential $\frac{1}{2} \mathrm{U}_{0 c}$. We find then

$$
\begin{align*}
& V_{ \pm}(r)=\frac{2}{\pi} f\left(U_{00}\right) \int_{r}^{\infty} \frac{1}{\left(5^{2}-r^{2}\right) / 2} \frac{d A \pm}{d s} l d s \\
& V_{+}-V_{-}=\frac{1}{2 E}\left(e^{-2 F-}-e^{-2 I_{+}}\right) \tag{5}
\end{align*}
$$

where the expression of $f\left(U_{00}\right)$ is (zerarke 1984)

$$
f\left(U_{00}\right)=E-\frac{1}{2} U_{00}-\frac{1}{4} r \frac{d U_{\infty}}{d r}
$$

The above algorithm remains valid, the first equation of (5)ean be used to evaluate ∇_{+}, V. while the second one serving to define the subset $\left\{\mathbf{m}_{j}\right\}$ of the secorad step (ii).

The non resonance case ($\Delta k^{2} \neq 0 \alpha_{ \pm} \neq 0$) is more compliceted in the sense that the quantities $S^{+} l$ bare tob relaterpreted and the relations (2), (3) mast be modified accordingif. It car be shewn that the problem can nevertheless be made
trastable on the same basis.
To conclude, we may point out that the above results are derived in the frame of a JWKB treatment whioh imply striet limitations inherent to a short wavo longht appraximation . We find however that it is also possible to generalise the theory to the sase where such an approximation does not apply by including to the above approach some propertios of non linear differential equations .

