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POINTWISE CHAIN RECURRENT MAPS OF THE TREE

ZHANG GENGRONG AND ZENG FANPING

Let T be a tree, f : T — T be a continuous map. We show that if f is pointwise
chain recurrent (that is, every point of T is chain recurrent under f ), then either
fo is identity or f° is turbulent if Fix(f) N End(T) = 0; or else f® -1 is identity or
f=1 is turbulent if Fix(f) N End(T") # 0. Here n denotes the number of endpoints
of T and, a, denotes the minimal common multiple of 2,3,...,n.

1. INTRODUCTION

Firstly some notation and definitions are established. Let (X, d) be a compact metric
space and g : X — X be a continuous map. If g"(z) = z # ¢*(z),k = 1,2,...,n — 1,
for some x € X and some positive integer 7, then the point z is called a periodic point
of period n, where ¢° = id,¢* = go ¢*"'( > 1). In particular, if g(z) = z, then z is
called a fized point of g, the set of all fixed points of g is denoted by Fix(g). For z,y € X
and € > 0, an e-chain from z to y is a finite sequence z = zg,21,...,2Zn_1,Zn = y with
d(g(z;), zi41) < e for 0 € i € n—1. We say z chains to y under g, if for each € > 0, there
is an e-chain from z to y. A point z is said to be chain recurrent if r chains to itself.
The map g is said to be pointwise chain recurrent if every point of X is chain recurrent
under g. The following facts about chain recurrent are standard observations:

(a) If g is pointwise chain recurrent, then g maps X onto X.
(b) g is pointwise chain recurrent if and only if g" is pointwise chain recurrent
for every n > 0.
(c) [3, Theorem A] If X is connected and g : X — X is pointwise chain
recurrent, then there is no nonempty open set U # X such that g(U) cU.
Being chain recurrent is an important dynamical property of a system and has been
studied intensively in recent years. For more details see 1, 2, 3, 4, 5, 7, 8].

A tree is any space which is uniquely arcwise connected and homeomorphic to the

union of finitely many copies of the unit interval, that is, a graph(see [6])containing no
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cycles. Let T be a tree, the points of T which have no neighbourhood homeomorphic
to an open interval of the real line are called vertices, written by V(T). Let z € T, the
number of connected components of T\ {z} is called the valence of z. A vertex of valence
1 is called an endpoint of T and a vertex of valence larger than 2 is called a branching
point of T. Denote by End(T’) and Br(T') the sets of endpoints and branching points of
T, respectively, and let NE(T') be the number of endpoints of T. For a point p € Fix(f),
the connected component of Fix(f) which contains p is represented by C,. Let N be the
set of positive integers. For any n € N with n > 2, let a, denote the minimal common
multiple of 2,3,...,n.
For a,b € T, we use [a, b], to denote the smallest closed connected subset containing
a and b. We define (a,b] = [a,b] \ {a} and similarly define (a, b) and [a,b). We also use
Ty(a) to denote the connected component of T\ {b} which contains a. For a subset A of
T, we use int(A), A and 8(A) to denote the interior, the closure and the boundary of A,
respectively.
A map g : T — T is called turbulent if there are closed non-degenerate connected
subsets J and K with disjoint interiors such that g(J) N g(K) D JUK.
The following are obviously:
(1) If g is turbulent then g is turbulent for-any n > 1.
(2) If there exist p € Fix(g),y € T such that y € ((g(y),p) and p = ¢*(y),
then g is turbulent.
In [2], it is proved that a pointwise chain recurrent map h of the interval must satisfy
that either h? is the identity or h? is turbulent. In [4], it is shown that a pointwise chain
recurrent map h of the space Y satisfy that either h!? is identity or h!? is turbulent.
In this paper, we prove the following:
MAIN THEOREM. Let T be a tree with n endpoints, f : T — T be a continuous
map. If f is pointwise chain recurrent, then
(1) IfFix(f)NEnd(T) = 0, then either f* is the identity or f° is turbulent;
(2) IfFix(f)NEnd(T) # 0, then either fo~-' is the identity or f®*-! is turbu-
lent.
From the Main Theorem, we obtain the following Corollary, which sharpens the
result of [4].
COROLLARY. Let f be a pointwise chain recurrent map of the space Y, then

(1) IfFix(f) NEnd(T) # 0, then either f? is turbulent or f? is identity;
(2) IfFix(f) NEnd(T) = @, then either f® is identity or f® is turbulent.

2. PROOF OF MAIN THEOREM

Before proving the main theorem, some lemmas are established.
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LEMMA 2.1. Suppose k,m,n € N with km < n, then kan < a, and ka,, | a,.

r

s+l 1
PrOOF: Let a,, = H g and k = [] ¢, where ¢; are prime number with ¢; # i

i=1 i=1
{ s+l
forall 1 <4< j < s+1 Then kan = [] ¢ [] g¢;’. Obviously, g[**% < n for all
i=1 j=i+1
i<l+1l,and g <mforalll <i<!l+s+1 Thus, kay | a,, which completes the
proof. 0

LEMMA 2.2. Let T be a tree, f : T — T be a pointwise chain recurrent map.
Then Fix(f) Nint(T) # 0. In particular, if Fix(f) = {p}, then p & End(T).

PRrOOF Suppose that Fix(f) Nint(T) = @, that is Fix(f) C End(T). Given v,
€ int(T'), then f(v,) € (v1,€;) for some endpoint e;.

(1) If (vi,e1) N Br(T) = 0, then (vy,es] N Fix(f) = {e1} and f([vy,€1]) C (v1, 1]
But this contradicts (c¢). Hence there exists some point v, € (v;,e;) N Br(T) satisfying
(v1,v2) NBr(T) = 0.

(2) Obviously vs € (v1, f(v2)). Then there exists some endpoint e, such that f(v,)
€ (v2, e2). Hence there exists some point v3 € (v, e2) N Br(T') satisfying (v2, v3) N Br(T')
= Q.

(3) Thus, we can find infinite points vy, e, vs, ... satisfy: v;41 € Br(T), (vi,viq1)
NBr(T) = 0,v; #v; for all 4,5 € N and 7 # j. This is contrary to the fact that Br(T) is
finite, which completes the proof.

LEMMA 2.3. Let T be a tree, f : T — T be a pointwise chain recurrent map.
p € End(T) NFix(f). If C, N Br(T) = 0, then either f~Y(C,) NT \ Fix(f) # 0 or f is
turbulent.

PRrOOF: Without loss of generality, let C, = {p}. Suppose f~1(p) = {p}.

Case 1. There is some point ¢ with (p,c) N (Fix(f) UBr(T)) = 0. If f(z) € (p,z)
for all z € (p, c), then f([p,z]) C [p, ) for all z € (p,c). That is a contradiction. Thus,
z € (p, f(z)) for all z € (p,c), and there exists some point b € (p, c) with f(z) € Ty(c)

for all z & T.(b). Thus f(Ty(c)) C Tp(c), also a contradiction.

Casg 2. There are some fixed points py,p1,... with (po,p) N Br(T) = @, d(pi,p)
< d(pi-1,p) for all ¢ € N and lim;_, d(p;, p) = 0. Without loss of generality, we assume
(pi, piv1) N Fix(f) = 0. If there exists some positive integer iy such that f(z) € [p,z] for
all 7 € [p,pi,) or = € [p, f(z)] for all z € [p,p;,), we obtain a analogous contradiction as
case 1. Then, there exists some iy € N satisfies f(z) € (p,z) for all z € (p;+1, pi,) and
z € (p, f(z)) for all z € (Pig41, Pig+2)- If f(2) # Pigs2 for all z € (piy41,p4) and f(f) # Dio
for all £ € (Piy+1, Pig+2), then there some open set U C (piy, Pig+2) such that f(U) C U.
That is a contradiction. Without loss of generality, we assume y € [pi,, Dig+1] With
f(y) = Pio+2 and f_l(pio+2) n (Eo+la y) =0 If f(.'E) € (pio+2xb) forallz € (pio+2apio+l)
and some b € (p;y,,,y), then f(U) C U for some open set U C (piy42,b). that is a contra-
diction. Else, f(z) = y for some £ € (p;y+2, Pig+1), then f is turbulent. This completes
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the proof. 0

LEMMA 2.4. Let [p,c] be an interval, g € C°[p,c] be a pointwise chain recurrent
map. If {p,c} NFix(g) # 0, then g is turbulent or g is identity.

PROOF: Suppose that g is not turbulent and g is not identity and p € Fix(g).
Without loss of generality, we assume that C, = {p}. Then, by Lemma 2.3, f(y) = p for
some y € (p,c]. There exists some point b € (p,y) with f(z) € [p,b) for all z € [p,y).
Hence f([p,y]) C [p,y), a contradiction, which completes the proof.

LEMMA 2.5. Let T be a tree, f : T — T be a pointwise chain recurrent map.
Ifn > 2 and f~'(Fix(f)) N (T \ Fix(f)) = 0, then either Card(End(H)) < n for each
connected component H of T \ Fix(f) or f? is turbulent.

Proof Suppose that there exists some connected component H of T\ Fix(f) satisfied
that H has n endpoints and let T\ H = H;.

Caskt 1. If Card(Fix(f)) > 2, then Card(H N Fix(f)) > 2 or Card(H, N Fix(f)) > 2.
Suscaskg 1.1. Card(H NFix(f)) > 2, then f(H) = H. But Fix(f) N H C End(H), this
contradicts Lemma 2.2.

SuBcask 1.2. Card(H; NFix(f)) > 2 and Card(H NFix(f)) = 1, then H, is connected
set and int(H;) NFix(f) # 0. Then f(H,) = H,, hence f(H) = H

H. Also a contradiction.
Cast 2. If HN H, = Fix(f) = {p}, then f(H) = H, f(H\) = H, or f(H) = H,,

SuBcask 2.1. If f(H) = H and f(H,) = Hy, we have a contradiction as above.
SuBCASE 2.2. if f(H) = H; and f(H,) = H, then we have f2(H;) = H. Let g = f2|g,,
it is not difficult to see that g is a not identity. Then, by Lemma 2.4, g is turbulent and
f? is turbulent. This completes the proof. 1]
LEMMA 2.6. LetT be atree, f : T — T be a pointwise chain recurrent map and,
f is not identity. If f=*(Fix(f)) N (T \ Fix(f)) = 0, then
(1) Fix(f) is a connected set and;
(2) If Card(Fix(f)) > 1, then 8(Fix(f)) C Br(T) UEnd(T) and;
(3) IfFix(f)NEnd(T) # 0, then Fix(f) N Br(T) # 0.
PrOOF: (1) If Fix(f) is not a connected set, then, there is a connected component
H of T\ Fix(f) such that Card(8(H) NFix(f)) > 1. We have f(H) = H and Fix(f)NnH
= (. This is a contradiction, by Lemma 2.2.
(2) Suppose Card(Fix(f)) > 1. If there exists some point p € 9(Fix(f)) \ (Br(7T)
U End(T)), let H be the unique connected component of T \ Fix(f) such that p € H.
Then f(H) = H and Fix(f) "' H ¢ End(H). This is a contradiction, by Lemma 2.2.
(3) If p € Fix(f) N End(T) and Fix(f) N Br(T) = @, then, by (2), Fix(f) = {p}-
But this contradicts Lemma 2.2. This completes the proof. 0
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PROOF OF MAIN THEOREM: We do argument on induction.

If n = 2, by [3] and Lemma 2.4, we know that the assertion is true.

Inductively, we assume that the assertion is true for all T with endpoints less than
n and n > 2. Now suppose f is not the identity and continue argument for T with n
endpoints in the following two cases.
Case 1. f7}(Fix(f)) N (T \ Fix(f)) # 0. In this case the following two subcases are
considered. .

SuBcask 1.1. Fix(f) N End(T) = ® Without loss of generality, let f(2;) = p € Fix(f)
and z, # p. Denotes Cy = {z1}.

(1)f~Yz1) N T3, (p) # 0. Otherwise, there is some nonempty open set U C T, (p)
with f(U) C U. A contradiction.

(2) Let By = {z},22,...,2"} € fY(z) N T, (p) with (zi,p) N f~1(2) = 0, for all
1 < i < ki and B, is the largest set with this property. Let A, denote T}, (p) N T.:(p)
NTa(p)n...N Tzrl(p). Then f~1(B;) N A; # 0 (Else, there is some connected open
subset U with f(U) C U, which is a contradiction). Denote f(4;) N B; = C.

(3) Let By = {2},22,...,28°} C f~Y(B)) N A, with (z,p) N f~Y(B;) = 0, for all
1 £ i € ky and B, is the largest set with this property. Let A, denote T,% (p) N ng (»)
n...n Tz{‘2 (p) N A;. Then f~1(By) N Az # 0. Denote f(Az) N By = C,.

(4) By a repetition of this process we can get nonempty sets {4;, B;, C;}2, with
f(A) N B; = Ciand Ciyq C Biy1 C A; N f7YB;) C f7YCG) for all ¢ > 0. Take some
point 2,43 € C,, then z; = f***1(2,,,) € C;_, for all 1 < i < n + 1. Obviously,
zj € T,(p) for all i < j and T = |J_,[p, &), where e;,e;,...€, € End(T). Thus,
Ziy, 2jo € [, €] for some 1 € jo <49 < n+1and i< n Then 2z, € (p, z;,).

Denote k the minimal common multiple of i — jo and jo, and Let g = f*. There
is a point w € (p, zj,) with g(w) = zj,, since z;, € (zj,,p) and f77(z;) = zj,. Then
w € (p, 25), 9(w) = 2, and g(zj,) = p € Fix(g). It follows that g is turbulent. Thus f°"
is turbulent, since k | a,.

SuBcase 1.2. If Fix(f) N End(T) # @, let p € Fix(f) N End(T).

If f(z1) = 2 for some 2o € C;, and 2, € Cj, then, taken the process as subcase
1.1, we shall get points zg, 21,. .., 2zn, ... With f(zi41) = z; for all i 2 0, z; € T3, (%) for
all 1 < ¢ < j. Obviously T = |, [20, €], where ey, €;,...€, € End(T’) and e, = p.
Then, z;,,zj, € {20, €] for some 1 < jo < ip < n and i < n — 1, since {z,p] C Fix(f).
Then z;, € (zj0,20), o —Jjo < n—1land 1 < jo < n—1. Let k be the minimal
common multiple of 4 — j; and jo, and Let g = f*. There is a point w € (p, zj,) with
g(w) = zj,, since zi, € (zjp,20) and fo79(z; ) = zj,. Then w € (p,z5), g(w) = 2z,
and g(z;,) = 20 € Fix(g). It follows that g is turbulent. Thus f*-! is turbulent, since
klan.

If f~1(2p) = {20} for all 29 € Cp, then, there exists some fixed point ¢ ¢ C, with
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“Yg) NT \ Fix(f) # 0. Let H be the connected component of T \ C, which contains
point g, then, f(H) = H. Let {w} = C, N H. It is obviously that {w} N Br(H) = § and
f~Yw)N'H = {w}, then f is turbulent, by Lemma 2.3. It follows that fo=-1 is turbulent.
Case 2. f1(Fix(f)) n (T \ Fix(f)) = 0.

Let G, G2 be two connected components of T \ Fix(f). Then f(G;) = G, and
G, NG, C Fix(f), if f(G))NG2 #0.

If f? is turbulent, then f°+-! is turbulent.

Now we suppose f2 is not turbulent, then, by Lemma 2.5 and Lemma 2.6, NE(H) < n
and Card(H N Fix(f)) = 1, f(H) N H C Fix(f) for each connected component H of
T \ Fix(f).

Given G a connected component of T \ Fix(f). Without loss of generality, we
assume that (1) f*(G) = G and k be the minimal positive integer with this property;

(2) m = NE(G) < NE(f/(G)) for all k > j > 1. Obviously m < n. Then either
(f¥lz)*=-" is identity or (f*|z)*-* = f**m-'|% is turbulent, by induction And then

either (f*| £5@)°™"" is identity or fham-1]| (@) is turbulent for all k > j > 0. Since G is
arbitrary and k(m — 1) £ n, it follows that either f% is identity or f“" is turbulent, by
Lemma 2.1.

In particular, if Fix(f) NEnd(T') # 0, then, by Lemma 2.6, k(m —1) < n— 1. Thus,
we have either fe-! is identity or f%-! is turbulent, by Lemma 2.1. This completes the
proof. 0
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