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Some problems of non-associative combinations (I)

By I. M. H. ETHERINGTON.

The problems considered here are essentially algebraic; but it is
convenient to begin with a picturesque formulation.

Let a convex polygon cut out of paper be cut along a diagonal;
it is thus divided into two convex polygons. Either of these may
then again be cut along a diagonal making three convex polygons;
and the process may be continued until only triangles are left, or
terminated earlier, as desired. When r cuts have been made, the
original polygon has been dissected into r + 1 sub-polygons.

Such a dissection will be called a partition of the polygon.
Geometrically, a partition may be described as a set of r diagonals
which do not intersect in the interior. The polygon itself (r = 0) is
included among its partitions. We may enquire in how many ways
a partition can be made for a given polygon, with perhaps some
restriction on the kinds of sub-polygon (triangles, quadrilaterals, etc.)
which may be left.

This is essentially a problem of non-associative combinations1, or
combinations with brackets inserted; for it will be shown that if the
given polygon has n + 1 sides, the partitions may be described
algebraically as the different ways of inserting brackets in a product
aj3y . . . . of n factors in a given order; which will be called associa-
tions of the n factors.

1 Of a more general kind than those considered in my paper under this title, Proc.
Hoy. Soc, Ed in., 59, 1939, 153-162.
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To see this, select a particular side of the given polygon as base,
and let the other sides be labelled a, /?, y, . . . Since the order in
which the cuts are performed is not taken into account, we may
proceed as follows. Regard the given polygon as an elastic band
stretched tightly round n + 1 pins at its vertices, the two base pins
being kept fixed and the others removed in r stages, corresponding
to the r cuts in a suitable order. At each stage two or more sides
A, yu., . . . . collapse on to a new side, previously a diagonal: if this
new side is labelled as a product Ayu. then ultimately the base
itself will be labelled as a non-associative product containing as
factors the n sides a, f$, y, . . . . of the original polygon in order, the
manner in which they are associated being determined by the parti-
tion. (See the example in figure 1.)

Conversely, any manner of inserting r pairs of brackets in the
product a£y . . . . corresponds to one definite partition of the given
polygon with chosen base by r cuts, if the following points are
observed:
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(i) The brackets must be effective; i.e., unnecessary brackets as in
(a/?v . . . .) enclosing the complete product, a (/}) y or a ((/8y)) §....,
are not to be counted. They would be like cutting the polygon along
the base, along a side, or twice along the same diagonal.
(ii) Pairs of brackets must not overlap as in a (^ [y) 8]; for this
would determine a set of diagonals intersecting in the interior of the
polygon.

We have thus set up a one-one correspondence between all
possible partitions of a convex polygon with n + 1 sides, and all
possible associations of n similar objects; or, what comes to the same
thing, of n dissimilar objects in a prescribed order. Combinations of
this kind were represented by Cayley1 as trees. Figure 2 will make this

<*•?•-$. S :

representation clear without further explanation. For the present
purpose, corresponding to the restriction (i) above, we must consider
only trees which at every knot bifurcate at least. (In some of

Cayley's investigations, knots such as • were permitted.) There is

1 E.g., Phil. Mag., 13 (1857), 172-176.
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also exhibited in figure 2- a convenient notation for dispensing with
brackets when writing non-associative products. Dots are placed
between the grouped factors, more dots implying more delay in
combination.

Consider now various special cases of the problem. In each case
the required number is denoted by An. Taking

Ai = 1,

the enumeration is made with the help of the generating function

f(x)=XAnx
n ( n = l , 2, 3, . . . . oo).

Case 1 is equivalent to the first, and Case 5 to the second, of
Schroder's Vier combinatorische Probleme1. Case 1 was discussed in a
series of papers by Lame, Catalan, Rodrigues, Binet3, and has been
touched on by Cayley3, Wedderburn4, Etherington5. The other cases
as far as I know are new. The solution of the general problem,
Case 4, is completed in the next Note. The connection between the
geometrical and algebraical problems was noticed by Catalan for
Case 1 only.

Case 1. Partition into triangles.
In my paper (1939, loc. cit.) I confined attention to non-

associative products in which factors are combined only two at a
time. The manner of association of the factors was called the shape
of the product. In the case when multiplication is non-commutative
as well as non-associative, shapes form a special class of the associa-
tions considered above. They correspond to partitions of a convex
polygon into triangles. They also correspond to trees bifurcating at
every knot, which I called pedigrees.

The enumeration in this case is given by the following formulae.
Considering how the product of n factors may be built up,

An = A1AH_1 + A2An_2 + + An_1A1 (n > 1)
= the coefficient of xil in / (x)2 ;

whence f(x) = x + f(x)2,
i.e., f(x)*-f(x)+x = 0.

1 Zeits. Math., 15 (1870), 361-376.
- Journ. de Math., 3, 4 (1838-39), 505, etc.
fl Phil. Mag., 18 (1859), 374-378.
* Ann. Math. (2), 24 (1922), 121-140.
s Loc. cit., and Math. Ga~., 21 (1937), 36-39.
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This, with /(O) = 0, gives

yielding on expansion

A = ( 2 w ~ 2 ) !
 = _ L / 2 n -2\

n (n- 1)! n\ n \ n - 1 '

= 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, for

» = 1, . . . . . 10, . . . .

Case 2. Partition into quadrilaterals.

This corresponds to trees which trifurcate at each knot; and to
the associations formed by combining factors always three at a time,
e.g., afiy: 8 . t£,r). 6: i. For this to be possible, the total number of
factors must be odd, since at each combining operation the number
of factors left is reduced by two. Similarly a polygon to be
partitioned into quadrilaterals must have an even number of sides.

Thus
A2 = Ai = A6= . . . . = 0.

Proceeding as before,

AH = 2 At Aj Ak (i+j + k = n, n> 1)
= the coefficient of xn in f(x)s; (n > 1)

f(X)=x+f(xf;

and so the generating function is that root of the cubic equation

f(x)s-f(z)+x = 0

for which / (0 ) = 0. To calculate the values of Ax, A3, Ab, . . . . in
succession, we may use the method of successive approximations:

= x + xs + = x + (x + a;3 + )3

= x + x3 + 3xb + . . . . = x + {x + x3 + 3ar> + . . . . )3, etc. .

Continuing, it will be found tha t for n = 1, 3, 5, . . . . , 19, . . . .

An = 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675,

Case 3. Partition into triangles or quadrilaterals.
This corresponds to trees which divide into either two or three

branches at each knot; and to associations formed by combining
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factors either two or three at a time. (E.g., see the figures.) We
have, for n > 1,

An = 2 At Aj + S Ak AtAm (i+j = k + l + m = n)
= the coefficient of xn in f(x)2 +f(xf.

Therefore / (x) = x + / (a;)2 + / (x)3,

and the generating function is that root of this equation for which
/(0) = 0. By successive approximations,

f ( x ) = x + (x + . . . . ) 2 + ( x + . . . . f = x + x* + ....
= x + (x + x?+ )2+ (x + x2+ f=x+ x* + 3x3+ , etc.;

and we find that for n = 1, 2, . . . . , 10

An = 1, 1, 3, 10, 38, 154, €46, 2853, 12844, &8S85,

Case 4. Generalisation.
Suppose we wish to enumerate the partitions of a convex

(n -\- l)-gon with the restriction imposed that the final sub-polygons
shall be all either (a + l)-gons or (6 + l)-gons or (c + l)-gons, etc.,
where a, b, c, . . . . are given positive integers. Following the
method of previous cases, we arrive at the result that the generating
function / (x) is determined by

An explicit expression for An is given in formula (2) of the Note
which follows.

Case 5. The unrestricted problem.
If no restrictions are imposed on the partitions,

f=*+f+fs+fi+ . . . . t o *

Hence 2/2 - (1 + x)f + x = 0.

This agrees with Schroder's result, found in a more complicated way.
He deduced

f(x)
and hence

) (

n - aj \ a

where a = 0, 1, 2 ; 2a ^ n; n > 1.

For n = 1, 2, 3, . . . . , 10, . . . . this gives the sequence

An = 1, 1, 3, 11, 45, 197, 903, 4279, 20793,
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