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Viscous fingering or Saffman–Taylor instability shows fingering interfacial patterns when
a more mobile fluid displaces a less mobile one in porous media. The effective interfacial
tension (EIT) is like capillary force, acting at the miscible interface on time scales shorter
than interface relaxation. It has been numerically reported so far that the fingers are
wider with EIT compared with those without EIT. A recent experiment observed finger
widening with increasing flow rate in a miscible system with EIT, which is not observed in
classical immiscible and miscible systems. In this study, we have numerically investigated
the effect of Pe (which corresponds to the injection flow rates in the experiment)
on miscible viscous fingering with/without EIT. We have shown that the fingers are
monotonically thinner with an increase in Pe in the system without EIT, while finger
widening with increasing Pe is observed in the system with EIT. Furthermore, we have also
examined a one-dimensional underlying concentration profile and EIT profile by using a
one-dimensional diffusion–convection model because EIT is proportional to the squared
concentration gradient. We have then shown that the concentration gradient is steeper
and, thus, the EIT is larger as Pe is larger. Therefore, this is the first numerical study
that can theoretically verify finger widening with increasing flow rate, which occurs only
in a miscible system with EIT to the extent of our targeting EIT values, and explain the
mechanism by one-dimensional analysis.
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1. Introduction

The displacement of one fluid by another in porous media is one of the most common
processes involving interfacial instabilities. It is generally accepted when the displacing
fluid is more viscous that no interfacial instability occurs, while viscous fingering (VF)
instability occurs in the reverse case. The latter case is hydrodynamically unfavourable,
and the interface of the two fluids gives a finger-like pattern. This phenomenon is
called Saffman–Taylor instability (Saffman & Taylor 1958) or VF (Homsy 1987). The
application of VF is widespread in several industrial and environmental processes such as
chromatography (Mayfield et al. 2005), transport of digestive juices (Bhaskar et al. 1992),
enhanced oil recovery (Lake et al. 2014), CO2 sequestration (Orr & Taber 1984) and frontal
polymerization (Pojman et al. 1998). Fluid–fluid miscibility plays an important role in VF
dynamics, and the VF pattern can change appreciably based on the miscibility of the two
fluids. Therefore, the subject is traditionally divided into immiscible and fully miscible VF.
The mutual solubility is infinite in fully miscible systems, while it is zero in immiscible
systems. Diffusion affects the VF dynamics in fully miscible systems. Thus, the fully
miscible VF is characterized by the Péclet number Pe, defined as the ratio of convective
transport rate and diffusive transport rate, Pe = LV/D, where L is a characteristic length,
V is the flow velocity and D is the diffusivity between the displacing and displaced fluids.
On the other hand, interfacial tension affects the VF dynamics in immiscible systems.
Thus, the immiscible VF is characterized by the capillary number Ca, defined as the ratio
of viscous force and interfacial tension force, Ca = μV/γ , where μ is the viscosity of the
more viscous fluid and γ is the interfacial tension between the displacing and displaced
fluids. In both types of VF, the dynamics is governed primarily by the viscosity contrast.
The viscous fingers generally become thinner with increasing Ca and Pe (Chen 1987;
Nagatsu & Ueda 2004; Pramanik & Mishra 2015a; Tsuzuki et al. 2019a,b). For the same
viscosity contrast and flow rate, the fingers in immiscible systems are wider than those
in miscible systems because the interfacial tension in immiscible systems can stabilize
short-wavelength perturbations at the interface.

The interfacial tension between immiscible fluids is an equilibrium thermodynamic
property resulting from the differences in intermolecular interactions between the two
different types of molecules. In miscible systems, when the two non-premixed miscible
fluids are brought in contact with each other, the initial concentration gradient between the
two fluids immediately relaxes via diffusion, resulting in an equilibrated, uniform state.
Therefore, in the case of two miscible fluids, there can be no interfacial tension at the
interface of the fluids. However, in 1901, Korteweg proposed that a body force caused by a
concentration (or density) gradient could act like an interfacial tension (Korteweg 1901).
On time scales shorter than that of interface relaxation, there does exist a capillary force at
the interface because there are necessary differences in intermolecular interactions when
the molecules are different. Such a capillary force is called Korteweg stress or effective
interfacial tension (EIT) (Pojman et al. 2006; Zoltowski et al. 2007).

The effect of EIT on miscible VF dynamics has been numerically studied (Chen, Wang
& Meiburg 2001; Chen et al. 2008; Pramanik & Mishra 2013, 2014, 2015b; Swernath,
Malengier & Pushpavanam 2010). Chen et al. (2008) showed that the miscible VF patterns
in a radial geometry with EIT can be made to resemble the more familiar morphologies
of their immiscible counterparts by increasing the value of a Korteweg stress parameter.
Swernath et al. (2010) showed that Korteweg stress could stabilize miscible viscous fingers
in a linear geometry and Pramanik & Mishra (2013, 2014, 2015b) showed that Korteweg
stress delays the onset of instability so that miscible viscous fingers are stabilized. In short,
numerical studies have indicated that EIT can stabilize the Saffman–Taylor instability
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and that the fingers are wider due to the effect of EIT. Also, experimental studies of
miscible VF with EIT have been reported. Truzzolillo et al. (2014) employed a method
for estimating EIT from the patterns of miscible viscous fingers based on the assumption
that EIT exists and showed that EIT is proportional to the square of volume fraction using
a colloidal suspension and its own solvent (Truzzolillo et al. 2014, 2016; Truzzolillo &
Cipelletti 2017).

In 2020, Suzuki et al. (2020) performed an experimental investigation of the effects of
EIT on miscible VF by establishing two solution systems that have different EIT but the
same viscosity contrast. They observed (i) that finger width with high EIT is larger than
that with low EIT for the equivalent flow rate or Pe and (ii) that the finger width increases
with the injection flow rate for low EIT. The reason for statement (ii) is explained by them
as follows: the EIT value monotonically decreases with contact time of the two solutions
and becomes nearly zero at the later stage. At the low flow rate, the EIT becomes very
small or nearly zero when the VF pattern grows to a certain size because the contact time
becomes long. At intermediate flow rates, the contact time is shorter until the VF pattern
grows to a certain size, and the EIT maintains still a finite value even when the VF pattern
grows to a certain size. Therefore, fingers are wider because of the EIT, which mimics an
interfacial tension. At high flow rates, however, the finger width decreases with an increase
in the flow rate (as in classical immiscible and miscible VF). This should be because
the finger-thinning effect with an increase in the flow rate overcomes the finger-widening
effect due to the interfacial tension.

It is well accepted that such finger widening with increasing flow rate is not observed
in a classical immiscible or miscible system without EIT. Thus, such finger widening
with increasing flow rate can be a peculiar characteristic of a miscible system with EIT.
Therefore, it is important to theoretically analyse the influence of Pe (which corresponds
to the injection flow rates in an experiment) on miscible viscous fingers with EIT. If such
finger widening with increasing Pe is theoretically reproduced, it is also important to
clarify its origin. To this end, we numerically simulate the diffusion–convection equations
coupled with Korteweg stress of miscible VF in porous media by varying Pe and analyse
the fingering patterns. We also discuss the one-dimensional EIT profile reconstructed by a
one-dimensional diffusion–convection model for various Pe to explain the effect of Pe on
miscible VF patterns with EIT.

This paper is organized as follows. The problem description and governing equations
are given in § 2. The numerical results are described in §§ 3.1 and 3.2, and quantitative
analysis and discussion are presented in § 3.3. Section 4 finally summarizes and concludes
this study.

2. Problem description and governing equations

2.1. Physical problem
The system considered is a homogeneous porous medium or a Hele-Shaw cell with
constant permeability k, where an incompressible viscous fluid of viscosity μ2 (> μ1)
is placed initially (i.e. at time t = 0) as shown in figure 1. The sample is displaced by
another incompressible fluid of viscosity μ1 at a uniform velocity U from the left domain.
The two fluids are considered to be neutrally buoyant. The solvent concentration c, which
drives viscosity μ(c) of the fluids, is assumed to be c = 0 and c = c2 in the displacing and
displaced fluids, respectively. To take the EIT into consideration, it is assumed that the
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c = 0

U

c = c2

Lx

Ly

y

x

μ = μ1 μ = μ2 > μ1

Figure 1. Sketch of a two-dimensional porous medium of length Lx and width Ly with permeability k, where an
incompressible fluid of viscosity μ1 displaces another of viscosity μ2 from left to right at a constant velocity U.

fluids diffuse at a slow rate so that the concentration gradient remains steep for a longer
period in the thin mixing zone of the two fluids.

2.2. Governing equations
The problem has been modelled by coupling the convection–diffusion equation for the
solvent with the Darcy–Korteweg equation (Pramanik & Mishra 2013) for fluid flow
velocity. Although the VF dynamics involving inertia effects by using Forchheimer’s
model (Joseph, Nield & Papanicolaou 1982) has recently been paid attention (Kim
2022), we, here, investigate the effect of Pe on the VF dynamics by employing the
Darcy–Korteweg equation, which has been used in several studies of VF with EIT. The
model described by the Darcy–Korteweg equation can be governed by the following
equations (Joseph & Renardy 1992; Pramanik & Mishra 2013, 2014, 2015b; Swernath
et al. 2010):

∇ · u = 0, (2.1)

∇[p + Q(c)] = −μ
k

u + ∇ · [δ̂(∇c)(∇c)], (2.2)

∂c
∂t

+ u · ∇c = D∇2c, (2.3)

μ = μ(c). (2.4)

Equation (2.1) is the continuity equation or the mass conservation equation, which
represents a solenoidal velocity field for incompressible fluids having velocity components
u = u(u, v) along the (x, y) directions. Equation (2.2) corresponds to the equation of
motion or the momentum equation in the form of Darcy’s law for the flow in porous
media with a stress term, ∇ · [δ̂(∇c)(∇c)], for the EIT. Here δ̂ is called the Korteweg
parameter. The transport of solvent is characterized by the convection–diffusion equation
(2.3). It is noted that the pressure-like term Q(c) due to Korteweg stress, appearing in
the Darcy–Korteweg equation, can be defined as (Joseph & Renardy 1992; Pramanik &
Mishra 2013, 2014, 2015b; Swernath et al. 2010)

Q(c) = δ̂

3

[(
∂c
∂x

)2

+
(
∂c
∂y

)2
]

− 2γ
3

(
∂2c
∂x2 + ∂2c

∂y2

)
, (2.5)

where the parameter γ is a kind of gradient parameter (Swernath et al. 2010). Both δ̂ and
γ depend on the compositions of the miscible mixture and need to be determined from
experiments.
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We used the moving frame method, x = x − Ut and u = u − Uex (Tan & Homsy
1988). In order to obtain the non-dimensional form of the governing equations, we scale
the flow velocity with U, time with Ly/U, viscosity with μ1, pressure with μ1ULy/k
and concentration with c2 following Pramanik & Mishra (2015a). The non-dimensional
governing equations are then obtained:

∇ · u = 0, (2.6)

∇P = −μ(c)(u + i)+ ∇ · [δ(∇c)(∇c)], (2.7)

∂c
∂t

+ u · ∇c = 1
Pe

∇2c, (2.8)

μ(c) = eRc, (2.9)

where R is the log-mobility ratio defined as R = ln(μ2/μ1), δ = δ̂kc2
2/μ1UL3

y is the
non-dimensional Korteweg parameter, i representing the unit vector in the x direction
arises due to analysing in a moving reference frame and Pe = ULy/D is the Péclet number.
Therefore, the term ∇ · [δ(∇c)(∇c)] indicates the EIT. Taking the curl of the momentum
equation and defining the stream function ψ(x, y) as u = ∂ψ/∂y and v = −∂ψ/∂x (Tan
& Homsy 1988), we obtain

∇2ψ = −R
(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
∂c
∂y

+ ∂c
∂y

)

− δ

μ

[
∂c
∂x

(
∂3c
∂y∂x2 + ∂3c

∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
, (2.10)

∂c
∂t

+ ∂ψ

∂y
∂c
∂x

− ∂ψ

∂x
∂c
∂y

= 1
Pe

∇2c. (2.11)

We note that the stream function and vorticity formulation for both the present study
and that of Seya et al. (2022) become the same although the physical basis for both
works is different. The model systems are coupled partial differential equations in both
the papers. Therefore, the species transport equation (3.2) in Seya et al. (2022) has the
chemical potential function which shows the phase-separation effects. Whereas in the
present paper, (2.11) contributes only to the effects of convection and diffusion of the
species concentration. In both cases, there are additional stress terms which are due to
the concentration gradient and chemical potential, for the present work (2.10) and for
Seya et al. (2022) equation (3.1), respectively. The detailed derivations of such stream
function–vorticity formulations are given in Appendices A and B. The dimensionless
stream function–vorticity forms of (2.10) and (2.11) are numerically simulated using
a pseudo-spectral method based on Fourier coefficients following Pramanik & Mishra
(2015a) and Tan & Homsy (1988). Careful observation of the boundary conditions yields
that the boundary conditions can be easily considered to be periodic without affecting
the nature of the flow. Without loss of generality, the boundary conditions along the
transverse boundaries can be considered periodic for computational purposes. However,
in the longitudinal direction, the length of the computational domain is taken sufficiently
large to take care of the periodic boundary conditions. Hence, the interfacial instability
front is not affected by the boundary conditions. In the present study, we have employed
the classical periodic boundary conditions, which have been used in many numerical
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(a)
t = 20

t = 40

t = 60

t = 80

(b)

0 1.00

(c) (d )

Figure 2. Time evolution of miscible VF dynamics (a) without EIT (δ = 0) and with EIT ((b) δ = −10−6,
(c) δ = −10−5, (d) δ = −2 × 10−5) for R = 0.75 and Pe = 1000. The greyscale shows the concentration of
species.

studies on VF in rectilinear geometry, although it has been very recently reported that
the transverse or lateral boundary conditions have an important role in VF dynamics (Kim
& Pramanik 2023). The computational domain is chosen to be [0, Lx/Ly] × [0, 1], where
Lx = 8 and Ly = 1 with 1024 × 128 spectra incorporated within a rectangular region. The
time integration is performed by taking time stepping of �t = 10−4. The convergence
criteria are satisfied, similar to the results reported by Pramanik & Mishra (2015a) with a
different Fourier spectra size.

3. Results and discussion

3.1. Effect of EIT on the miscible VF dynamics
We firstly performed a numerical simulation of miscible VF to check the effect of EIT on
the VF dynamics, the results of which are shown in figure 2. The parameter condition is
R = 0.75 and Pe = 1000. Comparing the case without EIT (δ = 0), the fingers are wider as
|δ| is larger. The onset time, when fingers appear or the interface becomes fluctuated, with
EIT (δ = −2 × 10−5) seems delayed compared with that without EIT. Also, finger length
at a given time for δ = −2 × 10−5 seems shorter than that without EIT. Corresponding
to such finger length, the mixing length L has been studied (Tan & Homsy 1988). The
length is defined here as the length of the transverse-averaged concentration field c̄(x, t)
which lies in the range 0.01 < c̄(x, t) < 0.99. The quantitative data evaluated with the
mixing length are shown in figure 3. The mixing length L by diffusion grows proportional
to t1/2 until a finger appears. The L value proportional to t1 indicates finger appearance.
Figure 3 quantitatively shows that the onset is delayed as |δ| is larger. The mixing length
is shorter as |δ| is larger at a given time after the fingering formation. Therefore, the EIT
has an influence on stabilizing VF dynamics at the same log-mobility ratio and the same
Pe. These results are consistent with previous results reported by Swernath et al. (2010),
Pramanik & Mishra (2015b) and Chen et al. (2008).

3.2. Effect of Pe on the miscible VF dynamics with/without EIT
We next performed a simulation to check the effect of Pe on the VF dynamics without/with
EIT. The results without EIT shown in figure 4 illustrate that narrow and longer fingers
appear as Pe increases, the trend of which is the same as that of previously reported
experimental and numerical results (Petitjeans et al. 1999; Shukla & De Wit 2020). The
mixing length by diffusion at the early stage shown in figure 5 is smaller as Pe increases
because the concentration gradient is sharpened due to high Pe. At a later stage, the finger
grows faster as Pe increases after the onset time of the finger.
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1.0

0.8

δ = 0

δ = –10–6

δ = –10–5

δ = –2 × 10–5

0.6

0.4

L

0.2

0 20 40

t
60 80

Figure 3. Time evolution of mixing length for various δ with R = 0.75 and Pe = 1000.

(a) (b) (c) (d )

t = 14

t = 18

t = 22

t = 26

Figure 4. Time evolution of miscible VF dynamics without EIT (δ = 0) for R = 1.25, with (a) Pe = 500,
(b) Pe = 1000, (c) Pe = 2500 and (d) Pe = 3800. The greyscale shows the concentration of species.

1.0

0.8

0.6

0.4

L

0.2

0 10 20

t
30 40

Pe = 500

Pe = 1000

Pe = 2500

Pe = 3800

Figure 5. Time evolution of mixing length for various Pe with δ = 0 and R = 1.25.
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(a) (b) (c) (d )

t = 14

t = 18

t = 22

t = 26

Figure 6. Time evolution of miscible VF dynamics with EIT (δ = −2 × 10−5) for R = 1.25, with
(a) Pe = 500, (b) Pe = 1000, (c) Pe = 2500 and (d) Pe = 3800. The greyscale shows the concentration of
species.

0

0.2

0.4

0.6

0.8

1.0

L

10 20 30

t
40

Pe = 500

Pe = 1000

Pe = 2500

Pe = 3800

Figure 7. Time evolution of mixing length for various Pe under conditions of δ = −2 × 10−5 and R = 1.25.

For the results with EIT (δ = −2 × 10−5) shown in figure 6, the finger width shown at
t = 26 in figure 6(d) seems larger than that in figure 6(c). However, the quantitative data
of mixing length shown in figure 7 represent a similar trend to the case without EIT in
figure 5. In short, L is smaller with Pe at the early stage and L grows faster with Pe at a
later stage. Compared with figure 5, figure 7 shows that the onset of the finger becomes
later because of the EIT. We then directly measure the finger width to compare with the
above experimental study. A detailed description is given in the next section.

3.3. Quantitative analysis of the finger width
We measured finger width density as quantitative data of the finger width to investigate the
effect of Pe on the dynamics for various R and δ. The method is illustrated in figure 8. We
first define the positive mixing length L+, the length of a downstream finger propagating
in the forward direction with respect to the initial interface (Manickam & Homsy 1994).
We then binarize the picture and calculate a finger width density wi at a position
x = i (0 ≤ x ≤ L+) as

wi = 1
j

(
Σwj

Ly

)
, (3.1)
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(b)(a)

t = 0

x = i

x

wj

L

L+

L+

t = t

Figure 8. Sketch of the definition of finger width. (a) Definition of the positive mixing length and
(b) description of finger width and coordinate.

0

0.1

0.2

0.1

0.2

0.1

0.2

2000 4000

δ = –2 × 10–5

δ = –10–5

δ = –10–6

δ = 0

Pe

w

0 2000 4000

Pe
0 2000 4000

Pe

(b)(a) (c)

Figure 9. Effect of Pe on finger width for (a) R = 0.75, (b) R = 1.00 and (c) R = 1.25. Each colour
represents a different EIT value. Each result is run three times and the error bar represents the standard
deviation.

where wj is a finger width coloured with black at x = i (figure 8) and j is the number of
fingers. Then, we calculate an averaged finger width density for the fingering pattern over
length L (figure 8) using the following equation:

w = 1
L+

∫ L+

0
wi dx. (3.2)

The measured results are shown in figure 9. For low EIT (δ = −10−6) and without EIT,
w is monotonically decreasing against an increase in Pe for any log-mobility ratios. For
high-EIT cases (δ = −10−5, −2 × 10−5), however, the finger width decreases with Pe
for under Pe = 2000 and increases as Pe increases for over Pe = 2000 for R = 0.75 and
1.00. It is noted that the w value does not increase against Pe at δ = −10−5 for R = 1.25.
This is because the viscous term affects the VF dynamics more significantly compared
with the effect of the EIT term at R = 1.25 due to the large value of R. These results
show that the finger widening on increasing the flow rate in the miscible system with EIT
observed in the experiment (Suzuki et al. 2020) can be numerically reproduced. Suzuki
et al. (2020) explain such finger widening as being caused by the temporal effect of EIT,
where the EIT value decreases with the contact time of the two fluids, as mentioned in the
introductory section. However, we consider here that such finger widening is affected by
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–0.2

0.2

0.4

c
0.6

0.8

1.0 1.5

Pe = 500
Pe = 1000
Pe = 1500
Pe = 2500
Pe = 3800 1.0

0.5�
·[ δ

(�
c)

(�
c)

]

00
–0.1 0.1

x – x0

0.20 –0.2 –0.1 0.1

x – x0

0.20

(b)(a)

Figure 10. (a) Concentration profile for various Pe at t = 1 and (b) the value of EIT term ∇ · [δ(∇c)(∇c)]
with δ = −2 × 10−5 calculated based on (a).

the difference in EIT due to Pe, because EIT is proportional to the squared concentration
gradient. Therefore, we examine the effect of Pe on the concentration profile and the EIT
term (∇ · [δ(∇c)(∇c)]) in the following discussion.

The concentration profile is calculated from the one-dimensional convection–diffusion
equation (Shukla & De Wit 2020):

∂c
∂t

= 1
Pe
∂2c
∂x2 . (3.3)

As shown in figure 10(a), the concentration gradient at the interfacial front (x − x0 = 0)
is steeper with Pe. Figure 10(b) shows the effect of Pe on the EIT term with R = 1.00 at
t = 1. As predicted, the EIT term is higher with Pe because the concentration gradient
is steeper with Pe. These results show that the finger widening with increasing Pe in
the present study is caused by an increase in the magnitude of EIT with increasing Pe.
This is because Pe induces a steeper concentration gradient, which induces higher EIT.
We clarify here the relationship between this study and closely related studies (Pramanik
& Mishra 2015a,b). Pramanik & Mishra (2015b) have investigated VF with EIT at fixed
Pe and have shown the miscible VF with EIT is determined to be stable only in terms of
onset and moving speed without any discussion about the effects of Pe. The present study
completely follows the mathematical model and the boundary condition of Pramanik &
Mishra (2015a). Pramanik & Mishra (2015a) have conducted a linear stability analysis of
miscible VF with EIT. However, they have studied neither nonlinear dynamics of VF with
EIT nor the relation between finger width in the nonlinear regime and Pe. The present study
is the first study which numerically investigates the effects of Pe on nonlinear VF with EIT.
And the present study numerically demonstrates, for the first time, finger widening against
increasing Pe in VF with EIT, which has not been seen either in immiscible VF or in
miscible VF without EIT.

Finally, we estimate EIT values to determine whether our setting parameters are feasible
in experiments. The term δ̂ · (�c)2/δinterface represents ‘EIT value (N m−1)’ (Truzzolillo
et al. 2014). We thus calculate δ̂ · (�c)2/δinterface with the relation δ = δ̂kc2

2/μ1UL3
y ,

Pe = ULy/D and k = b2/12 with δinterface = 100 µm (Zoltowski et al. 2007), c2 = 1,
�c = 1, Ly = 50 × 10−3 m,D = 1.6 × 10−10 m2 s−1 (Petitjeans & Maxworthy 1996),
μ1 = 0.001 Pa s and b = 0.5 × 10−3 m, where b is the gap between Hele-Shaw cells and
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δinterface is the interface width between the two solutions:

δ̂ · (�c)2

δinterface
= δμ1(Pe · D)L2

y

(b2/12)c2
2

· (�c)2

δinterface
= 1.92 × 10−4 · |δ| · Pe. (3.4)

Based on this expression, the EIT value is 7.30 × 10−3 mN m−1 with, for example,
Pe = 3800 and |δ| = 10−5. Therefore, the set values of δ here should be ‘very low’
interfacial tensions in experiments (Bamberger et al. 1984; Liu, Lipowsky & Dimova 2012;
Carbonaro, Cipelletti & Truzzolillo 2020).

4. Conclusions

In conclusion, we investigate the effect of Pe on miscible VF with/without EIT using a
numerical simulation. The increase in the finger width with increasing Pe is observed
with EIT. The results confirm the recent experimental finding that a finger widens on
increasing the flow rate in the miscible VF with EIT (Suzuki et al. 2020). In this study,
we also analysed the one-dimensional underlying concentration profile and EIT profile by
using the one-dimensional diffusion–convection model because EIT is proportional to the
squared concentration gradient. We then obtained that the concentration gradient is steeper
with an increase in Pe, resulting in a larger EIT with Pe. Based on the one-dimensional
analysis, the finger widening with increasing Pe obtained by the numerical simulation can
be caused by an increase in the concentration gradient, resulting in an increase in EIT with
Pe.

The present study theoretically verifies that finger widening with increasing flow rate
occurs only in the miscible system with EIT to the extent of our targeting EIT values,
also clarifying its origin. These findings will trigger further experimental, numerical and
theoretical studies of the manifested influence of EIT on miscible VF because the finger
width is affected by EIT and Pe. In addition, our study will provide a theoretical framework
to control miscible VF in many geophysical processes such as CO2 sequestration (Orr &
Taber 1984) and miscible flooding in enhanced oil recovery (Lake et al. 2014).
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Appendix A. Derivation of stream function and vorticity formulation in the present
study

Equations (2.6) and (2.7) can be expressed in component-wise manner as

∂u
∂x

+ ∂v

∂y
= 0, (A1)
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∂p
∂x

= −μ(c)(u + 1)+ ∂

∂x

[
δ

(
∂c
∂x

+ ∂c
∂y

)(
∂c
∂x

+ ∂c
∂y

)]
, (A2)

∂p
∂y

= −μ(c)v + ∂

∂y

[
δ

(
∂c
∂x

+ ∂c
∂y

)(
∂c
∂x

+ ∂c
∂y

)]
. (A3)

Eliminating the pressure term from the above (A2) and (A3) by cross-differentiation
with respect to y and x, respectively, and subtracting (A3) from (A2), we get

μ(c)
(

−∂v
∂x

+ ∂u
∂y

)
− v

∂μ(c)
∂x

+ (u + 1)
∂μ

∂y

+ δ

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
= 0. (A4)

Introducing the vorticity (ω̄ = ∇ × u), for two-dimensional flow in the x–y plane, it
is reduced to ωz = ω = ∂v/∂x − ∂u/∂y. Further, using the vorticity, the above equation
(A4) can be written as

−μ(c)ω − v
∂μ(c)
∂x

+ (u + 1)
∂μ(c)
∂y

+ δ

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
= 0. (A5)

From the viscosity–concentration relation (2.9), we can write

∂μ(c)
∂x

= ∂μ(c)
∂c

∂c
∂x

= Rμ(c)
∂c
∂x
, (A6)

∂μ(c)
∂y

= ∂μ(c)
∂c

∂c
∂y

= Rμ(c)
∂c
∂y
. (A7)

Introducing the stream function ψ as (u = ∂ψ/∂y and v = −(∂ψ/∂x)), satisfying (A1),
we have ∇2ψ = −ω. Using (A6), (A7) and the above stream function–vorticity relation,
equation (A5) becomes

∇2ψ = −R
(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
+ ∂c
∂y

)

− δ

μ(c)

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
. (A8)

This (A8) is same as (2.10) in the main part of the paper.
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Appendix B. Derivation of stream function and vorticity formulation in the study
reported by Seya et al. (2022)

The non-dimensional equations (2.8)–(2.12) of Seya et al. (2022), in the moving frame and
component-wise, can be read as

∂u
∂x

+ ∂v

∂y
= 0, (B1)

∂p
∂x

= −η(c)(u + 1)+ δμ(c, p)
∂c
∂x
, (B2)

∂p
∂y

= −η(c)v + δμ(c, p)
∂c
∂y
, (B3)

∂c
∂t

+ u · ∇c = 1
Pe

∇2μ(c, p), (B4)

μ(c, p) = −α1

(
∂2c
∂x2 + ∂2c

∂x2

)
− α2(c − p)+ α3(c − p)3, (B5)

η(c) = eRc. (B6)

Eliminating the pressure term from the above equations (B2) and (B3) by
cross-differentiation with respect to y and x, respectively, and subtracting (B3) from (B2),
we get

η(c)
(

−∂v
∂x

+ ∂u
∂y

)
− v

∂η(c)
∂x

+ (u + 1)
∂η(c)
∂y

+ δ
∂μ(c, p)
∂x

∂c
∂y

− δ
∂μ(c, p)
∂y

∂c
∂x

= 0.

(B7)

Similar to the explanation in Appendix A, using the vorticity for two-dimensional flow
in the x–y plane, ωz = ω = ∂v/∂x − ∂u/∂y, in the above equation (B7), we get

−η(c)ω − v
∂η(c)
∂x

+ (u + 1)
∂η(c)
∂y

+ δ
∂μ(c, p)
∂x

∂c
∂y

− δ
∂μ(c, p)
∂y

∂c
∂x

= 0. (B8)

With the definition of the viscosity (η(c) = eRc), we can write

∂η(c)
∂x

= ∂η(c)
∂c

∂c
∂x

= Rη(c)
∂c
∂x
, (B9)

∂η(c)
∂y

= ∂η(c)
∂c

∂c
∂y

= Rη(c)
∂c
∂y
. (B10)

Hence, using relations (B9) and (B10), after simplifying, (B8) can be written as

ω = R
(

−v ∂c
∂x

+ u
∂c
∂y

+ ∂c
∂y

)
+ δ

η(c)

(
∂μ(c, p)
∂x

∂c
∂y

− ∂μ(c, p)
∂y

∂c
∂x

)
. (B11)

Using the stream function ψ as (u = ∂ψ/∂y and v = −(∂ψ/∂x)), we write the above
equation as

ω = R
(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
∂c
∂y

+ ∂c
∂y

)
+ δ

η(c)

(
∂μ(c, p)
∂x

∂c
∂y

− ∂μ(c, p)
∂y

∂c
∂x

)
. (B12)
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Further, we simplify the second term on the right-hand side of the above equation (B12)
as per the following:

∂μ(c, p)
∂x

= ∂

∂x

{
−α1

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2(c − p)+ α3(c − p)3

}

= −α1
∂

∂x

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2

∂c
∂x

+ α3
∂(c − p)3

∂x
, (B13)

∂μ(c, p)
∂x

∂c
∂y

=
{
−α1

∂

∂x

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2

∂c
∂x

+ α3
∂(c − p)3

∂x

}
∂c
∂y

= −α1

(
∂3c
∂x3 + ∂3c

∂x∂y2

)
∂c
∂y

− α2
∂c
∂x
∂c
∂y

+ α3
∂(c − p)3

∂x
∂c
∂y

= −α1

(
∂3c
∂x3 + ∂3c

∂x∂y2

)
∂c
∂y

− α2
∂c
∂x
∂c
∂y

+ α3
∂(c − p)3

∂c
∂c
∂x
∂c
∂y
, (B14)

∂μ(c, p)
∂y

= ∂

∂y

{
−α1

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2(c − p)+ α3(c − p)3

}

= −α1
∂

∂y

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2

∂c
∂y

+ α3
∂(c − p)3

∂y
(B15)

and

∂μ(c, p)
∂y

∂c
∂x

=
{
−α1

∂

∂y

(
∂2c
∂x2 + ∂2c

∂y2

)
− α2

∂c
∂y

+ α3
∂(c − p)3

∂y

}
∂c
∂x

= −α1

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
∂c
∂x

− α2
∂c
∂x
∂c
∂y

+ α3
∂(c − p)3

∂y
∂c
∂x

= −α1

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
∂c
∂x

− α2
∂c
∂x
∂c
∂y

+ α3
∂(c − p)3

∂c
∂c
∂x
∂c
∂y
. (B16)

Using (B14) and (B16), (B12) can be expressed as

ω = R
(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
+ ∂c
∂y

)
+ δα1

η(c)

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
.

(B17)

Thus, we get

∇2ψ = −R
(
∂ψ

∂x
∂c
∂x

+ ∂ψ

∂y
+ ∂c
∂y

)

− δα1

η(c)

[
∂c
∂x

(
∂3c
∂x2∂y

+ ∂3c
∂y3

)
− ∂c
∂y

(
∂3c
∂x3 + ∂3c

∂x∂y2

)]
, (B18)

because of ∇2ψ = −ω. The above equation is the stream function–vorticity equation (3.1)
of Seya et al. (2022).
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