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ISOMETRIES OF NONCOMPACT LIPSCHITZ SPACES 

NIK WEAVER 

ABSTRACT. We show that under reasonable restrictions on the metric spaces X and 
Y, every surjective isometric isomorphism between Lip(X) and Lip( Y) arises in a simple 
manner from an isometry between X and Y. Our result differs from several previous 
results along these lines in that we do not require X and Y to be compact. 

A map/: X —-* Y between metric spaces is called Lipschitz if its Lipschitz number 

L(f)= sup —*-=- —£-
P,qex (r(p,q) 

is finite. For any metric spaced the Lipschitz space Lip(X) is defined to be the set of all 
bounded scalar-valued Lipschitz functions on X, with norm 

||/1U = max(||/1|oo,L(0). 

We allow either real or complex scalars. It is standard that Lip(X) is a Banach space. 
Let F be the scalar field, F = R or F = C, and let U C F be the set of elements 

of modulus 1. If g: Y —» X is a surjective isometry and a G U, the m a p / »—» af o g is 
an isometric isomorphism from Lip(X) onto Lip(F); a good deal of attention has been 
focused on finding conditions under which every isometric isomorphism from Lip(X) 
onto Lip(F) is of this form. 

This is certainly not true in general. For instance, it is easy to see ([V], [W]) that if X 
is any metric space and Y is the completion of the metric space whose underlying set is X 
and whose metric is mm(2,p(p,q)\ then Lip(X) and Lip(F) are naturally isometrically 
isomorphic. If Jf is not complete or has diameter > 2, this isometric isomorphism cannot 
arise from an isometry from Y onto X because there are no such isometries. 

The preceding shows that it is worthwhile to restrict attention to the class 941 of com­
plete metric spaces of diameter < 2. However, even if X and Y belong to <M1 there are 
counterexamples. For instance, let X — 7 be a metric space consisting of two elements 
p, q such that p(p, q) = 1. Then Lip(X) is (isometrically isomorphic to) F2 with the norm 

||(fl,6)||L = max(H, |6 | , | f l -6 | ) 

and the map taking (a, b) to {a, a — b) is an isometric isomorphism of Lip(X) onto itself 
which does not arise from composition with an isometry of X. 
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The papers [Je], [JP], [R], and [V] all deal with the classification of isometric iso­
morphisms. Vasavada's result in [V] implies all the others (except that of [JP], which is 
false); it states that if X, Y E M2 are compact and /^-connected for some (3 < 1, then 
every isometric isomorphism from Lip(X) onto Lip(F) arises in the desired manner from 
an isometry from Y onto X. Here "/3-connected" means that the space cannot be decom­
posed into two disjoint sets whose distance is > (3. (This is not exactly the stated result, 
but is trivially equivalent to it.) 

(The argument given in [JP] fails on p. 200, where it is falsely claimed that a certain 
condition distinguishes "good" extreme points of the dual unit ball of LipÇY) from "bad" 
ones. The argument does hold under the assumption that X and Y have diameters < 1, 
but in this case the result follows from Vasavada's.) 

We find that we can weaken Vasavada's hypothesis to require only thaiX, Y E 9A2 be 
1-connected. The passage from /5 to 1 is perhaps a minor improvement, but the removal 
of the compactness assumption seems more significant. All published research known 
to this author which deals with the classification of isometric isomorphisms, depends 
heavily on the assumption that the underlying metric spaces are compact. Dispensing 
with this assumption requires a new technique, which we develop in Section 1. 

(One should also mention the paper of Mayer-Wolf [MW], which classifies the iso­
metric isomorphisms of the so-called "Lip**" spaces for 0 < a < 1. Mayer-Wolf also 
assumes compactness and this assumption can be removed by a technique similar to that 
given here. We shall give more details on this in a separate publication.) 

1. Normality of dual extreme points. The following construction is one of the 
basic tools in the study of Lipschitz spaces; it derives from the seminal paper of de Leeuw 
[dL]. For any metric space X let X = X2 — {(p,p) : p E X} and let W be the topological 
space which is the disjoint union of X and X Then we have an isometry O from Lip(JQ 
into Cb{W) (= the bounded continuous scalar-valued functions on W) defined by $>f(p) = 
f{p) for/? EX and 

for (p,q) eX. 
The embedding O is useful because it allows us to classify the extreme points of the 

dual unit ball $(Lip(X)*). (Note: for any Banach space E we write %(E) for its closed 
unit ball.) Namely, by a standard extension theorem (e.g. see [C], Proposition V.7.9), 
every extreme point of $(Lip(Jf)*) extends to an extreme point of $(C/,(JF)*). Now 
Cb(W) ^ C((3W), where pW is the Stone-Cech compactification of W, and the dual of 
the latter can be identified with M((3W), the space of finite Borel measures on (3W. The 
extreme points of the unit ball of M(j3W) are precisely the measures a/i# where a E U 
and \IQ is the point mass at 6 E fiW. Thus, for every extreme point x of $(Lip(X)*) we 
can find a E U and 6 E (3W such that x = 0*(a/x^). 

For 6 E Ĥ  it is easy to describe the action of the linear functional 0*(/x^). If 6 = 
p E X, then 0*(/x^) = \p, the "evaluation at/?" functional defined by xP(f) — f(p); if 
0 = (p,q)e Xthen 0*(/x*) - (Xp - Xq)/p(p^\ 
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The key point of the following theorem is that if x — O*(a/i0) for some a G U and 
9 G f3W, then one can tell whether 9 G W by examining the action of x on the order 
structure of Lip(Z). The relevant concept is the following. Let (fx) be a net of real-valued 
functions in Lip(X); then we write/A \ 0 if (/A) is decreasing (i.e. X < n implies/ > / ) 
and (/x) converges pointwise to 0. Equivalently,/A \ 0 if (fx) is decreasing and /\f\ — 0. 
(As we noted in [W], every bounded set of real-valued functions in Lip(X) has a meet 
and a join, which satisfy || A/AIU, || WA||L < sup |[/\||z,-) We say that x G Lip(JQ* is 
normal if x(f\) —> 0 whenever (fx) is a bounded net of real-valued functions such that 
fx \ 0. By the second définition of/ \ 0, it follows that normality of x can be defined 
purely in terms of the order structure of Lip(X). 

THEOREM A. Let X be a complete metric space with finite diameter and let x be an 
extreme point o/S(Lip(X)* J. Then the following are equivalent: 

a) x is in the linear span of the evaluation functionals \p (p G X); 
b) x is normal; 
c) x — a\p for some a G U andp EXorx — a(\p — xq)/ p(p, q) for some a G U 

and (p, q) G X. 

PROOF, a) ^ b). Trivial. 

b) => c). Find a G U and 9 G J5W such that x — 0*(a/i^). We are going to prove the 
contrapositive and therefore assume that 9 $ W. We will show that 0*/i# is not normal, 
which will imply that x is also not normal. 

For the first two cases below, suppose 9 G (3X—Xmd find a net of elements (px,q\) G 
X such that (p\,q\) —» 9. By taking subnets we may suppose that p\ —> 9\ and q\ —» 
62 for some #i,#2 £ /3X Also, since x is not zero, there exists g G Lip(X) such that 
^*^e(g) — ®g(9) 7̂  0, where Og is the continuous extension of Og to f3W. Writing g as 
a linear combination of positive Lipschitz functions, this shows that <&f(9) ^ 0 for some 
positive/ G Lip(X). Dividing by a positive scalar, we may assume that \\f\\i = 1. 

CASE 1. Suppose 9 G (5X—Xand/(#i) =f(92) where/is the continuous extension 
off to (5X. Let A: be this common value and define a sequence of functions 

/ = [(f-k + k/n)V0]A2k/n. 

Clearly the sequence (fn) is bounded in Lipschitz norm a n d / \ 0. However, for all 

®fn(0) = lim<S>fn(pX9qx) = limO/(pA,?A) - Of(0), 

since for sufficiently large À we have \f(p\) — k\, \f(q\) — k\< k/n hence <3>fn(px,qx) — 
®f(px,qx)' Thus, since <&f(9) ^ 0, 0>*p,o(fn) does not converge to zero, hence O*^ is 
not normal, which is what we wanted to show. 

CASE 2. Suppose 0 G f3X-X and/(0i) ^ /(02). This implies 9x ^ 02, and since 
9 $ X it follows that #1 and 02 cannot both be inX. Without loss of generality suppose 
that 9\ $ X. Then/7A does not cluster at any point of X, hence (since X is complete) it has 
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no Cauchy subnet. Taking a universal subnet, this implies that there exists e' > 0 such 
that for every p G X, the e'-ball about p is eventually disjoint from the subnet. Thus, 
taking subnets, we may assume that for every/? G l w e eventually have p(px,p) > e'. 

Let e = min(e', \f(6l ) - / ( 0 2 ) | /2) . Then the net/K defined by 

fnip) = V max(0,e - p(p,pxj) 

is bounded in Lipschitz norm and decreasing pointwise to zero. Also, since \\f\\i = 1 
and f(p\) —> /(#i) and/(gA) —> K^iX it follows that eventually p(px,qK) > e, /.<?. 
this holds for all A,^ > some Ao. Thus for each K > Ao we have \imx fK(px) = e and 
limA/«(^A) = 0, hence 

tyK(0) = ]imQfK(pX9qx) 

= Hm(/;(pA) -fK(q\))/p(p\,q\) 

= e/fW, 

where p is the continuous extension of the distance function p to /3X We conclude that 
O*//0 is not normal since ^*pe{fK) = Q>fK(6) evidently does not converge to 0. 

CASE 3. Finally, suppose 0 G (3X — X. Then we can find a net (px) C X which 
converges to 9; as in Case 2 we may assume that for every p G X we eventually have 
p(px,p) > e, for some e > 0. 

Then the nety^ defined by 

f*(p) = V max(0,e - P(P,P\)) 

is bounded in Lipschitz norm and decreasing pointwise to zero. But 

fM = limfM = 6, 

so once again O*//0 is not normal. 
c) => a). Vacuous. • 
According to ([Jo], Corollary 4.2), the closed span of the evaluation functionals \p in 

Lip(JQ* is a predual of Lip(JQ, i.e. the dual of this space can be identified with Lip(X). It 
is easy to see that every element of this space is a normal linear functional on Lip(X) and 
it is natural to ask whether this property characterizes the space. That is, if x G Lip(X)* 
is normal does it follow that x is in the closed span of the evaluation functionals? We do 
not know the answer to this question but conjecture it to be no. (It is fairly easy to see 
that the answer is yes if x is assumed to be decomposable into positive functionals, but 
not every x is so decomposable.) 

We also wish to include the following two facts for reference. The first is trivial and 
appeared in [V]; the second is well-known in the compact case, and the non-compact 
proof is not much different, but we give it just to be safe. 
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PROPOSITION B. Let X be a metric space of diameter < 2. Then for any p,q G X, 

P(P> q)= \\Xp-Xq\\ (taking the norm in Lip(.Y)*/ 

PROPOSITION C. Let X be a metric space of diameter < 2 and letp G X. Then \p is 
an extreme point o/(8(Lip(X)* V 

PROOF. Define the function/ G Lip(*) by f{q) = I - p(p, q)/2. Then | 0 / | < 1 /2 

onX, and for any e > 0 we have |0/*(#)| < 1 — e/2 for all q G Xoutside the e-ball about 

P-
Suppose Xp — tx\ + (1 — 0*2 for some x\,X2 G $(Lip(X)*) and t G (0,1). We can 

find measures/ii, JL/2 G *B(M(l3Wf) such that XI = 0*/ii and*2 = 0*/i2. Now since 
Of(p) = 1 we have 

l=tj(Qf)d»{+(l-t)J(<bf)dii2-

Since ||0/*||oo — 1 a n d 11 AM II? IIM2II < 1 we must have 

But |O/"(0)| < 1 for all 0 G (3W except/?, so p\ and /12 must be supported on this point. 
It follows that p\ — /i2 is the point mass at/?, hence xi = X2 — Xp- S° X/? is a n extreme 
point. • 

The basic technique of the preceding proof comes from [dL]. 

2. Isometries of 1-connected spaces. Recall that 9A1 is the class of all complete 
metric spaces with diameter < 2. The goal of this section is to prove that ifX,YE 9\f2 

are 1-connected then every isometric isomorphism from Lip(X) onto Lip(y) arises in a 
simple way from an isometry of Y onto X. The proof proceeds through a series of lemmas; 
the general idea is that the adjoint of the given isometric isomorphism preserves a lot of 
the structure of the dual space. 

In Lemmas 1-6 letX, Y G M2 be 1-connected metric spaces, let T: Lip(X) —> Lip(F) 
be a surjective isometric isomorphism, and let T*: Lip(Y)* —> Lip(X)* be the adjoint map 
(also a surjective isometric isomorphism, of course). 

LEMMA 1. |r(l)(p)| = 1 for all p G Y, where 1 denotes the constant function onX. 

PROOF. The function <!>( 1 ) takes only the values 0 and 1 on W, so 

(JC(1) : x is an extreme point of (B(hip(X)*)} C {<*(O1)(0) : a G U, 0 G f3W} 

C U U { 0 } . 

Therefore, letting/ = 7(1), we also have that \x(f) : x is an extreme point of 
«(Lip(y)*)} C UU{0} , since this set is evidently preserved by surjective isometric 
isomorphisms. By Proposition C we getf(p) = Xp(f) G U U {0} for all/? G Y. How­
ever, since \\f\\L = \\l\\L = 1 hence L(f) < 1, the sets/ - 1(0) and/_ 1(U) contradict 
1 -connectedness of Y unless one of them is empty. Clearly we cannot have/(/?) = 0 for 
all/? G 7, hence/"1 (0) = 0 and so \f(p)\ = 1 for all/7 G Y. m 
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We call an extreme point* of $(Lip(X)*) simple if x — a\e — 0*(a/i#) for some 
a G U and 6 G fiX. (The evaluation functional \e is, of course, defined by Xe{f) — 
/(#).) Clearly, every simple extreme point x satisfies x(l) G U. Conversely, a non-simple 
extreme point x must equal 0*(a^#) for some 9 G f3X, and as <I>( 1 ) is 0 on X this implies 
JC(1) = 0. Thus, ifx is simple thenx(l) G U, and otherwise x(l) = 0. 

LEMMA 2. T* carries simple extreme points of(B(Lip(Y)* ) to simple extreme points 

of<B(LiV(X)*). 

PROOF. AS in Lemma 1 let 1 denote the constant function onXand le t / = T(l). If 
the extreme point x of #(Lip(y)*) is simple, say x = O*(a/i0) for some 0 G (3Y, then 
x(f) = af(0) G U by Lemma 1. Thus (r*x)(l) = x(f) ^ 0 which implies that 7** is 
simple. • 

LEMMA 3. Let a G U, a ^ 1, W f G [0,1). Then t < |a(l - f) - 11. 

PROOF. The lemma is trivial in the real case. In the complex case we have | a( 1 — t)— 
11 = | a~1 — ( 1 — t) |, and as a ranges over the unit circle the complex number a~l — ( 1 — t) 
ranges over the unit circle shifted to the left by 1 — t. Excepting the point corresponding 
to a = 1, the latter is strictly outside the disk about the origin of radius t. m 

LEMMA 4. Leta e\J, a^ I, letp, q G X, and let 0,<j) G /3X Then (taking all norms 
in Uv{Xf) 

a) p(p,q) = \\xp - Xq\\ < l implies \\\P - xq\\ < \\<xxP - Xq\\>' 

b) \\xe ~ X<t>\\ < 1 implies \\xe - X<t>\\ < \\<xxo ~ X<t>\\>' and 
c) Wxe ~ xA\ ^ l implies \\axe - X<f>\\ > 1-

PROOF, a) We noted in Proposition B that p(p, q) — \ \ xp — Xq 11 • Suppose p(p,q) < 1. 
Then the function/(r) = 1 — p(r9 q) is in $(LipÇX)) and SO 

\\(*XP ~ Xq\\ > \(<*XP - Xq)(f)\ = \(x(l ~ p(p,qj) - l| > p(p,q), 

by Lemma 3. 

b) Suppose llxe — x^ll < 1- T n e n f° r anY ^ > 0 we can choose g G 2*(Lip(X)) such 
that 

llx* -x*\\< \(XB - x*)(g)\ + c = \m -£(</>)!+ c-

Define/(p) = 1 - \g(p) - g(</>)|. Then/ G #(Lip(X)) and since 

\g(0)-g($)\ = \(xe - x*Xg)l < llx^ - x l̂l < 1, 

Lemma 3 then shows that 

\\ocxo ~ X*\\ > \iptxe - X*W\ = |«(1 ~ \m ~ g(<f>)\) ~ l| 

>\m-m\>\\xo-x*\\-*' 
Taking e —> 0 yields the desired. 
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c) If ||x0 — X(f>\\ > 1 m e n f° r anY e > 0 we can choose g G $(Lip(X)) so that 

i-«<l(x«-x*)fe)l = l«(0)-g(0)l<i. 
Then reasoning just as in case b) we get 

\\(*X9-X4>\\>\g(0)-g(<i>)\>i-^ 

which is enough. • 
Now let x = a\e and y = fix<t> (a, (5 G U and #, <f> G /3LY) be simple extreme points of 

(B(Lip(X)*); we say they are aligned ifa — /3, i.e. if x(l) = y(\). The point of Lemma 4 
is that if x and y are close enough then one can tell whether they are aligned by looking 
at the norms of linear combinations of x and y. This idea is used in the proof of the next 
lemma. 

LEMMA 5. Letp,q € Y, p ^ q, p(p,q) < 1. Then T*\p and T*Xq are aligned. 

PROOF. Let x — T*Xp and^ = T*xq- Since Xp a n d Xq a r e simple extreme points 
of $(Lip(F)*), Lemma 2 shows that x andy are simple extreme points of #(Lip(X)*)-
Thus let x = axe and y = /3x</> for a, f3 G U and 0, </> G /3X 

ByLemma4c), \\x -y\\ = | |xp-X?ll = P(p,q)< 1 implies that ||x<? - X</> II < 1- If 
a ^ /J then by Lemma 4 a), 

IIW0)x* - x*ll = \\*-y\\ = WXP - xq\\ < Wl<*)xp - xq\\ = 11 (/?/<*)* -y\\ 
= 11x6» — x^lU 

which together with ||x# — X</>ll < 1 contradicts Lemma 4 b). So a — (5 as desired. • 

LEMMA 6. T(\) = a is a constant function and a~] T is an isometric isomorphism 
ofhip(X) onto Lip(F) which is also an order-isomorphism. Its adjoint a_1 T* takes every 
evaluation functional Xq (Q £ Y) to an evaluation functional Xp (p £ X). 

PROOF. For any/?, q £ Y, p(p, q) < 1, we have 

T(\)(p) = ( r X p ) ( l ) = (rXq){\) = T{\){q) 

since T*Xp a n d T*Xq are aligned by Lemma 5. Since Y is 1-connected, this shows that 
T(\) is a constant function; say T(l) = a. Then a G U by Lemma 1. 

Since \a\ = 1, of"1 T is clearly an isometric isomorphism of Lip(X) onto Lip(F). To 
see that it preserves order, suppose/ G Lip(X),f > 0. Then for every/? G F, letting 
r*X/? = <*X6> by Lemma 2 (the coefficient is a since a = T(\)(p) = (r*Xp)0)) we get 

(a-1 Tf)(p) = (a"1 rX p)(/) =f(ff) > 0, 

so a - 1 Tf > 0 also. To see that the inverse map aT~l preserves order, simply interchange 
Zand Y and apply the same argument. Thus a~x T is an order-isomorphism. 

Now to show a - 1 T*Xp — Xe satisfies 0 — q ^ X\X suffices by Theorem A to show 
that xe is normal. But \p is normal, so since oCx T is an order isomorphism so is xe- m 

If one assumes that X is compact then X = (3X and so the last part of Lemma 6 is 
trivial. This is the crucial step where the noncompact case requires extra work. 

We can now prove our main result. 
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THEOREM D. Let X, Y £ M2 be \-connected and let T:Lip(J0 —> Lip(F) be a 
surjective isometric isomorphism. Then for some a E U and some isometry g of Y onto 
X, we have Tf=afo g for allf G Lip(X).-

PROOF. The scalar a is defined as in Lemma 6, and g: Y —> X is defined by 
a~] T*Xq — Xg(q)- This is an isometry since cx~l T* is an isometry by Lemma 6 and since 
Xand Y can be isometrically identified with the evaluation functional by Proposition B. 
The desired formula holds since 

(Tf)(q) = xW) = (rxaW = «xmV) = af{siq)) 

for a l l / G Lip(X) and q G Y. Finally, g is onto since otherwise there would existp G X 
such that e = p{p,g(Y)^j > 0, and by the above formula for T we would have T(f) = 0 
for the function/(r) = max(0, e — p(p, r)), contradicting the fact that T is an isometry. • 
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