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The concept of added mass is generalized to stratified fluids, accounting for the presence of
internal waves. Once the added mass of a moving body is known, so is the hydrodynamic
force exerted on it by the fluid, and the energy imparted by it to the fluid. As a function of
frequency, added mass is complex. Its real part is associated with inertia and its imaginary
part, only present in the frequency range of propagating waves, with wave damping. Owing
to causality, these two parts satisfy Kramers–Kronig relations. The added masses of an
elliptic cylinder of horizontal axis, typical of two-dimensional bodies, and a spheroid of
vertical axis, typical of three-dimensional bodies, are deduced from their dipole strengths,
themselves deduced from their representations as single layers. The wave power is shown
to be a maximum, for fixed oscillation amplitude, at approximately 0.8 times the buoyancy
frequency. In the temporal domain, added mass appears as a new memory force taking
the form of a convolution integral. The kernel of this integral combines algebraically
decaying oscillations at the buoyancy frequency on the one hand; and an exponentially
damped oscillation for the horizontal motion of the spheroid, implying short-term memory,
an aperiodic algebraic decay for its vertical motion, implying long-term memory, and a
constant for the motion of the cylinder, implying everlasting memory, on the other hand.
A limitation of the study is its restriction to translational motion.

Key words: internal waves, stratified flows

1. Introduction

A body moving through a fluid experiences an additional inertia, or added mass, imparted
to it by the flow that its motion generates within the fluid; see, among others, Kochin,
Kibel’ & Roze (1964, § 7.7), Batchelor (1967, § 6.4), Lighthill (1986, § 8.3), Landau &
Lifshitz (1987, § 11), Saffman (1992, § 5.1) and Newman (2017, §§ 4.12–4.14). The names
‘induced’ or ‘virtual’ mass are also used, though the latter is sometimes reserved for
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Figure 1. Dynamics of a rigid body in a homogeneous fluid.

the sum of the actual and added masses (Milne-Thomson 1968, § 9.221; Newman 2017,
§ 4.16).

Mathematically, added mass is linked to the irrotational dynamics of inviscid fluids.
Consider a rigid body of surface S and outward normal n, represented in figure 1,
translating at the velocity U without rotation in a fluid of density ρ. A flow of
velocity potential φ is generated, satisfying the Laplace equation ∇2φ = 0 and the
free-slip boundary condition ∂φ/∂n = U · n, with ∂/∂n = n · ∇ the normal derivative.
The linearity of these equations implies a linear relation between U and φ. We write
φ = Uiφi, where the φi, with i = 1, 2, 3, are functions of x dependent on S and
independent of U , satisfying the Laplace equation ∇2φi = 0 and the boundary condition
∂φi/∂n = ni; hereinafter the suffix notation is used, and summation over repeated suffixes
is implied.

Four quantities are of interest when describing the interaction between the fluid and the
body: the impulse I and kinetic energy E of the fluid, given by

I = −ρ
∫

S
nφ d2S, E = −1

2
ρ

∫
S
φ
∂φ

∂n
d2S, (1.1a,b)

and the hydrodynamic force F on the body and the dipole strength D of this body, given
by

F = ρ
d
dt

∫
S

nφ d2S, D =
∫

S

(
x
∂φ

∂n
− nφ

)
d2S, (1.2a,b)

with x the position with respect to the body. Defining the symmetric and positive definite
added mass tensor as

mij = −ρ
∫

S
niφj d2S = −ρ

∫
S

∂φi

∂n
φj d2S, (1.3)

we obtain

Ii = mijUj, E = 1
2

mijUiUj, Fi = −mij
dUj

dt
, ρDi = (mf δij + mij)Uj, (1.4a–d)

with mf = ρV the mass of the displaced fluid, V the volume of the body and δij the
Kronecker delta symbol. Accordingly, added mass characterizes the interaction between
the body and the fluid fully.

When, in addition, the fluid supports the propagation of waves, such as acoustic waves
(Lighthill 1978, § 1.7) or surface gravity waves (Wehausen 1971; Newman 1978, 2017,
§§ 6.15–6.19), added mass becomes complex and varies with the frequency ω. Its real
part represents actual inertia and its imaginary part wave damping. Assuming temporal
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Added mass in stratified fluids

variations as exp(−iωt) and introducing the inertial coefficients μij(ω) = Re mij(ω) and
the damping coefficients λij(ω) = ω Im mij(ω), the oscillations of a body of mass m
and position ξ under the influence of an external force F e satisfy the equation, in suffix
notation,

[−ω2(mδij + μij)− iωλij]ξj = Fe
i . (1.5)

Because of causality, the two parts are Hilbert transforms of each other (Roddier 1971,
§ 13.1; Landau & Lifshitz 1980, § 123). Hence, they satisfy the relations introduced by
Kramers and Kronig for the electric permittivity in 1926 and 1927 (Landau & Lifshitz
1984, §§ 77 and 82; Jackson 1999, § 7.10) and applied to added mass by Kotik & Mangulis
(1962).

When the body becomes small, viscosity comes into play. Its effect is governed, for
a body of size a oscillating in a fluid of kinematic viscosity ν, by the Stokes number
St = ωa2/ν representing the ratio of the viscous time scale a2/ν to the flow time scale
1/ω, or the squared ratio of the body size a to the boundary-layer size (ν/ω)1/2 (Batchelor
1967, § 5.13; Landau & Lifshitz 1987, § 24). Added mass still exists but is accompanied
by Stokes resistance and the Basset–Boussinesq force; see Landau & Lifshitz (1987, § 24)
for a sphere, and Lawrence & Weinbaum (1986, 1988) and Zhang & Stone (1998) for a
spheroid.

Added mass plays an important role in practical applications, ranging from the small
scales of particles and bubbles in dispersed two-phase flows (Magnaudet & Eames 2000)
to the large scales of floats and ships in naval hydrodynamics (Wehausen 1971; Newman
1978, 2017). Compendia of added masses for a variety of bodies have been given by
Brennen (1982), based in part on Kennard (1967), and by Korotkin (2009).

The above is for homogeneous fluids. In the presence of density stratification, buoyancy
gives rise to internal waves. Two stratifications have been considered in the literature. The
first is uniform, a linear variation of density with depth. Added mass has been determined
by Lai & Lee (1981) and Ermanyuk (2002) for a spheroid of vertical axis and Gorgui,
Faltas & Ahmed (1995) for a vertical plate, both oscillating. The force and moments
on a horizontal elliptic cylinder have been calculated by Hurley (1997) for translational
oscillations and Hurley & Hood (2001) for rotational oscillations. The force and moments
on a horizontal disc have been calculated by Davis & Llewellyn Smith (2010) and Martin
& Llewellyn Smith (2011) for a circular disc and Martin & Llewellyn Smith (2012) for an
elliptic disc.

The second stratification is two layer, a homogeneous layer of light fluid atop another
layer of heavier fluid. The layers may be semi-infinite, or have finite thicknesses with
a rigid bottom and a rigid or free top surface. To determine added mass, multipole
expansions have been applied to the oscillations of a horizontal circular cylinder located
in either layer (Linton & McIver 1995; Sturova 1999) or intersecting the interface between
them (Motygin & Sturova 2002), a sphere located in either layer (Cadby & Linton 2000)
and a vertical circular cylinder spanning both layers (You, Shi & Miao 2007). The hybrid
element method, combining finite elements around the body and boundary elements away
from it, has been applied to a horizontal elliptic cylinder located in the lower layer (Sturova
1994) or intersecting the interface (Sturova 2003; Sturova & Syui 2005). The boundary
element method has been applied to a representation of a floating ship known as the
Lewis form (Zilman, Kagan & Miloh 1996; Ten & Kashiwagi 2004) and a rectangular
box modelling a floating barge (Yeung & Nguyen 1999).

A uniformly stratified layer sandwiched between two homogeneous layers has been
considered by Sturova (1999, 2001, 2006) for a horizontal cylinder situated entirely in
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B. Voisin

the bottom layer, entirely in the middle layer or spanning all three layers, respectively, and
a uniformly stratified layer with a rigid bottom and an ice cover by Sturova (2011).

All these studies are theoretical. Experimentally, building on the interpretation of added
mass in the time domain as an impulse response function, introduced by Cummins (1962)
and Ogilvie (1964) for surface gravity waves, Ermanyuk (2000) developed an original
method for measuring added mass in the presence of internal waves, by applying an
impulse to the body and deducing the frequency variations of its added mass from the
Fourier analysis of the response. This method was applied by Ermanyuk (2000) and
Ermanyuk & Gavrilov (2002b) to cylinders of circular and diamond-shaped cross-sections,
respectively, and Ermanyuk (2002) to oblate and prolate spheroids and a sphere; the
oscillations were horizontal, the stratification uniform and the fluid effectively unbounded.
The effect of finite depth was investigated by Ermanyuk & Gavrilov (2002a) for a circular
cylinder, Ermanyuk & Gavrilov (2003) for a sphere and Brouzet et al. (2017) for a
circular cylinder, a vertical plate and a flat-top hill. A Lewis form in a two-layer fluid
was considered by Ten & Kashiwagi (2004).

The present study proposes a general approach of added mass for internal waves in
uniform stratification. All the work cited above calculated added mass for specific bodies
oscillating in specific directions, except for Ermanyuk (2002) and Ermanyuk & Gavrilov
(2002b), who presented a general analysis of added mass in the frequency domain,
introducing anisotropic coordinate stretching and analytic continuation in frequency so
as to relate the added mass of the original body in a stratified fluid to the added mass
of the stretched version of the same body in a homogenous fluid. Here, added mass is
considered for arbitrary motion of an arbitrary body, both in the time domain and in the
frequency domain, and its relation to the various quantities of interest for the dynamics of
the body is investigated. Added mass is also related to the boundary integral representation
of the body, considered in Voisin (2021). Early versions of smaller scope were presented
in summary form by Voisin (2007, 2009). In order to keep the analysis tractable, a
number of approximations are made: the fluid is unbounded, uniformly stratified, inviscid,
non-diffusive and non-rotating, the Boussinesq approximation is valid, the waves are linear
and the body performs translational motion without rotation. The present paper, hereafter
referred to as Part 1, investigates the general properties of added mass and discusses
two particular cases: the elliptic cylinder of horizontal axis as a typical two-dimensional
body, and the spheroid of vertical axis as a typical three-dimensional body. A companion
paper (Voisin 2024), the associated Part 2, discusses how past experiments from the
literature, involving the oscillation of buoyant bodies about their equilibrium position,
may be explained in terms of added mass.

The equations of motion are set in § 2. The hydrostatic response of the fluid is analysed
in § 3. For its hydrodynamic response, the modifications to the quantities (1.1)–(1.2)
because of the stratification are analysed in § 4, giving two possible definitions of added
mass. Consideration of the properties of each leads to the choice of one. The frequency
variations of added mass are presented in § 5 for the cylinder and the spheroid, and
applied to the wave power, known as a ‘conversion rate’ within the context of the
oceanic internal tide. The temporal aspects of added mass, including the Kramers–Kronig
relations, are analysed in § 6. The changes to added mass because of the stratification
are interpreted as the addition of a new memory force on the moving body. The
main conclusions are summarized in § 7 where their relation to the literature is also
discussed.
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Added mass in stratified fluids

2. Equations of motion

We are concerned with small disturbances to the state of rest of a stratified fluid where the
density distribution ρ0(z) and the pressure distribution p0(z) satisfy

dp0

dz
= −ρ0g,

dρ0

dz
= −ρ00

N2

g
, (2.1a,b)

respectively the hydrostatic law and the definition of the buoyancy frequency N, with z the
upward vertical coordinate, g the acceleration due to gravity and ρ00 a reference density.
The stratification is assumed uniform, such that N is a constant, and the Boussinesq
approximation is made, according to which the density variations are small and generate
buoyancy forces but no inertial forces. The disturbances u = (u, v,w) in velocity, p in
pressure and ρ in density satisfy the linearized equations of motion, namely the Euler
equation

ρ00
∂u
∂t

= −∇p − ρgez, (2.2)

the equation of continuity

∇ · u = 0 (2.3)

and the equation of state

∂ρ

∂t
= ρ00

N2

g
w, (2.4)

expressing the incompressibility condition d(ρ0 + ρ)/dt = 0. Cartesian coordinates
(x, y, z) are used, with unit vectors (ex, ey, ez). Time is denoted by t, position by x =
(x, y, z) and the del operator by ∇ = (∂/∂x, ∂/∂y, ∂/∂z).

The equations are solved by introducing the pseudopotential ψ , sometimes called an
‘internal potential’, in terms of which the fluid dynamical quantities are expressed as

u =
(
∂2

∂t2
∇ + N2∇h

)
ψ, p = −ρ00

(
∂2

∂t2
+ N2

)
∂

∂t
ψ, ρ = ρ00

N2

g
∂2

∂t∂z
ψ.

(2.5a–c)

The potential satisfies the wave equation

(
∂2

∂t2
∇2 + N2∇2

h

)
ψ = 0, (2.6)

where ∇h = (∂/∂x, ∂/∂y, 0). It was introduced by Sobolev (1954) for inertial waves
and Gorodtsov & Teodorovich (1980) for internal waves; see Voisin (1991) for a brief
derivation and Voisin (2021) for an updated bibliography.

3. Hydrostatic response

We consider the translation of a rigid body of volume V and mass m, represented in
figure 2, at the velocity U . The response of the fluid comprises two parts, one hydrostatic
and the other hydrodynamic. We look briefly at the hydrostatic response in this section.
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Figure 2. Dynamics of a rigid body in a stratified fluid.

The quantity of interest is the pressure force exerted on the body,

F 0 = −
∫

S
p0n d2S, (3.1)

with S the surface of the body and n its outward normal. Application of Gauss’ theorem
and use of (2.1a) give

F 0 = gez

∫
V
ρ0(z) d3x = mf gez, (3.2)

namely Archimedes’ force, where V is the region of fluid occupied by the body and mf =∫
V ρ0(z) d3x is the mass of the displaced fluid.
We set z = 0 at the level where the body is neutrally buoyant, namely where its weight

balances Archimedes’ force, and we introduce the position ζ of its centroid with respect
to this level, such that Vζ = ∫

V z d3x. Writing, by (2.1b),

ρ0(z) = ρ0(0)
(

1 − N2

g
z
)
, (3.3)

we obtain m = ρ0(0)V and
F 0 = mgez − mN2ζ ez. (3.4)

Similar derivations may be found in Larsen (1969) and Lai & Lee (1981).

4. Hydrodynamic response

The hydrodynamic response is due to the free-slip forcing at S, namely, using (2.5a),
(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
ψ = n · U (x ∈ S), (4.1)

where ∂/∂n = n · ∇ and ∂/∂nh = n · ∇h. With S a moving surface, this forcing is not
linear. For it to become so, an assumption of a small displacement of the body compared
with its size must be introduced, allowing S to be considered fixed.

Stokes (1851, § 41), however, pointed out that this assumption may be relaxed. For the
flow of a homogeneous viscous fluid, at small velocities U of the body and u of the fluid,
he noted that the switch to a system of coordinates moving with the body leaves the linear
equations of motion unchanged – since the convective terms associated with the switch are
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Added mass in stratified fluids

of second order in the small velocities – and makes S fixed. Gatignol (1983) and Maxey &
Riley (1983) implemented the switch analytically. The boundary condition becomes linear,
without requiring small displacements. The results may thus be applied to a body moving
along an arbitrary path.

The same is true here: with ξ(t) the position of the body and U(t) = dξ/dt its velocity,
assumed small, a switch to the coordinates x′ = x − ξ(t) and t′ = t gives

∇ = ∇′,
∂

∂t
= ∂

∂t′
− U · ∇′, (4.2)

yielding additional terms ρ00U · ∇′u in (2.2) and U · ∇′ρ in (2.4), both negligible. In
the following we omit the primes and take (2.2)–(2.4) as our equations of motion and
(4.1) as our boundary condition, on the understanding that S is fixed. This will allow the
application of the results to a body moving along an arbitrary path in § 6.2.

Now, the linearity of (2.6) and (4.1) implies a linear relation between the forcing U(t)
and its effect ψ(x, t). The most general such relation is a temporal convolution (Landau &
Lifshitz 1980, § 123, 1984, § 77; Jackson 1999, § 7.10) of the form

ψ(x, t) = Ui(t) ∗ ψi(x, t) =
∫

Ui(t′)ψi(x, t − t′) dt′, (4.3)

with ∗ the convolution operator. Hereinafter the suffix notation is used, with i ranging over
1, 2 and the vertical direction 3, and summation over repeated suffixes is implied. The ψi
are functions of x and t dependent on S and independent of U . They satisfy the wave
equation (

∂2

∂t2
∇2 + N2∇2

h

)
ψi = 0, (4.4)

and the boundary condition(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
ψi = niδ(t) (x ∈ S), (4.5)

with δ(t) the Dirac delta function. They represent the internal potential due to a unit
velocity impulse Ui(t) = δ(t) along the xi direction, or a unit step displacement ξi(t) =
H(t) with H(t) the Heaviside step function.

We investigate now the four quantities involved in the definition of added mass,
discussed in § 1, for convenience in a different order.

4.1. Hydrodynamic force
The hydrodynamic force on the body is

F (t) = −
∫

S
pn d2S, (4.6)

namely, by (2.5),

F (t) = ρ00
d
dt

∫
S

n
(
∂2

∂t2
+ N2

)
ψ d2S. (4.7)

Use of (4.3) yields

Fi(t) = −mij(t) ∗ dUj

dt
, (4.8)
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B. Voisin

where

mij(t) = −ρ00

∫
S

ni

(
∂2

∂t2
+ N2

)
ψj d2S, (4.9)

or equivalently

mij(t) = −ρ00

(
d2

dt2
+ N2

)∫
S

niψj d2S, (4.10)

constitutes a first possible definition of added mass, introduced by Ermanyuk (2002) and
Ermanyuk & Gavrilov (2002b) in monochromatic form.

4.2. Wave energy
The scalar product of u with (2.2), combined with (2.3) and (2.4), provides the energy
conservation equation

∂

∂t

(
1
2
ρ00u2 + 1

2
g2

N2
ρ2

ρ00

)
+ ∇ · ( pu) = 0. (4.11)

Accordingly, ρ00u2/2 + g2ρ2/2ρ00N2 is the wave energy density, combining kinetic and
potential energy, and pu the wave energy flux, namely a vector whose scalar product with n
represents the rate at which energy is transported across a unit surface element of normal n.

The total power output of the body follows from integrating this flux over S, to give

P =
∫

S
pu · n d2S = −U · F , (4.12)

that is,

P(t) = Ui(t)
[

mij(t) ∗ dUj

dt

]
. (4.13)

The same added mass tensor is involved as for the hydrodynamic force, consistent with the
fact that the energy of the fluid varies in response to the work of the hydrodynamic force
−F exerted by the body on the fluid.

4.3. Wave momentum
Momentum conservation is written in flux form, by (2.2) and (2.5), as

∂

∂t
(ρ00ui)+ ∂Πij

∂xj
= 0, (4.14)

where

Πij = pδij + ρ00N2δi3δj3
∂ψ

∂t
= −ρ00

[
δij
∂2

∂t2
+ (δi1δj1 + δi2δj2)N2

]
∂ψ

∂t
, (4.15)

with δij the Kronecker delta symbol, is the wave momentum flux, namely a tensor whose
contraction with n represents the rate at which momentum is transported across a unit
surface element of normal n.
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Added mass in stratified fluids

The total momentum output of the body follows as

I = −ρ00

∫
S

(
n
∂2

∂t2
+ nhN2

)
ψ d2S, (4.16)

with nh the horizontal projection of n, namely

Ii(t) = m′
ij(t) ∗ Uj(t), (4.17)

where

m′
ij(t) = −ρ00

∫
S

[
ni
∂2

∂t2
+ (n1δi1 + n2δi2)N2

]
ψj d2S, (4.18)

or equivalently

m′
ij(t) = −ρ00

(
d2

dt2
+ N2

)∫
S

niψj d2S (i = 1, 2), (4.19a)

m′
3j(t) = −ρ00

d2

dt2

∫
S

n3ψj d2S, (4.19b)

constitutes a second possible definition of added mass. Consistent with (4.15), the
difference between the two definitions follows from the fact that not only pressure but
also buoyancy contribute to changing the momentum of the fluid.

4.4. Dipole strength
The dipole strength of the body may be derived from a Kirchhoff–Helmholtz integral,
by expanding this integral at large distances from the body; see Batchelor (1967, §§ 2.9
and 6.4) and Lighthill (1986, §§ 8.1–8.3) for fluid flow, and Pierce (2019, § 4.6) for acoustic
waves. The integral and its expansion are obtained for internal waves in Appendix B, using
the Green’s function introduced in Appendix A. Arbitrary forcing within a surface S of
outward normal n, generating the internal potential ψ and the normal velocity un = n · u
at the surface, has the monopole strength

S(t) =
∫

S
un(x, t) d2S, (4.20)

and the dipole strength

D(t) =
∫

S

[
xun(x, t)−

(
n
∂2

∂t2
+ nhN2

)
ψ(x, t)

]
d2S. (4.21)

For a rigid body, we have
∫

S ni d2S = 0 and
∫

S xinj d2S = Vδij. Accordingly,

S = 0, ρ00D = I + mf U, (4.22a,b)

with mf = ρ00V the mass of the displaced fluid, so that

ρ00Di(t) = [mf δijδ(t)+ m′
ij(t)] ∗ Uj(t), (4.23)

an expression of the dipole strength involving the same added mass tensor as for the wave
momentum.
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B. Voisin

4.5. Symmetry
In order to decide which definition of added mass is the most relevant – mij given by
(4.9)–(4.10) or m′

ij given by (4.18)–(4.19) – we start by looking at their symmetry. The
Green’s theorem (B2) is applied to the volume delimited by the surface S of the body and
a sphere SR of large radius R, and to the time range ]−∞,+∞[. The functions are chosen
asψi andψj. These are zero at t = −∞, and their temporal derivatives vanish as t → +∞,
consistent with the behaviours exhibited later in § 6.2 for the impulse response functions.
Accordingly, the initial and final contributions vanish. The body, being rigid, acts as a
dipole, so that ψi and ψj decrease as 1/R2 and their gradients as 1/R3. The contribution
of SR vanishes, and we obtain∫

dt
∫

V
d3x

[
ψi

(
∂2

∂t2
∇2 + N2∇2

h

)
ψj − ψj

(
∂2

∂t2
∇2 + N2∇2

h

)
ψi

]

= −
∫

dt
∫

S
d2S

[
ψi

(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
ψj − ψj

(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
ψi

]
, (4.24)

namely, by (4.4) and (4.5), ∫
S

niψj d2S =
∫

S
njψi d2S. (4.25)

We thus have
mij = mji, m′

ij /= m′
ji, (4.26a,b)

implying that the first definition of added mass is symmetric while the second is not. This
provides a first hint that mij may be the best choice.

4.6. Monochromatic case
Now, the situations investigated in practice are often monochromatic, either because the
forcing is of this type, or because temporal Fourier transforms are used. We define direct
and inverse transforms according to

f (ω) =
∫

f (t) exp(iωt) dt, f (t) = 1
2π

∫
f (ω) exp(−iωt) dω. (4.27a,b)

The added masses (4.9) and (4.18) have the transforms

mij(ω) = ρ00(ω
2 − N2)

∫
S

niψj(x, ω) d2S, (4.28)

m′
ij(ω) = ρ00

∫
S
[ω2ni − N2(n1δi1 + n2δi2)]ψj(x, ω) d2S, (4.29)

respectively, and are related to each other by

mij(ω) = m′
ij(ω) (i = 1, 2), m3j(ω) =

(
1 − N2

ω2

)
m′

3j(ω). (4.30a,b)

We consider waves of frequency ω, varying with time through the factor exp(−iωt) that
is suppressed in the following. For this, the body is assumed to oscillate at the velocity
U exp(−iωt), where the instant t = 0 is chosen such that the components Ui of U are real
and positive. The linear fluid dynamical quantities become
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Fi = iωmij(ω)Uj, Ii = m′
ij(ω)Uj, ρ00Di = [mf δij + m′

ij(ω)]Uj, (4.31a–c)

and have zero phase average. Wave power is a quadratic quantity. Decomposing the tensor
mij(ω) into an inertial part μij(ω) and a wave damping part λij(ω), such that

μij(ω) = Re mij(ω), λij(ω) = ω Im mij(ω), (4.32a,b)

and using the result that the product of two quantities of complex amplitudes A and B has
the phase average Re[AB̄]/2, where the overbar denotes a complex conjugate, the average
wave power follows as

〈P〉 = 1
2
λij(ω)UiUj. (4.33)

This quadratic form, representing energy dissipation, is necessarily positive definite,
implying that the tensor λij(ω) is also positive definite.

4.7. Which added mass?
The first definition of added mass, mij, thus appears as the most relevant. It is symmetric
while the second definition, m′

ij, is not. The two quantities expressed in terms of it – the
hydrodynamic force and the wave energy – are the most interesting in practice. By contrast,
the two quantities expressed in terms of m′

ij are of meagre interest: the wave momentum has
zero phase average, and one must switch to the pseudomomentum to get actual momentum
transport (Bühler 2014); monochromatic waves propagate in beams along which, whatever
the distance, the wave profile still depends on the details of the forcing, not on its dipole
strength alone (Lighthill 1978, § 4.10; Voisin 2003).

In the following we define added mass as mij, but still use m′
ij to determine it.

Specifically, the boundary integral method (Voisin 2021) provides a representation of an
oscillating body as a source term q(x) in the wave equation (2.6), and from it the dipole
strength

D =
∫

xq(x) d3x. (4.34)

Once this strength is known, so is m′
ij(ω) by (4.31c), then mij(ω) by (4.30).

5. Frequency-dependent aspects

5.1. Added mass
We consider now the added mass coefficients

Cij(ω) = mij(ω)

mf
(5.1)

of typical oscillating bodies: an elliptic cylinder of horizontal axis in two dimensions, and
a spheroid of vertical axis in three dimensions. Single-layer representations q(x) of these
bodies were given in table 5 of Voisin (2021), along with their spectra q(k). Expanding
these at small wavenumber, as

q(k) =
∫

q(x) exp(−ik · x) d3x ∼ −ik · D, (5.2)

provides immediately the dipole strengths D and from them the added masses.
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The cylinder is assumed to have horizontal y axis and semi-axes a and b in the vertical
(x, z) plane, respectively, and to oscillate at the velocity (U, 0,W) exp(−iωt). We obtain,
per unit length along the y direction,

Dx = πab(1 + Υ )U, Dy = 0, Dz = πab
(

1 + 1
Υ

)
W, (5.3a–c)

where

Υ = ε

(
1 − 1

Ω2

)1/2

, (5.4)

with ε = b/a the aspect ratio and Ω = ω/N the frequency ratio. The added mass
coefficients are given in table 1 for the elliptic cylinder and its particular cases: the
circular cylinder (ε = 1), the horizontal plate (ε = 0) and the vertical plate (ε = ∞). The
coordinates axes are principal axes and the added mass tensor is diagonal, leading to the
simplified notations Cx = C11 and Cz = C33.

Consistent with causality, the coefficients are analytic functions in the upper half of the
complex Ω plane. The branch cuts emanating from the branch points Ω = ±1 are taken
vertically downwards, yielding

Υ = |Υ | (|Ω| > 1), i|Υ | signΩ (|Ω| < 1) (5.5a,b)

along the real Ω axis.
For the spheroid, of vertical z axis and semi-axes a and b along the horizontal and the

vertical, respectively, oscillating at the same velocity, the dipole strength is

Dx = 4
3
πa2b

2U
1 + D(Υ )

, Dy = 0, Dz = 4
3
πa2b

W
1 − D(Υ )

, (5.6a–c)

where

D(Υ ) = 1
1 − Υ 2

[
1 − Υ

arccosΥ
(1 − Υ 2)1/2

]
, (5.7)

becoming

D(Υ ) = 1
1 − |Υ |2

[
1 − |Υ | arccos |Υ |

(1 − |Υ |2)1/2
]

(|Ω| > 1 and |Υ | < 1) (5.8a)

= 1
1 − |Υ |2

[
1 − |Υ | arccosh |Υ |

(|Υ |2 − 1)1/2

]
(|Ω| > 1 and |Υ | > 1) (5.8b)

= 1
1 + |Υ |2

[
1 − |Υ |arcsinh |Υ | + i(π/2) signΩ

(1 + |Υ |2)1/2
]

(|Ω| < 1) (5.8c)

along the realΩ axis. The added mass coefficients are given in table 1 for the spheroid and
its particular cases: the sphere (ε = 1), the horizontal disc (ε = 0) and the vertical needle
(ε = ∞).

The particular results from the literature are all recovered. As Ω → ∞, the inertial
coefficients of the cylinder and the spheroid in a homogeneous fluid are also recovered.
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Figure 3. Frequency variations of (a,c) the inertial coefficients Re Cx(ω) and Re Cz(ω) and (b,d) the damping
coefficients Ω Im Cx(ω) and Ω Im Cz(ω) of an elliptic cylinder of aspect ratio ε oscillating (a,b) horizontally
or (c,d) vertically.

They are denoted as C∞
x and C∞

z and involve

D(ε) = 1
1 − ε2

[
1 − ε

arccos ε
(1 − ε2)1/2

]
(ε < 1) (5.9a)

= 1
1 − ε2

[
1 − ε

arccosh ε
(ε2 − 1)1/2

]
(ε > 1) (5.9b)

for the spheroid, becoming D(1) = 1/3 for the sphere.
The frequency variations of added mass are plotted in figures 3 and 4. They are

consistent with the measurements by Ermanyuk (2000), Ermanyuk & Gavrilov (2002a)
and Brouzet et al. (2017) for a circular cylinder, Ermanyuk (2002) and Ermanyuk &
Gavrilov (2003) for a sphere and Ermanyuk (2002) for oblate and prolate spheroids, all for
horizontal oscillations. Wave damping is only observed in the frequency range |Ω| < 1 of
propagating waves, and vanishes at |Ω| > 1 for evanescent waves. For the cylinder, there
is no inertial added mass in the propagating case, but the same is not true for the spheroid.
The damping coefficient does not vanish at zero frequency for the cylinder, while the
inertial coefficient diverges logarithmically for the vertical motion of the spheroid. These
remarks will have implications when formulating the Kramers–Kronig relations in § 6.1.

5.2. Energy radiation
An important manifestation of internal waves in the ocean is the so-called internal
or baroclinic tide, generated by the ebb and flow of the barotropic tide over bottom
topography (Garrett & Kunze 2007) or at the continental slope (Baines 1982). Together
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Figure 4. Same as figure 3 for a spheroid.

with wind-generated waves at the surface, and lee waves generated by the flow of ocean
currents over bottom topography, the internal tide is now thought to play an essential part
in the mixing of the ocean (Ferrari & Wunsch 2009; Ferrari 2014; Ferrari et al. 2016;
MacKinnon et al. 2017; Sarkar & Scotti 2017; Whalen et al. 2020; Legg 2021). For small
tidal excursion, namely small amplitude of the barotropic tidal motion compared with the
width of the topography, the problem is linear and equivalent to the oscillation of the
topography in an ocean at rest. In this context, the average wave power 〈P〉 represents
the rate at which barotropic energy is converted to baroclinic form; hence, the name,
sometimes used, of ‘conversion rate’ (Llewellyn Smith & Young 2002). For a recent study
of its calculation in a general setting and an up-to-date bibliography, see Papoutsellis,
Mercier & Grisouard (2023).

Topographies are called subcritical or supercritical depending on whether their
maximum slope is smaller or larger than the slope of the wave rays, respectively, inclined
at the angle arcsinΩ to the horizontal. The waves radiated by supercritical topography
take the form of critical beams tangential to the topography; these are thinner than the
beams from subcritical topography, hence, are more prone to breaking and mixing. See
Machicoane et al. (2015) and Le Dizès & Le Bars (2017) for discussions of critical
beams in the context of inertial waves. The semi-elliptic ridge and the hemispheroidal
seamount, which are the oceanic analogues of the elliptic cylinder and the spheroid,
are unconditionally supercritical, irrespective of the tidal frequency. Their experimental
or numerical studies include Zhang, King & Swinney (2007) for a semi-circular
ridge, King, Zhang & Swinney (2009) and Voisin, Ermanyuk & Flór (2011) for a
hemispherical seamount and Shmakova, Ermanyuk & Flór (2017) for a semi-ellipsoidal
seamount.
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Energy radiation takes place entirely in the frequency range |Ω| < 1 of propagating
waves. Using (4.33), we obtain, for the cylinder,

〈P〉 = π

2
ρ00N(1 −Ω2)1/2(b2U2 + a2W2), (5.10)

and, for the spheroid,

〈P〉 = π2

3
ρ00Nab2 (1 −Ω2)1/2

(1 + |Υ |2)3/2
[

2U2

|1 + D(Υ )|2 +
(

1
Ω2 − 1

)
W2

|1 − D(Υ )|2
]
. (5.11)

The variations of the wave power with Ω are plotted in figure 5 for fixed excursion A and
varying angle α of oscillation to the horizontal, such that (U,W) = NAΩ(cosα, sinα).
The power is normalized by P0 = πρ00N3abA2 for the cylinder and (4/3)πρ00N3a2bA2

for the spheroid. It is a maximum at Ωm = (2/3)1/2 ≈ 0.816 independent of α and ε for
the cylinder, corresponding to propagation at 35 ◦ to the vertical, and 0.816 < Ωm < 1
for the spheroid, dependent on α and ε, as shown in figure 6. For the sphere, Ωm varies
between 0.846 for α = 0 and 0.835 for α = π/2.

In the laboratory, when the waves are generated by an oscillating body, the excursion is
usually set by practical constraints, and the frequency ratioΩ is chosen as close as possible
to 0.8 in order to maximize wave radiation for that excursion, or 0.8/n when the generation
of an nth harmonic is looked for (Shmakova et al. 2017). In circumstances where the waves
were generated by a broadband disturbance, such as the collapse of a mixed region (Wu
1969) or a buoyant fluid parcel (Cerasoli 1978), both two-dimensional, or the decay of
a three-dimensional turbulent region (Riley, Metcalfe & Weissman 1981), a well-defined
peak has been observed in the wave spectrum at Ωm = 0.8, 0.7 and 0.5, respectively. If
the disturbance can be viewed as an assembly of turbulent patches oscillating with random
frequencies in random directions with an approximately constant excursion, then the above
mechanism might explain the emergence of a well-defined peak.

6. Time-dependent aspects

At its core, added mass is a generalized susceptibility expressing the non-local temporal
linear relation between a cause – the velocity U(t) of the moving body – and its effect
– the hydrodynamic force F (t) – through the convolution integral (4.8); see Landau &
Lifshitz (1980, § 123) for a presentation of generalized susceptibilities, and Landau &
Lifshitz (1984, §§ 77 and 82) and Jackson (1999, § 7.10) for the particular case of the
electric permittivity. We investigate the consequences of that integral in this section.

6.1. Kramers–Kronig relations
First comes causality, namely the fact that effect cannot precede cause. In time this means
mij(t) = 0 for t < 0, and in frequency the analyticity of mij(ω) in the upper half of the
complex ω plane. A variety of properties of mij(ω) follow from this, discussed by Landau
& Lifshitz (1980, § 123) and Jackson (1999, § 7.10). We adapt here their conclusions to the
problem at hand.

Real values of mij(ω) are obtained on the evanescent part of the real frequency axis,
where mij(ω) increases from 0 to m∞

ij as ω varies from N to +∞ (or −N to −∞), and on
the positive imaginary axis, where mij(ω) increases from m∞

ij to +∞ as ω varies from i∞
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Figure 5. Frequency variations of the power outputs of (a,c,e,g,i) elliptic cylinders and (b,d, f,h, j) spheroids
of aspect ratios (a,b) ε = 0.2, (c,d) ε = 0.5, (e, f ) ε = 1, (g,h) ε = 2 and (i, j) ε = 5 oscillating with fixed
excursion at the angle α to the horizontal.
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Figure 6. Frequency Ωm of maximum power output of a spheroid of aspect ratio ε oscillating with fixed
excursion at the angle α to the horizontal.

to i0. At infinity along any direction of the upper half-plane, we have

mij(ω) = m∞
ij + O

(
1
ω2

)
, (6.1)

namely the oscillations are so fast that buoyancy cannot manifest itself and added mass
takes its value in a homogeneous fluid. At the origin, decomposing mij(ω) into its real part
μij(ω) and its imaginary part λij(ω)/ω, we see from § 5.1 that λij(ω) may be non-zero,
yielding a first-order pole, and that μij(ω) may exhibit a logarithmic singularity.

For real ω, we integrate [mij(ω
′)− m∞

ij ]/(ω′ − ω) in the ω′ plane along the contour
shown in figure 7. The contribution of the large semi-circle at infinity vanishes by (6.1).
The small semi-circles at the poles ω′ = 0 and ω′ = ω give residue contributions, to which
the logarithmic divergence of μij(ω) at ω′ = 0 is too weak to contribute. We obtain

π
λij(0)
ω

+ iπ[mij(ω)− m∞
ij ] = −

∫ ∞

−∞

mij(ω
′)− m∞

ij

ω′ − ω
dω′, (6.2)

where the stroke through the integral denotes a principal value. Separating real and
imaginary parts, we have

μij(ω)− μij(∞) = 1
π

−
∫ N

−N

λij(ω
′)

ω′ − ω

dω′

ω′ , (6.3a)

λij(ω)− λij(0)
ω

= − 1
π

−
∫ ∞

−∞
μij(ω

′)− μij(∞)

ω′ − ω
dω′, (6.3b)

or, taking into account that μij(ω) and λij(ω) are even functions of ω,

μij(ω)− μij(∞) = 2
π

−
∫ N

0

λij(ω
′)

ω′2 − ω2 dω′, (6.4a)

λij(ω)− λij(0)
ω2 = − 2

π
−
∫ ∞

0

μij(ω
′)− μij(∞)

ω′2 − ω2 dω′. (6.4b)

This is the most general form of the Kramers–Kronig relations for internal waves,
expressing μij(ω) for real frequencies in terms of λij(ω) also for real frequencies, and
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Re ω′

Im ω′

ω0–∞ +∞
Figure 7. Contour for the derivation of the Kramers–Kronig relations.

vice versa. They were verified analytically by Ermanyuk & Gavrilov (2002a) for a circular
cylinder, using added mass coefficients deduced from Hurley (1997).

Relation (6.4a) may be of practical interest, as it provides a way of calculating
the inertial coefficient μij(ω) at any real frequency, should the variations of the
damping coefficient λij(ω) be known exactly or determined empirically, by (4.33), from
measurements of the wave power 〈P〉. Together, (6.4a)–(6.4b) may be used to deduce
connections between the behaviours of the coefficients at low, intermediate and high
frequencies, transferring the burden of calculating these coefficients onto the frequency
range in which the calculation is easiest, as pointed out for surface gravity waves by
Greenhow (1984, 1986), based on Kotik & Mangulis (1962).

6.2. Memory effect
Physically, added mass may be decomposed into two parts: an instantaneous response with
no effect of the stratification, and a delayed response caused by internal wave radiation.
We write

mij(t) = m∞
ij δ(t)+ mM

ij (t), (6.5)

where

m∞
ij = mij(ω = ∞), mM

ij (t) = 1
2π

∫
[mij(ω)− m∞

ij ] exp(−iωt) dω, (6.6a,b)

so that the hydrodynamic force (4.8) becomes

Fi(t) = −m∞
ij

dUj

dt
(t)−

∫ ∞

0
mM

ij (t
′)

dUj

dt
(t − t′) dt′. (6.7)

Accordingly, the effect of the stratification on added mass may be characterized as a
memory effect, interpreted by Newman (2017, § 6.19), for surface gravity waves, as the
feedback that the pressure fluctuations in the waves, once generated by the body, will
continue to have on this body as they propagate away, for all subsequent times.

The memory kernel mM
ij (t), or impulse response function (Cummins 1962; Ogilvie

1964), may be expressed as the coefficient

CM
ij (t) =

mM
ij (t)

Nmf
= 1

2πN

∫
[Cij(ω)− C∞

ij ] exp(−iωt) dω. (6.8)

It is a real causal function, f (t) say, and as such may be written in terms of the real part of
its Fourier transform f (ω) alone, or the imaginary part alone, as

f (t) = 2
π

H(t)
∫ ∞

0
Re[ f (ω)] cos(ωt) dω = 2

π
H(t)

∫ N

0
Im[ f (ω)] sin(ωt) dω. (6.9)

987 A27-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.326


B. Voisin

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.0

1.2

t/T

C
M

(t)

Figure 8. Exact (solid line) and asymptotic (dashed line) variations of the memory kernel for the translation
of an elliptic cylinder.

Account has been taken of the fact that the imaginary part, proportional to the damping
coefficient λij(ω), is non-zero only over the propagating frequency range |ω| < N.

Changing variable according to ω = N cos θ , we obtain, for the elliptic cylinder,

CM
x (t) = εCM(t), CM

z (t) = 1
ε

CM(t), (6.10a,b)

where

CM(t) = 2
π

H(t)
∫ π/2

0
sin(Nt cos θ)

sin2 θ

cos θ
dθ, (6.11)

or alternatively, in terms of the Bessel functions Jn(t),

CM(t) = H(t)
∫ t

0
J1(Nτ)

dτ
τ
. (6.12)

Using (10.22.2) from Olver et al. (2010), we have∫ t

0
J1(Nτ)

dτ
τ

= NtJ0(Nt)
[
1 − π

2
H1(Nt)

]
− J1(Nt)

[
1 − π

2
NtH0(Nt)

]
, (6.13)

where Hn(t) denotes a Struve function. The variations of the kernel are the same for
horizontal and vertical motions. They are plotted in figure 8 where time is normalized by
the buoyancy period T = 2π/N.

Their interpretation is made easier by the expansion of the kernel for large time Nt  1.
Lighthill (1958, chapter 4) showed that the asymptotic behaviour of a Fourier transform
follows from expanding the original function near the points where it, or any of its
successive derivatives, is singular, then transforming these expansions and adding the
results. The same applies to an inverse transform such as (6.8). The singularities are a
pole at ω = 0 and two branch points at ω = ±N. Their contributions are evaluated using
table 4 of Voisin (2003), to give

CM(t) ∼ 1 −
(

2
π

)1/2 cos(Nt − π/4)
(Nt)3/2

. (6.14)

This expansion, shown in figure 8, is seen to hold for almost any value of Nt. The kernel
thus superposes buoyancy oscillations of frequency N and amplitude decaying as t−3/2,
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faster than the decay as t−1/2 of the kernel of the Basset–Boussinesq memory integral
(Boussinesq 1885; Basset 1888), to a constant value. Accordingly, however much time has
passed, the force exerted on the cylinder remains affected by the full past history of its
motion. This feature is specific to two dimensions.

For the spheroid, we have

CM
x (t) = 2

H(t)
ε

∫ π/2

0
sin(Nt cos θ) cos θ(1 + ε2 tan2 θ)3/2

×
{

π2

4
+

[
arcsinh(ε tan θ)− 2 + ε2 tan2 θ

ε tan θ
(1 + ε2 tan2 θ)1/2

]2}−1

dθ,

(6.15a)

CM
z (t) = H(t)

ε

∫ π/2

0
sin(Nt cos θ)

sin2 θ

cos θ
(1 + ε2 tan2 θ)3/2

×
{

π2

4
+ [arcsinh(ε tan θ)+ ε tan θ(1 + ε2 tan2 θ)1/2]2

}−1

dθ, (6.15b)

namely different variations for horizontal and vertical motions, which cannot be expressed
in terms of known functions. They are plotted in figure 9 and take the form of decaying
buoyancy oscillations at the frequency N, superposed to a monotonous decrease for
vertical motion and a slow non-monotonous variation for horizontal motion.

Lighthill’s (1958) asymptotic approach, used for the cylinder, considers only real values
of the original and transformed variables, and hence, can only give algebraic decays with
or without oscillations. These are indeed the behaviours observed for very large Nt in
all circumstances, but not, for moderately large Nt, the behaviour observed in figure 9
for horizontal motion. A generalization of the approach is in order, taking complex
singularities into account and evaluating their contributions as contour integrals gathered
in Appendix C. The best outcome, encompassing the cylinder as a particular case, is
obtained by considering the singularities at which either the modulus of the transform
diverges, or a branch cut starts across which this modulus undergoes a jump.

The singularities of Cx(ω) and Cz(ω) are linked to those of D(Υ ), whose variations are
shown in figure 10. The only singularity is a branch point at Υ = −1, with a cut along the
negative real axis. In the plane of the complex variable ω, scaled as Ω = ω/N, to which
Υ is related by (5.4), three or four singularities are observed depending on the parameter
ε: two singularities at Ω = ±1, corresponding to Υ = 0, in the vicinity of which

D(Υ ) ∼ 1 − π

2
Υ ∼ 1 − πε

[(
Ω − 1

2

)1/2

, i
(
Ω + 1

2

)1/2]
, (6.16)

yielding an algebraically decaying oscillation at the buoyancy frequency; one singularity
at Ω = 0, corresponding to Υ → ∞, in the vicinity of which

D(Υ ) ∼ lnΥ
Υ 2 ∼ Ω2 lnΩ

ε2 , (6.17)

yielding an aperiodic algebraic decay; and when ε < 1, a singularity at Ω = −iΩs with

Ωs = ε

(1 − ε2)1/2
, (6.18)
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Figure 9. Exact (solid line) and asymptotic (dashed line) variations of the memory kernel for the (a,c,e,g,i)
horizontal and (b,d, f,h, j) vertical translations of spheroids of aspect ratios (a,b) ε = 0.2, (c,d) ε = 0.5, (e, f )
ε = 1, (g,h) ε = 2 and (i, j) ε = 5.
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Figure 10. Variations of D(Υ ) in the complex Υ plane. The surface height is set by the modulus of D(Υ ) and
the colour by its argument. The solid lines represent the images of the real and imaginary axes.

corresponding to Υ → −1, in the vicinity of which

D(Υ ) ∼ π

23/2(Υ + 1)3/2
∼ π

23/2
ε3/2

(1 − ε2)9/4
e−3iπ/4

(Ω + iΩs)3/2
, (6.19)

yielding an aperiodic exponential decay. The branch cut away fromΩ = 0 stretches along
the whole negative imaginary axis when ε > 1, and stops at −iΩs when ε < 1.

Typical variations of Cx(ω) and Cz(ω) are shown in figure 11. For vertical motion, the
relevant singularities are Ω = 0 and Ω = ±1. Using (C1), (C2) and (C4), we obtain

CM
z (t) ∼ 1 − H(1 − ε) exp(−ωst)

ε2Nt
−

(
2
π

)3/2 cos(Nt − π/4)
ε(Nt)3/2

, (6.20)

namely buoyancy oscillations of frequency N and amplitude decay as t−3/2, superposed to
an aperiodic decay as t−1, with ωs = NΩs.

For horizontal motion, the singularity Ω = 0 is no longer relevant but new ones come
into play, associated with the complex conjugate solutions Υc and Υc of D(Υ ) = −1,
where

Υc ≈ −1.446 + i 0.953. (6.21)

A new constraint arises, |Re Ω| < 1 and Im Ω < 0, namely the singularities must be
situated in the lower half-plane between the two branch cuts away from Ω = ±1, in order
to belong to the proper Riemann sheet. This gives ε < εc ≈ 2.396 and leaves two poles
±Ωr − iΩi, symmetric with respect to the imaginary axis, where

Ωr − iΩi = ε

(ε2 − Υ 2
c )

1/2 , (6.22)

and the determination of the square root is chosen such that 0 < Ωr < 1 and Ωi > 0.
Figure 11 illustrates how the poles approach the cuts as ε increases, eventually crossing
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Figure 11. Variations of (a–c) Cx(ω) in the complex Ω plane for the horizontal translation of spheroids,
and (d–f ) Cz(ω) for their vertical translation. The spheroids have aspect ratios (a,d) ε = 0.5, (b,e) ε = 1 and
(c, f ) ε = 2.

them at ε = εc then vanishing. Applying the residue theorem together with (C2), we obtain

CM
x (t) ∼ 2εH(εc − ε) exp(−ωit) Im

[
Υ 2

c − 1
Υ 2

c + 1
Υ 2

c exp(−iωrt)
(ε2 − Υ 2

c )
3/2

]
− ε

π1/2

23/2
cos(Nt − π/4)

(Nt)3/2
,

(6.23)

namely buoyancy oscillations of frequency N and amplitude decay as t−3/2, superposed
for ε < εc to oscillations of frequency ωr = NΩr and damping rate ωi = NΩi.

As a rule, for both horizontal and vertical motions, the importance of the memory
integral in the total hydrodynamic force (6.7) is larger for small ε, namely for bodies
that are horizontally flat. In these circumstances, the recent history of the motion is
dominant, with the memory kernel exhibiting a peak within the first half-period followed
by exponential decay for horizontal motion and algebraic decay for vertical motion. As ε
increases and the body gets more elongated vertically, the decay happens faster, hence, the
peak becomes more pronounced and buoyancy oscillations take on a more prominent role
afterwards. At larger ε the original peak remains present for vertical motion but vanishes
for horizontal motion, leaving only buoyancy oscillations.

We note that CM
z (t) is always positive. Accordingly, the memory force always opposes

vertical acceleration, dragging the body back as it speeds up and pushing it forward
at it slows down. This is a manifestation of the inhibition of vertical motion by the
stratification, complementary to the observation, both experimental and numerical, that
buoyancy always induces a resistance to steady vertical motion (Magnaudet & Mercier
2020). By contrast, CM

x (t) is both positive and negative, yielding an alternation of phases
where the acceleration of the body is either opposed or fostered.
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7. Conclusion

The concept of added mass has been generalized to stratified fluids, taking internal waves
into account and assuming the fluid to be inviscid, the stratification uniform and the
Boussinesq approximation valid. Added mass has been defined in § 4 for the translation of
a rigid body, and its relation clarified with the hydrodynamic force on the body, the dipole
strength of this body, and the energy and momentum of the fluid. Added mass has been
calculated in § 5.1 for an elliptic cylinder of horizontal axis, typical of two-dimensional
bodies, and a spheroid of vertical axis, typical of three-dimensional bodies, based on
boundary integral representations of these bodies by Voisin (2021). Added mass appears
as a complex function of the oscillation frequency ω. Its real part μij(ω) is associated
with inertia and its imaginary part λij(ω)/ω with wave damping. The tensors μij(ω) and
λij(ω), where i = 3 corresponds to the vertical direction, are both symmetric; in addition,
λij(ω) is positive definite and vanishes outside the frequency range |ω| < N of propagating
waves, with N the buoyancy frequency. Because of causality, μij(ω) and λij(ω) satisfy
Kramers–Kronig relations derived in § 6.1.

A first application of added mass is the wave power, considered in § 5.2. For the
internal tide, namely internal waves generated in the ocean by the ebb and flow of the
barotropic tide over bottom topography (Garrett & Kunze 2007), this power determines
the rate at which barotropic energy is converted to baroclinic form. For oscillations of
fixed excursion, the radiated power is a maximum at ω/N about 0.8, corresponding to
radiation at 35◦ to the vertical, independent of the direction of oscillation for the cylinder
and weakly dependent on it for the spheroid. This might provide an explanation for the
observation, sometimes made, experimentally and numerically, of a clear peak in the wave
spectrum for broadband forcing mechanisms such as the collapse of a mixed region (Wu
1969), penetrative convection (Cerasoli 1978) and turbulent decay (Riley et al. 1981).

Another application is the oscillations through which a buoyant body, displaced from
its equilibrium position, goes back to it. These oscillations are considered in a companion
paper (Voisin 2024) for three configurations: a float displaced from its neutral level then
released; a Cartesian diver driven by variations of the hydrostatic pressure then released;
and a pendulum with a buoyant body at its end, to which an impulse is applied. Comparison
with experiment will be seen to require the inclusion of viscous dissipation.

In the temporal domain, the modifications brought to added mass by the stratification
may be viewed as a new memory force, expressed in § 6.2 as a convolution integral.
The kernel of this integral exhibits the same variations independent of the direction of
motion for the cylinder, namely an oscillation at the buoyancy frequency with an amplitude
decaying as t−3/2, superposed to a positive constant. Accordingly, the full previous history
of a two-dimensional body determines the force exerted on it at any subsequent instant.
For the spheroid, the same oscillations are present, superposed to an algebraic decay as
t−1 for vertical motion and an exponentially damped oscillation for horizontal motion. The
force always opposes the acceleration of the body for vertical motion, while for horizontal
motion, the acceleration is alternatively opposed and fostered.

Added mass has been investigated already for stratified fluids, in two contexts
complementary to the present study. First, the inertial effect of the stratification, neglected
on the Boussinesq approximation, was considered in isolation by Eames & Hunt (1997)
and Palierne (1999). Second, the creeping flow regime observed in sedimentation studies,
reviewed by Ardekani, Doostmohammadi & Desai (2017), Magnaudet & Mercier (2020)
and More & Ardekani (2023), was considered by Candelier, Mehaddi & Vauquelin (2014)
at low Reynolds and Péclet numbers, showing that stratification induces a new memory
force. No detailed comparison has been attempted with the present investigation. We

987 A27-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.326


B. Voisin

note, however, that the response to the abrupt vertical motion of a sphere in figure 4 of
Candelier et al. (2014), made of damped oscillations at the buoyancy frequency towards
an equilibrium value, is similar to the response in Voisin (2024) after the abrupt release of
a displaced spherical float.

An important limitation of the study is its neglect of the rotation of the body. Rotation
is irrelevant – in the absence of viscosity – for the circular cylinder and the sphere for
which this study was originally conceived (Voisin 2007, 2009), but it becomes essential
for the elliptic cylinder and the spheroid; see the studies of settling discs by Lam, Vincent
& Kanso (2019) and Mercier et al. (2020), and settling spheroids by More et al. (2021) and
Varanasi, Marath & Subramanian (2022). A choice was made here to focus on translation,
in order to develop the mathematical and physical tools for added mass in a stratified fluid.
Given the anisotropy of the fluid, an analytical approach of rotation may prove impossible
except for the simplest geometries, since all symmetries are lost when the principal axes
of the body deviate from the horizontal and the vertical. In two dimensions, the small
angular oscillations of an elliptic cylinder of horizontal axis and inclined cross-section
were considered by Hurley & Hood (2001), theoretically, and its detailed dynamics by
Hurlen (2006), theoretically, experimentally and numerically. In three dimensions, the
small angular oscillations of horizontal discs were considered by Martin & Llewellyn
Smith (2011, 2012).

Other limitations are the uniformity of the stratification and the unboundedness
of the fluid. The studies of two-layer and composite stratifications with or without
top and bottom, mentioned in § 1, show the continued relevance of added mass for
these configurations, closer to coastal areas. The similarity with surface gravity waves
(Wehausen 1971; Newman 1978, 2017, §§ 6.15–6.19) hints at the application of added mass
to both radiation and scattering, and to the response of a body to incoming waves. The
generation or scattering of an internal tide in an ocean of varying N(z) and finite depth, in
which the waves decompose into vertical modes, has been considered for two-dimensional
topography by Pétrélis, Llewellyn Smith & Young (2006), Balmforth & Peacock (2009),
Echeverri & Peacock (2010), Echeverri et al. (2011) and Mathur, Carter & Peacock (2014).
Boundary integrals were used, and the method turned into a software package (Mercier
et al. 2012). Given the connection of the present investigation with boundary integrals,
its adaptation to more realistic configurations does not seem far away. The flexibility of
the added mass concept, tied to its deeply physical nature, is illustrated by the way in
which added mass has been applied, in naval hydrodynamics, to floating bodies with elastic
behaviour and resonances, and to fluids with an inclined bottom or an ice cover, or with a
sea state, to name but a few adaptations.
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Appendix A. Green’s function

The impulsive Green’s function G(x, t) represents the response to a unit point impulse. It
satisfies (

∂2

∂t2
∇2 + N2∇2

h

)
G(x, t) = δ(x)δ(t), (A1)

with δ(x)δ(t) the Dirac delta function, together with the causality condition G|t<0 = 0. It
is continuous at t = 0 and its derivative discontinuous, with

G|t=0+ = 0,
∂G
∂t

∣∣∣∣
t=0+

= − 1
4πr

, (A2a,b)

where r = |x|. Several expressions of the Green’s function may be found in the literature,
namely the convolution product

G(x, t) = −H(t)
4πr

∫ t

0
J0

(
Nτ

|z|
r

)
J0[N(t − τ)] dτ, (A3)

derived by Dickinson (1969) and Fox (1976), where H(t) denotes the Heaviside step
function and Jn(t) a Bessel function; the spectral integral

G(x, t) = − H(t)
2π2r

∫ N

N|z|/r
sin(ωt)

(N2 − ω2)1/2(ω2 − N2z2/r2)1/2
dω, (A4)

derived by Sekerzh-Zen’kovich (1979, 1981b) and Teodorovich & Gorodtsov (1980); and
the series

G(x, t) = − H(t)
2πNr

∞∑
n=0

J2n+1(Nt)Pn

(r2
h − z2

r2

)
, (A5)

derived by Gorodtsov & Teodorovich (1981) and Gordeichik & Ter-Krikorov (1996), where
xh = (x, y, 0) and rh = |xh|, and Pn(x) denotes a Legendre polynomial. The associated
velocity uG = [(∂2/∂t2)∇ + N2∇h]G has the integral representation

uG(x, t) = x
2π2r3

∂

∂t

{
H(t)

[
π

2
cos

(
Nt

|z|
r

)

+
∫ N

N|z|/r
ω(N2 − ω2)1/2

(ω2 − N2z2/r2)3/2

[
cos

(
Nt

|z|
r

)
− cos(ωt)

]
dω

]}
, (A6)

derived by Zavol’skii & Zaitsev (1984).
Another singular solution has been used by Miropol’skii (1978) and Gabov & Shevtsov

(1983),

F(x, t) = −H(t)
4πr

∫ t

0
J0

(
Nτ

|z|
r

)
dτ, (A7)

based on an analogy with the known Green’s function of inertial waves (Sobolev 1954;
Maslennikova 1968). It was shown by Teodorovich & Gorodtsov (1980) to satisfy

(
∂2

∂t2
∇2 + N2∇2

h

)
F(x, t) = δ(x)

[
δ(t)+ NH(t)

∫ t

0
J1(Nτ)

dτ
τ

]
, (A8)
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instead of (A1). The two solutions are related to each other by

G(x, t) = ∂

∂t
[F(x, t) ∗ H(t)J0(Nt)], (A9)

and their spectra by
ωF(x, ω) = (ω2 − N2)1/2G(x, ω), (A10)

so that
G(x, t) = F(x, t)− F(x, t) ∗ NH(t)J1(Nt), (A11)

and conversely,

F(x, t) = G(x, t)+ G(x, t) ∗ NH(t)
∫ t

0
J1(Nτ)

dτ
τ
, (A12)

as remarked by Gabov & Shevtsov (1986).

Appendix B. Kirchhoff–Helmholtz integral

The initial-boundary value problem for inertial waves was solved by Sobolev (1954) in
terms of a Kirchhoff–Helmholtz integral, and the integral applied by him to initial values
and by Kapitonov (1980) to boundary values. For internal waves, a Kirchhoff–Helmholtz
integral was derived by Miropol’skii (1978) and Gabov & Shevtsov (1983), using F(x, t)
as a Green’s function, with Pletner (1991) adding non-Boussinesq effects and Sundukova
(1991) rotation. Sekerzh-Zen’kovich (1981a, 1982) solved the initial-value problem in
terms of the actual Green’s function G(x, t), and Simakov (1993) introduced the use of
an unspecified Green’s function tailored to the Dirichlet boundary condition.

We derive the Kirchhoff–Helmholtz integral for unsteady internal waves by following
the same lines as for the classical wave equation (Morse & Feshbach 1953, pp. 834–837).
For arbitrary functions f and g, we write

f
(
∂2

∂t2
∇2 + N2∇2

h

)
g − g

(
∂2

∂t2
∇2 + N2∇2

h

)
f

= ∂

∂t

(
∇2f

∂g
∂t

− g
∂

∂t
∇2f

)
− ∂

∂t
∇ ·

(
∇f
∂g
∂t

− g
∂

∂t
∇f

)

+ ∇ ·
[

f
(
∂2

∂t2 ∇ + N2∇h

)
g − g

(
∂2

∂t2 ∇ + N2∇h

)
f
]
, (B1)

which, integrated in time from t1 to t2 and in space over a volume V delimited by the
surface S of outward normal n, gives∫ t2

t1
dt

∫
V

d3x
[

f
(
∂2

∂t2
∇2 + N2∇2

h

)
g − g

(
∂2

∂t2
∇2 + N2∇2

h

)
f
]

=
∫

V
d3x

[
∇2f

∂g
∂t

− g
∂

∂t
∇2f

]t=t2

t=t1
−

∫
S

d2S
[
∂f
∂n
∂g
∂t

− g
∂

∂t
∂f
∂n

]t=t2

t=t1

+
∫ t2

t1
dt

∫
S

d2S
[

f
(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
g − g

(
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
f
]
. (B2)

This Green’s theorem is applied to wave generation by an initial disturbance at time
t = 0 followed by boundary forcing at a closed surface S at times t > 0. We choose a
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S

SR

V–

V+

x

R

x′

n′

Figure 12. Geometry for the derivation of the Kirchhoff–Helmholtz integral.

fixed observation time t > 0, and a fixed observation point x situated either inside S in the
domain V− or outside S in the domain V+. We integrate over t′ in the interval [0, t] and
over x′ in the domain bounded internally by S and externally by a sphere SR of centre at
x and large radius R, as shown in figure 12. We take, for f , the internal potential ψ(x′, t′)
and, for g, the propagator G(x − x′, t − t′), with G the Green’s function. The contribution
of SR is assumed to vanish in the limit R → ∞, an assumption we will come back to later.

We obtain

H+(x)ψ(x, t) =
∫

V+
d3x′

[
∇′2ψ0(x′)

∂G
∂t
(x − x′, t)+ ∇′2ψ1(x′)G(x − x′, t)

]

+
∫

S
d2S′

[
∂ψ0

∂n′ (x
′)
∂G
∂t
(x − x′, t)+ ∂ψ1

∂n′ (x
′)G(x − x′, t)

]

+
∫ t+0

0
dt′

∫
S

d2S′
[

G(x − x′, t − t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
ψ(x′, t′)

−ψ(x′, t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
G(x − x′, t − t′)

]
, (B3)

where H+(x) = 1 for x ∈ V+ and 0 for x ∈ V− is the Heaviside step function of support
V+. The first integral on the right-hand side includes the initial disturbance

ψ |t=0 = ψ0(x),
∂ψ

∂t

∣∣∣∣
t=0

= ψ1(x), (B4a,b)

and is Sekerzh-Zen’kovich’s (1981a, 1982) solution of the initial-value problem in the
whole space. The second integral adds another initial contribution when a boundary

987 A27-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.326


B. Voisin

is present. The third integral represents the effect of the subsequent boundary forcing.
It combines a single-layer potential of the general form

ψs(x, t) =
∫ t

0
dt′

∫
S

d2S′ σ(x′, t′)G(x − x′, t − t′), (B5)

and a double-layer potential of the form

ψd(x, t) =
∫ t+0

0
dt′

∫
S

d2S′ μ(x′, t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
G(x − x′, t − t′), (B6)

with σ and μ the respective surface densities. The notation t + 0 means that the temporal
integration ends immediately after t. If it were to end at t − 0, immediately before t, then
an additional term would arise,∫

S
d2S′ψ(x′, t)

∂

∂n′

(
1

4π|x − x′|
)
, (B7)

associated with the delta-function singularity of ∂2G/∂t′2(x − x′, t − t′) at t′ = t. This
term may be seen in Kapitonov (1980), Gabov & Shevtsov (1983) and Simakov (1993).

The omitted contribution of SR includes two parts. The first part,

−
∫

SR

d2S′
[
∂ψ0

∂R
(x′)

∂G
∂t
(x − x′, t)+ ∂ψ1

∂R
(x′)G(x − x′, t)

]
, (B8)

is associated with the initial disturbance. It vanishes as R → ∞ provided that

ψ0(x′) = o
(

1
R

)
, ψ1(x′) = o

(
1
R

)
, (B9a,b)

which are the conditions on which Sekerzh-Zen’kovich’s (1981a, 1982) solution has been
obtained. The second part,

∫ t+0

0
dt′

∫
SR

d2S′ x′ − x
R

· [ψ(x′, t′)uG(x′ − x, t − t′)− u(x′, t′)G(x′ − x, t − t′)],

(B10)

potentially includes waves both radiating away from the forcing and coming in from
infinity. A radiation condition is needed to eliminate the latter. For steady monochromatic
waves, considered in Voisin (2021), the radiation condition assumes different forms inside
and outside the wave beams; this is linked to the singularity of the monochromatic Green’s
function along the wave rays. Here for unsteady waves, the impulsive Green’s function
possesses no such singularity. As R → ∞, we have

G(x′ − x, t − t′) ∼ O
(

1
R

)
, uG(x′ − x, t − t′) ∼ O

(
1

R2

)
, (B11a,b)

and the radiation condition consists in requiring that the waves decay at the same rate,

ψ(x′, t′) ∼ O
(

1
R

)
, u(x′, t′) ∼ O

(
1

R2

)
. (B12a,b)

With the area element d2S′ varying as R2, (B10) varies as 1/R and vanishes as R → ∞.
Sobolev (1954) noted that his (154), essentially (B2) for inertial waves, could be applied to
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Added mass in stratified fluids

an unbounded domain V provided that f and g decayed at infinity as 1/R, their first-order
spatial derivatives as 1/R2 and the second-order derivatives as 1/R3.

Boundary forcing is singled out by considering motion started from rest at t = −∞. We
have

H+(x)ψ(x, t) =
∫ t+0

−∞
dt′

∫
S

d2S′
[

G(x − x′, t − t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
ψ(x′, t′)

−ψ(x′, t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
G(x − x′, t − t′)

]
, (B13)

which becomes, after integrating the double-layer term twice by parts over time and using
the reciprocity of the Green’s function,

H+(x)ψ(x, t) =
∫ t

−∞
dt′

∫
S

d2S′
[

G(x − x′, t − t′)
(
∂2

∂t′2
∂

∂n′ + N2 ∂

∂n′
h

)
ψ(x′, t′)

+
(

n′ ∂2

∂t′2
+ n′

hN2
)
ψ(x′, t′) · ∇G(x − x′, t − t′)

]
. (B14)

The singularity at t′ = t is now gone. At large distances |x|  |x′| from the forcing, a
multipole expansion follows from expanding the Green’s function in the form

G(x − x′, t − t′) ∼ G(x, t − t′)− x′ · ∇G(x, t − t′), (B15)

and writing (
∂2

∂t2
∂

∂n
+ N2 ∂

∂nh

)
ψ = un (x ∈ S), (B16)

with un = n · u the normal velocity on S. We obtain

ψ(x, t) ∼
∫ t

−∞
[S(t′)G(x, t − t′)− D(t′) · ∇G(x, t − t′)] dt′, (B17)

where

S(t) =
∫

S
un(x, t) d2S (B18)

is the monopole strength of the forcing and

D(t) =
∫

S

[
xun(x, t)−

(
n
∂2

∂t2
+ nhN2

)
ψ(x, t)

]
d2S (B19)

its dipole strength.

Appendix C. Some inverse Fourier transforms

The following integrals, related to inverse Fourier transforms, are used in the present Part 1
and the companion Part 2.

First come integrals around a cut along the negative imaginary axis, shown in
figure 13(a). The contour starts at infinity on the left side of the cut, encircles the branch
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Re ω

Im ω

0

(a)

Re ω

Im ω

–i

0

(b)

Re ω

Im ω

–i

0

(c)

Figure 13. Integration contours for the inverse transforms in Appendix C.

point at the origin in the clockwise sense then goes back to infinity on the right-hand side.
The integrals are

1
2π

∫ (0−)

−i∞
exp(−iωt)ωn lnω dω = − n!

intn+1 , (C1)

1
2π

∫ (0−)

−i∞
exp(−iωt)

ωμ
dω = tμ−1

Γ (μ)
exp

(
−iμ

π

2

)
, (C2)

1
2π

∫ (0−)

−i∞
exp(−iωt)

ω1/2 ± ω
1/2
0

dω = e−iπ/4

(πt)1/2
+ iω1/2

0 exp(−iω0t) erfc[(ω0t)1/2e−iπ/4], (C3)

where n is a non-negative integer, μ /=−n a real number, Γ (μ) the gamma function, ω0 a
complex number such that Im[(iω0)

1/2] > 0 and erfc t the complementary error function.
Then come integrals along portions of that contour, namely

1
2π

∫ (0−)

−i
exp(−iωt)ωn lnω dω = − n!

intn+1

[
1 − exp(−t)

n∑
k=0

tk

k!

]
, (C4)

taken along the path shown in figure 13(b), and

1
2π

∫ (−i−)

0

exp(−iωt)
(ω + i)μ

dω = −exp(−t)
Γ (μ)

γ ∗(1 − μ,−t) exp
(

iμ
π

2

)
, (C5)

taken along the path shown in figure 13(c), with γ ∗(μ, t) = t−μγ (μ, t)/Γ (μ) a
normalized form of the incomplete gamma function γ (μ, t).
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