THE STRUCTURE OF CERTAIN GROUP C*-ALGEBRAS Milan Pahor

Let G be a separable locally compact group which admits a non-trivial compact normal subgroup. It is shown that the group C^* -algebra $C^*(G)$ of G may be decomposed as a direct sum of ideals whose structure is determined up to *isomorphism. Applications are given to Type 1, $[FD]^-$ groups; in particular it is shown that the group C^* -algebra of such a group is a direct sum of homogeneous C^* -algebras.

1. INTRODUCTION

One form of the classical Peter-Weyl theorem states that if K is a separable compact group then $C^*(K) \cong \bigoplus_{\pi \in \widehat{K}} M_{\text{Dim}(\pi)}(C)$ (where $M_{\text{Dim}(\pi)}(C)$ is the matrix algebra whose dimension is that of π) and hence that $\text{Prim}(C^*(K))$ is discrete. Incorporating this result we show that if G is a separable locally compact group which admits a nontrivial compact normal subgroup then $\text{Prim}(C^*(G))$ may be expressed as a disjoint union of clopen subsets; implying that $C^*(G)$ may be decomposed as a direct sum of ideals. The structure of these ideals is then determined up to *-isomorphism. A corollary of these results is that the group C^* -algebra of a Type 1 $[FD]^-$ group is a direct sum of homogeneous C^* -algebras, this being a substantial improvement on [11, Theorem 4]. Our method of proof is to express $C^*(G)$ as a twisted crossed product and then implement Green's algebraic generalisation [4] of the Mackey analysis [8] of the representation theory of group extensions.

Notation will be as follows: Given a separable locally compact group G and a 2cocycle σ on G, $C^*(G)$ is the usual group C^* -algebra of G and $C^*(G, \sigma)$ the twisted group C^* -algebra determined by σ . Prim $(C^*(G))$ is the space of all primitive ideals of $C^*(G)$ with the Jacobson hull-kernel topology and \hat{G} the space of (unitary equivalence classes of) irreducible representations of G, endowed with the Fell topology (which is the inverse image of the Jacobson topology under the canonical map $\hat{G}(=(C^*(G))^{\wedge}) \rightarrow$ Prim $(C^*(G))$. Given a representation or an automorphism θ of a C^* -algebra A, $\tilde{\theta}$ will denote its natural extension to the multiplier algebra M(A) of A. All ideals are assumed to be closed and two-sided, all *-representations non-degenerate, and all groups and C^* -algebras separable.

Received 18 February 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

170

2. PRELIMINARIES

The reader is referred to [10] and [4] for a detailed account of the theory of covariant systems, crossed products and twisted crossed products. A covariant representation of a covariant system (A, G, α) is a pair (π, u) where π is a *-representation of A on a Hilbert space H, u is a unitary representation of G on H and the equation $\pi(\alpha_q(x)) = u(g)\pi(x)u(g)^*$ holds for all $x \in A$, $g \in G$. Given a covariant system (A, G, α) the crossed product $C^*(A, G, \alpha)$ is a C*-algebra constructed in such a way that its *-representations $\pi \times u$ are in bijection with the covariant representations (π, u) of (A, G, α) . We define actions of G on \widehat{A} and Prim(A) respectively by $(g.\pi)(a) =$ $\pi(\alpha_{g^{-1}}(a))$ and $g.\ker(\pi) = \ker(g.\pi)$.

A twisted covariant system (A, G, α, τ) consists of a covariant system (A, G, α) together with a strictly continuous homomorphism τ of a closed normal subgroup N_{τ} of G into the group of unitaries in the multiplier algebra M(A) of A such that

(i)
$$\tau(n)a\tau(n^{-1}) = \alpha_n(a)$$
 for all $n \in N_\tau$, $a \in A$; and

(ii)
$$\tau(gng^{-1}) = \widetilde{\alpha}_g(\tau(n))$$
 for all $n \in N_\tau$, $g \in G$.

Given a twisted covariant system (A, G, α, τ) let I_{τ} be the intersection of the kernels of all the *-representations $\pi \times u$ of $C^*(A, G, \alpha)$ having the property that $u(n) = \tilde{\pi}(\tau(n))$ for all $n \in N_{\tau}$ (that is, (π, u) preserves the twist τ). The C^{*}-algebra $C^*(A, G, \alpha)/I_{\tau}$ is denoted by $C^*(A, G, \alpha, \tau)$ and referred to as the twisted crossed product of the twisted covariant system (A, G, α, τ) . Note that $(\pi, u) \to \pi \times u$ is a bijection between the covariant representations of (A, G, α) which preserve τ and the *-representations of $C^*(A, G, \alpha, \tau)$. These construction are motivated by the following examples.

EXAMPLE 1: Let G be a separable locally compact group, N a closed normal subgroup of G, define an action of G on $L^{1}(N)$ by $(gf)(n) = f(g^{-1}ng)$ and lift it to an action α of G on $C^*(N)$. For each $n \in N$ let $\tau(n): L^1(N) \to L^1(N)$ be $(\tau(n)f)(\zeta) = f(n^{-1}\zeta)$ and extend $\tau(n)$ to a unitary multiplier (also denoted by $\tau(n)$) of $C^*(N)$. Then $(C^*(N), G, \alpha, \tau)$ forms a twisted covariant system and the twisted crossed product $C^*(C^*(N), G, \alpha, \tau)$ is *-isomorphic to $C^*(G)$ [4, Proposition 1]. It is through this identification that Green's analysis [4] of the structure of twisted crossed products will be applied to group C^* -algebras.

EXAMPLE 2: Let G be a separable locally compact group, σ a 2-cocycle on G and define G^{σ} to be the group whose elements are ordered pairs (t, g) with $t \in \mathbf{T}$, $g \in G$ and multiplication defined as $(t, g)(t'g') = (tt'\overline{\sigma}(g, g'), gg')$. Noting that G^{σ} is not necessarily a locally compact group under the product topology on $\mathbf{T} \times G$ we topologise G^{σ} as follows: Endow G^{σ} with the product of the Borel structures on T and G and note that the product of the respective left Haar measures is itself left invariant for G^{σ} . By [7, Theorem 7.1] G^{σ} admits a unique locally compact topology under which it is a locally compact topological group whose natural Borel structure coincides with that G^{σ} . Equip G^{σ} with this topology. Given a σ -representation L of G define an ordinary representation L^0 of G^{σ} by $L^0(t, g) = t L(g)$. Then $L \to L^0$ is injective and has for its range the set of all ordinary representations of G^{σ} which reduce on T to the trivial representation $(t, e) \to t$. Denote by $\mathbf{T} \times \{e\}$ the closed normal subgroup $\{(t, e) \mid t \in \mathbf{T}\}$ of G^{σ} and noting that Aut (C) is trivial and M(C) = C, define $\alpha: G^{\sigma} \to Aut(C)$ to be trivial and $\tau: \mathbf{T} \times \{e\} \to \mathbf{T}$ by $\tau(t, e) = t$. Then $(C, G^{\sigma}, \alpha, \tau)$ is a twisted covariant system and a covariant pair (id, u) preserves the twist if and only if u(t, e) = t for all $\tau \in \mathbf{T}$. Furthernore $C^*(C, G^{\sigma}, \alpha, \tau)$ is *isomorphic to $C^*(G, \sigma)$.

3. THE MAIN RESULTS

LEMMA 1. Let G be a separable locally compact group which admits a non-trivial compact normal subgroup K. Then $Prim(C^*(G))$ may be expressed as a disjoint union of clopen subsets.

PROOF: The reader is assumed to be familiar with the definitions presented in [4, p.221]. We treat $C^*(G)$ as a twisted crossed product $C^*(C^*(K), G, \alpha, \tau)$, (see Example 1 for the definitions of α and τ) and denote by Q the space of all G-quasi orbits in $Prim(C^*(K))$ endowed with the quotient topology arising from the canonical surjection T: $Prim(C^*(K)) \rightarrow Q$. Since $Prim(C^*(K))$ is discrete, [3, 18.4.3] G quasi-orbits are in fact G-orbits in this case. Denote by $I(C^*(K))$ the set of all ideals in $C^*(K)$ equipped with the topology having as an open subbase the family $\{S_I \mid I \in I(C^*(K))\}$ where $S_I = \{J \in I(C^*(K)) \mid I \not\subset J\}$. Then $\Phi: Q \to I(C^*(K))$ given by $\Phi(q) = \bigcap x$ is a homeomorphism onto its range [4, Lemma p.221] and since Q is discrete, $(C^*(K), G, \alpha, \tau)$ is quasi-regular [4, Corollary 19]. Thus the restriction map Res (see [4, Proposition 9] and its following discussion) takes $Prim(C^*(C^*(K), G, \alpha, \tau))$ into $\Phi(Q)$, and $\phi^{-1} \circ \text{Res}$ is a continuous map from $\text{Prim}(C^*(C^*(K), G, \alpha, \tau))$ into Q. Denote by $[\operatorname{Prim}(C^*(C^*(K), G, \alpha, \tau))]^q$ (or equivalently $[\operatorname{Prim}(C^*(G))]^q$) the subset of $Prim(C^*(C^*(K), G, \alpha, \tau))$ living on the orbit $q \in Q$. To complete the proof we need only note that $[Prim(C^*(G))]^q = (\phi^{-1} \circ \operatorname{Res})^{-1}(q)$ and that Q is discrete. Hence $\operatorname{Prim}(C^*(G)) = \bigcup_{q \in Q} [\operatorname{Prim}(C^*(G))]^q \text{ decomposes } \operatorname{Prim}(C^*(G)) \text{ as a disjoint union of }$ 0 clopen subsets.

THEOREM 2. Let G be a separable locally compact group which admits a com-

pact normal subgroup K. Then

$$C^*(G) \cong \bigoplus_{G, \pi \in \widehat{K}/G} C^*(G_\pi/K, \overline{w}_\pi) \otimes \mathbf{K}(H_\pi) \otimes \mathbf{K}(L^2(G/G_\pi))$$

where G_{π} is the stabiliser subgroup of G at $\pi \in \widehat{K}$, w_{π} is the associated Mackey obstruction 2-cocycle (see [8, Theorem 8.2] for a description of w_{π}) and $K(H_{\pi})$ is the C^{*}-algebra of compact operators on the Hilbert space of π .

PROOF: We begin by noting that since K is of Type 1, [3, 15.1.4] \widehat{K} may be identified with $\operatorname{Prim}(C^*(K))$ and \widehat{K}/G with Q (see the proof of Lemma 1 for a description of Q). For each G-orbit $q = G.\pi$ in \widehat{K} let $I_q = \{\bigcap \sigma \mid \sigma \in [\operatorname{Prim}(C^*(G))]^q\}$. Then $\operatorname{Prim}(C^*(G)/I_q) = [\operatorname{Prim}(C^*(G))]^q$ and it follows, from Lemma 1, that $C^*(G) \cong$ $\bigoplus (C^*(G)/I_q)$. Since $\operatorname{Prim}(C^*(K))$ is discrete, all the G-orbits in $\operatorname{Prim}(C^*(K))$ $g \in \widehat{K}/G$

are locally closed, hence K is regularly embedded in G. Furthermore for each $q \in Q$, $C^*(G)/I_q$ is the subquotient of $C^*(G)$ determined by the locally closed (in fact clopen) subset $[Prim(C^*(G))]^q$ of $Prim(C^*(G))$ living on the orbit q (see [5, Remark 2.14]. The result now follows from ([5, Theorem 3.1] and its preceding discussion) and Example 2.

We refer to the above decomposition as the decomposition of $C^*(G)$ based upon the compact subgroup K. If G is compact, the decomposition of $C^*(G)$ based upon G itself yields the version of the Peter-Weyl theorem discussed in the introduction. As a corollary of Theorem 2 we have the following well known result.

COROLLARY 3. Let G be a separable locally compact group, σ a 2-cocycle on G, G^{σ} the extension of T by G presented as Example 2. Then

$$C^*(G^{\sigma}) \cong \bigoplus_{n \in \mathbf{Z}} C^*(G, \sigma^n).$$

PROOF: We base a decomposition of $C^*(G^{\sigma})$ upon the compact, central subgroup $\mathbf{T} \times \{e\}$ of G^{σ} . Noting that $\operatorname{Prim}(C^*(\mathbf{T})) \cong \mathbf{Z}$, $G^{\sigma}/\mathbf{T} \cong G$, and the Mackay 2-cocycle on G^{σ}/\mathbf{T} determined by $n \in \mathbf{Z}$ is $(\overline{\sigma})^n$ we have by Theorem 2

$$C^*(G^{\sigma}) \cong \bigoplus_{n \in \mathbb{Z}} C^*(G, \sigma^n) \otimes \mathbb{C} \otimes \mathbb{K}(L^2(e))$$
$$\cong \bigoplus_{n \in \mathbb{Z}} C^*(G, \sigma^n).$$

We close the paper with an application of our main result to the special case of $[FD]^-$ groups, that is separable locally compact groups satisfying a short exact sequence $\{e\} \to K \to G \to G/K \to \{e\}$ where K is compact and G/K is abelian.

COROLLARY 4. Let G be a separable locally compact Type 1 $[FD]^-$ group. Then $C^*(G)$ is a direct sum of homogeneous C^* -algebras.

PROOF: Let K be a compact subgroup of G such that G/K is abelian. Basing a decomposition of $C^*(G)$ upon K we need only verify that $C^*(G_{\pi}/K, \overline{w}_{\pi}) \otimes K(H_{\pi}) \otimes K(L^2(G/G_{\pi}))$ is homogeneous for each orbit $G.\pi$ in \hat{K} (notation as in Theorem 2). Since $C^*(G_{\pi}/K, \overline{w}_{\pi}) \otimes K(H_{\pi}) \otimes K(L^2(G/G_{\pi}))$ is isomorphic to a subquotient of $C^*(G)$ and G is of Type 1, $C^*(G_{\pi}/K, \overline{w}_{\pi})$ is also of Type 1 implying that \overline{w}_{π} is a Type 1 2-cocycle on the abelian group G_{π}/K . It now follows from [1, Theorems 3.1 and 3.3] that all irreducible \overline{w}_{π} -representations of G_{π}/K are of the same dimension. This completes the proof.

The hierarchy diagram 1 of [9, p.698] illustrates the position that $[FD]^-$ groups occupy in the theory of non-compact, non-abelian groups.

COROLLARY 5. Suppose that G is a separable locally compact group which admits a compact neighbourhood of the identity invariant under all inner automorphisms (such a group is called in [IN] group) and that \hat{G} is Hausdorff. Then $G \in [FD]^- \cap$ Type 1 and hence $C^*(G)$ is a direct sum of homogeneous C^* -algebras.

PROOF: We denote by $[FC]^-$ the class of groups with pre-compact conjugacy classes. Then $[FD] \subseteq [FC]$ [9, Diagram 1] and if G is of Type 1 the reverse inclusion holds [6, Proposition 3.1]. The result now follows from [6, Theorem 5.2] and Corollary 4.

It has been conjectured that a separable locally compact group G has the property that \widehat{G} is Hausdorff if and only if $G \in [FD]^- \cap$ Type 1 [2, Section 5]. Should this prove to be correct the condition $G \in [IN]$ may be omitted from Corollary 5. Note finally that the class [IN] contains all Moore groups, [9, Diagram 1] hence Corollary 5 is a generalisation of [11, Proposition 4].

References

- L. Baggett and A. Kleppner, 'Multiplier representations of abelian groups', J. Funct. Anal. 14 (1973), 299-324.
- [2] L. Baggett and T. Sund, 'The Hausdorff dual problem for connected groups', J. Funct. Anal. 43 (1981), 60-68.
- [3] J. Dixmier, C^{*}-algebras (North-Holland, Amsterdam, 1977).
- P. Green, 'The local structure of twisted covariance algebras', Acta Math. 140 (1978), 191-250.
- [5] P. Green, 'The structure of imprimitivity algebras', J. Funct. Anal. 36 (1980), 88-104.
- [6] J.R. Liukkonen, 'Dual spaces of groups with pre-compact conjugacy classes', Trans. Amer. Math. Soc. 180 (1973), 85-108.

M. Pahor

- [7] G.W. Mackay, 'Borel structures in groups and their duals', Trans. Amer. Math. Soc. 85 (1957), 134-165.
- [8] G.W. Mackay, 'Unitary representations of group extensions I', Acta Math. 99 (1958), 265-311.
- [9] T.W. Palmer, 'Classes of nonabelian, noncompact locally compact groups', Rocky Mountain J. Math. 8 (1978), 683-741.
- [10] G. Pedersen, C^{*}-algebras and their automorphism groups (Academic Press, 1979).
- [11] I. Raeburn, 'On group C*-algebras of bounded representation dimension', Trans. Amer. Math. Soc. 272 (1982), 629-644.

Department of Mathematics The University of New South Wales Kensington NSW 2033 Australia