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Abstract. We consider perturbations of certain transitive maps of an interval into
itself and estimate how far from the transitivity the perturbed maps are. The distance
turns out not to be of greater order than the square of the size of the perturbation.

0. Introduction
Denote by C6S the class of all maps g: [0,1] -»[0,1] satisfying the following conditions:

g is of class C3 (0.1)

g(0) = g(l) = 0 (0.2)

g(l-x) = g(x) for every xe [0,1] (0.3)

g"{x) <0 for every x e [0,1] (0.4)

Sg(x) < 0 for every x e [0,1]\{§}, (0.5)

where
Sg = g'"/g'-32(g"/g')2

is the Schwarzian derivative of g. In fact, we do not need to use the third derivative
of g, so we may replace (0.1) and (0.5) by

g is of class C2 (0.1')

|gT1 / 2 is convex on [0, \) and (|, 1] (0.5')

respectively (see [5], [2]). Notice that the condition (0.3) may be viewed as the
symmetry of g with respect to x = \.

Consider a map / € %s, satisfying additionally

/(l) = l. (0.6)
Such a map is topologically transitive (i.e. has a dense orbit) and has an invariant
probabilistic measure, absolutely continuous with respect to the Lebesgue measure
([3]. [5], [2]). Now we perturb / slightly (but remain in <$„) and we get a map g € <£s.
It may happen that g has quite different properties from /.

Then we may apply to g a small random perturbation (of size S > 0). Instead of
moving from x to g{x), we move from x to g(x) + t, where t is chosen randomly
from the interval [-8, S]. Here 'randomly' means randomly with respect to the
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Lebesgue measure, restricted to [—8,8] and normalized (this is the simplest kind
of a small random perturbation).

We want to answer the following question: how large should 8 be (in comparison
with the distance between / and g) in order to restore the lost properties of /?

We cannot hope to make g transitive on the whole [0,1], unless

5>max(g2(|) , l-g(|)).

This is due to the fact that the interval

jg=[g2(b,g(bi

is g-invariant. But it is natural to restrict our attention to Jg.
Let us recall the notion of a pseudo-orbit. A g, 8-pseudo-orbit from x to y is a

sequence of points (x0, xu x2,..., xm) such that

xo = x, xm = y and |x,+i-g(x,)|<5

for i = 0, 1 , . . . , m -1. We shall say that the map g is 8-transitive if for every x,
y G Jg there exists a g, 5-pseudo-orbit from x to y. The 5-transitivity may be
understood as the transitivity of a random perturbation of size 8. It is known that
if g is 5-transitive then there exists a probabilistic measure, absolutely continuous
with respect to the Lebesgue measure, invariant for the process induced by our
random perturbation, and with the support [g2(§)-5, g(|) + 5]-

Hence, we can modify our question to: how large should 8 be (in comparison
with the distance between / and g) in order to make g 5-transitive?

We shall assume that the distance between / and g is small in C2-topology, but
then we shall measure only the distance between /(§) (i.e. 1) and g(§). We obtain
the following result:

THEOREM A. For a given f&%s with f(k) = 1, there exists a constantc >0 such that
ifgis sufficiently close to fin C2-topology, then g is c (1 - g(|))2-transitive.

Since we also want to be able to obtain some numerical estimates for a given g,
we shall prove the following theorem:

THEOREM B. There exist positive constants c& and eg, depending continuously on g
in C2-topology, such that if l - g ( | ) < c 8 then giscg • (l-g(l))2-transitive.

Since for the map /,

l - / ( i ) = 0<c8(/),

theorem A follows immediately from theorem B.
The constants c8 and c9 can be calculated for a given g. We shall do it for maps

of a form x>-^>rx(l—x).

1. Constants
We have to define several constants. Perhaps it would be more convenient to the
reader to have them all denned in one section.

The quantity that appears in both theorems is

r? = i -g( i ) . d.i)
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As we shall see later, our assumptions will imply that g has two fixed points,
both of them repelling (lemma 1). One of them is 0; call the other one a'. Thus,

g(a') = a', aVO. (1.2)

Now we can define

a = \-a' (1.3)

ci = g'(a)(g'(a) - l)[g'(0)(g'(0)-1)]"1. (1.4)

Since both fixed points are repelling, we have

g '(0)- l>0 and g '(a)- l = |g '(a ') | - l>0,

and consequently, c\ > 0.
Since g" is strictly negative and bounded, there exist positive constants c2 and

c3 such that

2c2f<|g'(i+f)|s2c3f for all t e [-§, |] (1.5)

(to be sure that c2 and c3 depend continuously on g, we can take

c2 = Unf|g"|, c3 = |sup|g"|).
[O-1! [0,1]

We define further:

(1.6)

)c2X (1.7)

(1.8)

07 = 6 0 4 ^ (1.9)

c8 = min {hc^cW In2 (c3c5 +1), kc^d, a • (g'(O))'1,1) (1.10)
c9 = 36Cicl. (1.11)

In the following, when we say 'if T J < C 8 - > - ' , we mean: 'if T J < | ' (then a
exists) 'and TJ <a • (g'(O))"1' (then the constants c\,... are positive) 'and
r, <min (YSC^CICJ1 In2 (c3c5 +1), ^c jV 2 . )

One can see that although formally there are no constants depending continuously
on g for all g e $ „ this is enough to deduce theorem A from theorem B. However,
we can make a minor change and define instead of eg the constant c 8 :
If

or

or

min (uc32clcjl In2 (c3c5 + l), S W C ^ T ) <min (i a • (g'(O)r1),

thenc8 =TJ;
if

T ) < | and i?<a-(g'(O)r1
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and

17 <min (tec^clcs1 In2 (c3c5 +1),

then eg =c8.
Then c8 will be defined and continuous for all g e <£„ and 17 < c8 if and only if TJ < c8.

Notice, that if 17 < | and r\<a • (g'(O))"1, then

We obtain this because

c i<l , a<\, g'(0)<c3, C2SC3 and

(This holds since

f 1 f J +

>1-TJ>J j

We have:

54C3 c4 = 27a C1C2C3

= 27^2

and

= lfa-(g'(0)r1<a-(g'(0)r1.

2. froo/ 0/ theorem B
We have to analyse the structure of the map g. We shall proceed through a sequence
of lemmas.

We start with the proof of the fact already used in the previous section:

LEMMA 1. //17 < | then g has exactly 2 fixed points. If additionally 17 <a • (g'(O))"1

then they are both repelling and the topological entropy of g is at least \ log 2.

Proof. If 17 <2 then g(2)-2>0, and consequently there is exactly one fixed point,
a', on [2,1]. Since g"<0, for any x e (0,2) we have

g(x)>2x • g{b + d-2x) • g(0)>x,

and consequently, 0 is the only fixed point of g on [0, !]•
If additionally 17 <a • (g'(0))~\ we have:

and

g\\)<g(a) = a\

and therefore:
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Hence,

h{g)>\\og2

(cf. [1]).
We have

g'(o)>g(l)-dr1>i.
Since Sg>0, if |g '(a ')Nl then h(g) = O (see e.g. [2]) which is a contradiction.
Hence also |g'(a') |>l. •

It is known ([4], [2]) that a map g e <€, is semi-conjugate to a piecewise linear map
g:[0, l]-»[0,1] with constant slope and the same entropy. We shall denote this
semi-conjugacy by p. For x € [0,1], we set

P(x) = p-\{p(x)}).

The map p is non-decreasing, and hence P(x) is either a proper interval or consists
of one point. Set K = />(§).

We shall analyse closer the case when A" is a proper interval. It is known ([3],
[2]) that I is then periodic for g. We shall denote by n its prime period. It can be
easily seen that K is symmetric with respect to \. Hence, we have the following
situation:

K = \h-b,\+b\ (2.1)

gn(K)<=K. (2.2)

Since we have to be able to 'jump out' from the orbit of K by a g, S- pseudo-orbit,
our main goal will be to estimate b.

We begin by taking a point

*e=l+ee(la') (2.3)

and looking at its trajectory and the derivatives along it. We have g(xe)>a'. Then
the trajectory stays for some time (this time may be 0) at (0, a] and then for some
/ > 1 we have g'(xe) >a. We take the smallest / with this property.

LEMMA 2. We have

Proof. Instead of looking at g(xe), we look at

kSet yk = gk(y0), k = l,2 / - 1 . Clearly,

yk = gk+\xe),

and hence y0, y i , . . . , yj-2^a, whereas Vj-i>a. The derivative of g is decreasing
on [0, 2], and therefore

yy-1-y ;_2<(y1-y0) • (g'~

But

^ < g ' ( 0 ) and ^
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and hence

y,--2 (g(a)-l)y,--2 a
( ' ( 0 ) l ) ' ( 0 )yi-yo (g'(O)-Dyo (g'(0)-l)yo-g'(0) y0 (g'(O)-Dg'(O)'

Since

g'(y,-2)sg'(a),

we get

i

LEMMA 3. We have

Proof. From (1.5) we get

= f 2c2tdt
Jo

2c3tdt=c3e
2,

Jo

c 2 - e 2

but

f | ' ( £ l | . ) - g ( £ ) | = l - 7 ? - g ( * J . Df |g'(£+0l* =
Jo

LEMMA 4. We have

Proof. Since

we get from lemma 2 and (1.5),

By lemma 3 we have

and hence

' 2 - \ D

Take a point x e [0,1]. If the orbit of x comes closer to \ then x itself (or if x is
periodic), we may denote

>l: |g'(x)-i |<|x-| |}. (2.4)
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Analysing carefully the proof from [3], we get the following lemma:

LEMMA 5.Ifx£Kthen

\(gkM)'(x)\>l. •

By using lemma 4 once and then perhaps lemma 5 several times, we obtain

LEMMA 6. For all e e [0, b],

\(gn)'(xE)\>c4e{r,+c3e
2)-\ •

Define a function F by:

F(t) = 2 f - k s V4 In (v'lc3t
2 +1). (2.5)

LEMMA 7. We haveF(b)>0.

Proof. Since g" maps [§, 6] homeomorphically onto some sub-interval of K, we have

(b .b
> |(g")'(xj|<fc>

Jo Jo

= c4C31 e " (TJC3 + e
Jo

= |c31c4ln(T?"1c3fc2+l). •

We are going to obtain an estimation of b from lemma 6. However, we shall first
need a coarser estimate, derived in a different way.

LEMMA 8. We have b <c6.

Proof. Setd = l-g(xb). Then, by lemma 3,

Suppose that g'(0) • TJ <d. Then g{t\)<d, and an interval symmetric to g{K) with
respect to |, contains a fundamental domain of g near 0. Therefore, the union of
its images contains whole /g. This is impossible under our assumptions. Hence,
g'(O)T) >d, and consequently

2{g'(0)-\)V>d-n>c2b
2.

By (1.7) and (1.8), we get b <c6. •

LEMMA 9. Assume that F(c6) < 0. Then there exists exactly one t0 e (0, c6) such that
F(fo) = O.

Proof. We have

Since F(0) = 0, F'(0) = 2 > 0 and F(c6) < 0, such a f0 exists. Suppose that it is not
unique. Then the equation F'(0) = 0 has at least 3 roots on (0, c6). But this equation
is equivalent to a quadratic equation - a contradiction. •
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LEMMA 10. Assume that

Then F(c7) < 0.

Proof. We have

\n(t + \)>t-\t2 forallf>-l,

and hence

= c7(2-k4T?"1c7) = 0. •

LEMMA 11. Assume that:
(i) F(c6)<0,
(ii) V ' f

Proof. Suppose that b >c7. By lemma 8, we then have c7<6 <c6. But then:
(a) by (ii) and lemma 10, F(c7)<0;
(b) by lemma 7, F(b)>0;
(c) by(i), F(c6)<0;

and consequently the equation F(t) — 0 has at least two roots on the interval [c7, c6).
But, in view of (i), this contradicts lemma 9. •

We can find on the trajectory of K an interval shorter than K itself.

LEMMA 12. If T\ < C 8 then the length of g(K) is smaller than c9 • r\2.

Proof. Assume that TJ <C%. Since

1 In2(c3c5 + 1)

we have

Since c2, = C5TJ, we get
In2(c3c5 +

4c6<c4c3
1 In (C3clrj +1),

and hence

i.e. F(c6)<0.
Since

C C 4 ,

we have
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i.e.

Thus, the assumptions of lemma 11 are satisfied. Therefore, b <c7. By lemma
3 we obtain that the length of g{K) is not larger than

4 T) =CgTJ . •

Denote

L=\Jg~k(K), M = Jg\L.
fc=O

LEMMA 13. Ifx£L then P(x) = {x}.

Proof. Suppose that P{x) is a proper interval. Then either gk(p(x)) = \ for some k,
and then x e.L, or gk(P(x)) is disjoint from K for all k > 0. But in the second case
(remember that we still assume that K is a proper interval) it follows from [5] that
the length of g'(P(x)) grows exponentially with i- a contradiction. In the only
exception, when the periodic point of period n in K is semi-attracting and g'(P(x))
comes arbitrarily close to K, we can use lemma 5 to get a contradiction. •

LEMMA 14. Let y e l n / g and e >0. Then there exists z e / g such that gk{z) = y for
some k >0 and the length ofP(z) is smaller than e.

Proof. We consider three possible cases:
Case 1. p(y)*{l gib,..., gn~\b). Then the set

U r

is dense in J$ (and therefore infinite), and if gk(t) =p(y) then gfc|p-1({1» is a homeo-
morphism onto P(y). Hence, the conclusion of the lemma follows.

Case 2. p(y)e{g3(|),. . . , gn~\b, g"(|)}. Then gm~2\Pa-g
2a)) is a homeomorphism

onto P(gm(|)) (m = 3 ,4 , . . . , n). Since

and

we can then use case 1 for 1 — g (2).

Case 3. p(y)e{g(|), g2(|)}. Then g maps P(|) onto P(g(|))n/g and g2 maps P(b
onto P(g2(|))n/g. Since

we can then use case 2. •
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Now we go back to the general case and finish the proof of theorem B.
The first possibility is that K consists of only one point, \. But since (by

lemma 1)

a \ log 2,

this implies that p is a conjugacy and g|j4 is transitive. Consequently, g|Jg is also
transitive, and hence 8-transitive for all S >0 .

Thus, we remain again wih the case of \ periodic of period n for g. We shall
consider several possibilities for x and y.

(a) x, y eM. Since g|j4 is transitive, there are g-orbits from an arbitrarily small
neighbourhood of p(x) to an arbitrarily small neighbourhood of p(y). But, by
lemma 13,

P(x) = {x} and P(y) = {y}.

Hence, if p(z) tends to p(x) (or p(y)) then z has to tend to x (or y). Therefore,
there are g-orbits from an arbitrarily small neighbourhood of x to an arbitrarily
small neighbourhood of y.

(b) xeL. Then there is k such that gk(x)eK. By lemma 12, there is a
g, c9T)2-pseudo-orbit {x, g(x),..., gk(x), x) from x to some x eM.

(c) y G L n / g . By lemma 14, for any e > 0 we can find y eM and a g, e-pseudo-
orbit (y, z, g (z ) , . . . , gk(z)) from y to y.

By combining (a), (b) and (c), we can get a g, c9T/2-pseudo-orbit from x to y for
any x, y e/g. This ends the proof of theorem B. •

Remark. Since we need to use each of the operations described in (a), (b) and (c)
at most once, we see that the sum of 'jumps' (i.e. distances between g(x,) and JC,+I)

along our pseudo-orbit can be made smaller than c9r\2.

3. Example
Letg(x) = n:(l-jc), 0<r<4.
Then we can easily compute:

rj = l-Jr, (3.1)

a'=\-r\ (3.2)

a=r~\ (3.3)

c1 = (r-2)(r-3)r\r-l)-\ (3.4)

c2 = c3 = r, (3.5)

c4 = 2(r-2)(/--3)r-1(r-ir1, (3.6)

c5 = (r-l)r-\ (3.7)

C6 = [(r-l)r-1r,]% (3.8)

c7 = 3r(r-l)(r-2)-\r-3Tl
V, (3.9)

1 In2 (c3c5 +1) = i(r-2)2(r-3)V3(r-1)"3 In2 r, (3.10)

- 3 ) V 3 ( r - i r 2 , (3.11)

^ r 2 , (3.12)
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c8 = min (i(r - 2)2{r - 3)V3(r - I ) " 3 In2 r,
(3.13)

Ur ~ 2)2(r - 3) V 3 ( r -1)"2 , r~2, \),
c9 = 9r\r - l)2(r - 2)"2(r - 3)~2. (3.14)

Since 17 < |, we have 1 - \ r < \, and hence r > 2. Then, since 17 < a(g'(O))"1, we have
1 -\r <r~2 <\, and hence

r > 3 . (3.15)

From (3.13) and (3.15) it follows easily that

c8 = Mr ~ 2)2(r - 3)V3(r -1)"2. (3.16)

Now we have:

a < 0.002 4> 489a < 1 => 486a < 1 - 3a

a l - 3 a + 2 a 2 2 • 4 • (1-a) • ( l - 2 a )
4 < 4-27-18 2 - 4 - 4 - 2 7 - 2 - 9
2(4-4a)( l -2a) 2 (2 -a ) 2 ( l - a ) 2

27-4 3 -3 2 < 27(4-a) 3 (3-a) 2 '

Hence, if 4 - r < 0.002, then

" " A 4 27r3(r-l)2 ^

Setting a = 4TJ again, we get

9r3(r-l)2 9(4-a)3(3-a)2

(r-2)2(r-3)2 ( 2 - a ) 2 ( l - a ) 2

9 • 43 • 32

(4-4a) ( l -2a)
81-16 81-16

(1 — a)(l— 2a) 1 —3a

We have a = 4TJ, and hence

2 81-16 a2 81a2

If a < 0.002 then

Hence, we get the following result:

THEOREM C. / / 0<a <0.002 then the map x<->(4-a)x(l-;c) is 82a2-transitive.

Part of this work was done while the author was at the University of Geneva and
the author expresses his gratitude for their hospitality and support.
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