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The flow around a spinning sphere moving in a rarefied gas is considered in the following
situation: (i) the translational velocity of the sphere is small (i.e. the Mach number is
small); (ii) the Knudsen number, the ratio of the molecular mean free path to the sphere
radius, is of the order of unity (the case with small Knudsen numbers is also discussed);
and (iii) the ratio between the equatorial surface velocity and the translational velocity
of the sphere is of the order of unity. The behaviour of the gas, particularly the transverse
force acting on the sphere, is investigated through an asymptotic analysis of the Boltzmann
equation for small Mach numbers. It is shown that the transverse force is expressed as
F L = πρa3(Ω × v)h̄L, where ρ is the density of the surrounding gas, a is the radius
of the sphere, Ω is its angular velocity, v is its velocity and h̄L is a numerical factor
that depends on the Knudsen number. Then, h̄L is obtained numerically based on the
Bhatnagar–Gross–Krook model of the Boltzmann equation for a wide range of Knudsen
number. It is shown that h̄L varies with the Knudsen number monotonically from 1 (the
continuum limit) to −2

3 (the free molecular limit), vanishing at an intermediate Knudsen
number. The present analysis is intended to clarify the transition of the transverse force,
which is previously known to have different signs in the continuum and the free molecular
limits.

Key words: non-continuum effects, kinetic theory

1. Introduction

The flow around a very small spherical particle moving in a gas is fundamental in fluid
mechanics and plays a vital role in many applications such as aerosol transport and particle
manipulations in nano- and micro-technologies. When the particle size is comparable
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with the mean free path of the gas molecules, conventional fluid mechanics is no longer
applicable. Instead, kinetic theory provides a suitable framework for investigating the flow
around such a very small particle. This paper investigates forces acting on a sphere moving
in a rarefied gas based on kinetic theory.

Let us restrict our consideration to the case where the Mach number based on the particle
velocity relative to the surrounding gas is small. The sphere may be rotating around one of
its axes. Moreover, the sphere’s circumferential velocity is supposed to be of same order of
magnitude as the sphere’s translational speed. It, therefore, is small compared to the sound
speed (or the thermal speed of the gas molecules). The drag (e.g. Knudsen & Weber 1911;
Epstein 1924; Willis 1966; Cercignani, Pagani & Bassanini 1968; Sone & Aoki 1977a,b;
Law & Loyalka 1986; Aoki & Sone 1987; Beresnev, Chernyak & Fomyagin 1990; Loyalka
1992; Takata, Sone & Aoki 1993; Kalempa & Sharipov 2020) and torque (e.g. Loyalka
1992; Andreev & Popov 2010; Taguchi, Saito & Takata 2019) acting on the sphere in this
situation have been investigated extensively in the past. However, the understanding of the
transverse force (i.e. lift force), resulting from the interplay between the translational and
swirling motion of the gas around the sphere, is still unsatisfactory, as described below.

The transverse force acting on a rotating sphere translating in a highly rarefied gas was
investigated by, for example, Wang (1972), Ivanov & Yanshin (1980), Borg, Söderholm
& Essén (2003) and Liu & Bogy (2008). In those studies, assuming a free molecular (or
collisionless) gas, it was shown that the transverse force has the opposite sign as compared
with the corresponding force in the continuum flow (Rubinow & Keller 1961). Therefore,
as pointed out in Borg et al. (2003), there will be a critical value of the Knudsen number
at which the transverse force vanishes and above which the force reverses its direction.
Here, the Knudsen number is defined as the reciprocal of the ratio of the sphere size to
the molecular mean free path. Indeed, a gradual transition of the transverse force with the
Knudsen number is observed in a numerical study using the direct simulation Monte Carlo
(DSMC) method (Volkov 2011). However, the precise determination of the critical point
remains an open question. In this study, we take a step further and clarify the transition of
the transverse force between the two limits, namely the continuum and the free molecular
limits.

As the basic equation, we employ the Boltzmann equation and, for simplicity, we
assume the diffuse reflection boundary condition on the sphere. In the actual numerical
computations, we use the Bhatnagar–Gross–Krook (BGK) model (Bhatnagar, Gross &
Krook 1954; Welander 1954) of the Boltzmann equation to simplify the problem further
and make the numerical analysis tractable.

The paper is organized as follows. The problem is formulated and scaling assumptions
are introduced in § 2. In § 3, we carry out an asymptotic analysis of the Boltzmann system
for small Mach numbers and derive general expressions for the drag, lift and torque acting
on the sphere. Section 4 is devoted to the actual computation of the transverse force.
Section 5 presents concluding remarks.

2. Formulation

2.1. Problem and basic assumptions
Let us consider a rigid sphere with radius L moving through a monatomic ideal gas with
constant translational velocity v0. While translating, the sphere is also rotating around an
axis of revolution with a constant angular velocity, Ω0. Far from the sphere, the gas is in
the equilibrium state at rest with pressure p0 and temperature T0. Further, we assume that
the sphere’s surface temperature is uniform and is equal to the gas temperature at infinity.
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Figure 1. Problem.

For convenience, let us choose a frame of reference translating with the sphere. In this
frame, the sphere centre is at rest, and the flow velocity at infinity is −v0. We write this
velocity as v∞ (= −v0). We are now concerned with a steady flow of a rarefied gas past
a rotating sphere, as shown in figure 1. We investigate the behaviour of the gas under the
following assumptions.

(i) The behaviour of the gas is described by the Boltzmann equation (we use the BGK
model of the Boltzmann equation for the actual numerical computations).

(ii) The gas molecules undergo diffuse reflection on the sphere. More precisely, the
velocity distribution of the reflected molecules on the surface constitutes the
corresponding part of the Maxwellian distribution characterized by the temperature
and (local) surface velocity of the sphere and by the condition that there is no net
mass flux across the surface.

(iii) The translational speed of the sphere (or the flow speed at infinity in our frame) is
small compared with the thermal speed of the gas molecules, i.e. |v∞| � (2RT0)

1/2.
Here, R = kB/m is the specific gas constant with kB and m being the Boltzmann
constant and the mass of a molecule, respectively. In other words, the Mach number
of the flow, Ma = |v∞|/(5RT0/3)1/2, is small.

(iv) The rotational surface velocity of the sphere is of the same order of magnitude as
the translational velocity of the sphere, i.e. L|Ω0|/|v∞| = O(1).

For the subsequent analysis, we introduce the rectangular coordinate system Lxi (i =
1, 2, 3) with its origin at the centre of the sphere (the corresponding position vector is
denoted by Lx). Without loss of generality, we can assume that the x1 axis is parallel to the
angular velocity Ω0 and that the vector v∞ lies in the x1x2 plane (see figure 1). Then, Ω0
and v∞ are expressed as Ω0 = (Ω0, 0, 0) and v∞ = (v∞1, v∞2, 0) with v∞1, v∞2 and
Ω0 (= |Ω0|) being given constants.

2.2. Basic equations
Let us first introduce the following notation. The molecular velocity is denoted by ξi,
i = 1, 2, 3 (or by ξ ) and the velocity distribution function by f . Furthermore, we denote by
ρ the density, by vi (or v) the flow velocity, by T the temperature, by p the pressure, by pij
the stress tensor and by qi (or q) the heat-flux vector of the gas (i, j = 1, 2, 3). Then, we
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introduce the following dimensionless variables:

ζi = ξi/(2RT0)
1/2, φ(x, ζ ) = E−1[ f /ρ0(2RT0)

−3/2] − 1, (2.1a)

ω(x) = ρ/ρ0 − 1, ui(x) = vi/(2RT0)
1/2, τ (x) = T/T0 − 1, (2.1b)

P(x) = p/p0 − 1, Pij(x) = pij/p0 − δij, Qi(x) = qi/[p0(2RT0)
1/2], (2.1c)

where ρ0 = p0/(RT0), E = π−3/2 exp(−|ζ |2) and δij is the Kronecker delta.
We also use the spherical coordinate system (Lr, θ, ϕ) related to xi by x1 = r cos θ ,

x2 = r sin θ cosϕ and x3 = r sin θ sinϕ. Components of vectors and tensors in spherical
coordinates are represented by (r, θ, ϕ) in the subscript, e.g. (ζr, ζθ , ζϕ), Prθ , etc. Note
that Cartesian components of a vector ai are related to (ar, aθ , aϕ) as

a1 = ar cos θ − aθ sin θ, (2.2a)

a2 = ar sin θ cosϕ + aθ cos θ cosϕ − aϕ sinϕ, (2.2b)

a3 = ar sin θ sinϕ + aθ cos θ sinϕ + aϕ cosϕ. (2.2c)

Throughout the paper, we write ζ to denote |ζ | = (ζ 2
j )

1/2.
The time-independent Boltzmann equation for φ is written as

ζi
∂φ

∂xi
= 1

k
(L (φ)+ J (φ, φ)), (2.3)

where L and J represent, respectively, the linearized and nonlinear collision operators,
whose explicit forms are given in Appendix A (see also Sone 2007). Parameter k is defined
by

k =
√

π

2
Kn =

√
π

2
0

L
, (2.4)

where Kn = 0/L is the Knudsen number with 0 being the mean free path of the
gas molecules in the equilibrium state at rest with density ρ0 and temperature T0. For
a hard-sphere gas, 0 is given by 0 = 1/[

√
2πd2

m(ρ0/m)] with dm the diameter of a
molecule. On the other hand, for the BGK model introduced below, 0 is given by
0 = (2/

√
π)(2RT0)

1/2/Acρ0 with Ac being a constant (Acρ0 is the collision frequency
at the reference equilibrium state at rest). Further details concerning (2.3) are given in
Appendix A.

The operators L and J are spherically symmetric operators, that is, for
any functions F and G of ζ , it holds that L (F(lijζj))(ζ ) = L (F(ζ ))(lijζj)
and J (F(lijζj),G(lijζj))(ζ ) = J (F(ζ ),G(ζ ))(lijζj), where lij is any orthogonal
transformation, i.e. lijlkj = δik. This implies that L and J are axially symmetric, meaning
that they satisfy the same identities as above for any orthogonal transformation lij that
satisfies lijaj = ai, where ai is a fixed (unit) vector. Since L and J are spherically
symmetric, ai can be chosen arbitrarily. The property of axial symmetry of the operators
plays a crucial role in the present analysis.

The diffuse reflection boundary condition (e.g. Kogan 1969; Cercignani 1988; Sone
2007) on the sphere is written as

φ = 1 + σw

π3/2 exp(−ζ 2
r − ζ 2

θ − (ζϕ − Ω̂0 sin θ)2)E−1 − 1, ζr > 0 (r = |x| = 1),
(2.5)
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with

σw = −2
√

π

∫
ζr<0

ζrφE dζ , (2.6)

where dζ = dζ1 dζ2 dζ3 and Ω̂0 is the dimensionless angular velocity defined by

Ω̂0 = LΩ0

(2RT0)1/2
. (2.7)

The boundary condition at infinity is written as

φ → 1
π3/2 exp(−(ζ1 − v̂∞1)

2 − (ζ2 − v̂∞2)
2 − ζ 2

3 )E
−1 − 1, as r = |x| → ∞, (2.8)

with v̂∞1 and v̂∞2 given by

v̂∞i = v∞i

(2RT0)1/2
, i = 1, 2. (2.9)

The macroscopic variables are expressed in terms of φ as follows:

ω = 〈φ〉, (1 + ω)ui = 〈ζiφ〉, 3
2 (1 + ω)τ = 〈(ζ 2 − 3

2)φ〉 − (1 + ω)u2
j , (2.10a)

P = ω + τ + ωτ, Pij = 2〈ζiζjφ〉 − 2(1 + ω)uiuj, (2.10b)

Qi = 〈ζiζ
2φ〉 − 5

2 ui − ujPij − 3
2 Pui − (1 + ω)uiu2

j , (2.10c)

where the symbol 〈 〉 represents the following integral with respect to ζ :

〈g〉 =
∫

R3
g(ζ )E dζ . (2.11)

In the actual numerical computations, we employ the BGK model of the Boltzmann
equation. The BGK model is obtained by replacing L (φ) and J (φ, φ)with the following
counterparts (see Appendix A):

L BGK(φ) = ge(φ)− φ, (2.12)

J BGK(φ) = (1 + ω)(φe − φ)− L BGK(φ)

= (1 + ω)(φe − ge)+ ωL BGK(φ), (2.13)

where

ge = 〈φ〉 + 2ζi〈ζiφ〉 +
(
ζ 2 − 3

2

)
2
3

〈(
ζ 2 − 3

2

)
φ
〉
, (2.14)

φe = E−1 1 + ω

π3/2(1 + τ)3/2
exp
(

−(ζi − ui)
2

1 + τ

)
− 1, (2.15)

and ω, ui and τ are given by (2.10a). Note that the operators L BGK(φ) and J BGK(φ) are
spherically symmetric.
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2.3. Scaling assumptions
Now we introduce assumptions (iii) and (iv) in § 2.1 and restrict our consideration to slow
flows (i.e. low-Mach-number flows). We thus introduce the quantity

ε := |v̂∞| = (v̂2
∞1 + v̂2

∞2)
1/2, (2.16)

and assume that ε is small (ε � 1). Note that the Mach number, mentioned in
assumption (iii), is related to ε by Ma = (6/5)1/2ε. In the next section, we carry out a
perturbative analysis for small ε in the case k = O(1), Ω̂0 = O(ε) and |φ| = O(ε) (i.e. the
weakly nonlinear regime). We thus write v̂∞1, v̂∞2 and Ω̂0 as

v̂∞1 = Uε = ε cosα0, v̂∞2 = Vε = ε sinα0, Ω̂0 = Sε, (2.17a–c)

where α0 ∈ [ 0, 2π) is the azimuth angle of v∞ (see figure 1). Note that U2 + V2 = 1 by
definition and that (cf. assumption (iv))

S = Ω̂0

ε
= L|Ω0|

|v∞| = O(1). (2.18)

Then, the boundary conditions are rewritten as

φ = 1 + σw

π3/2 exp(−ζ 2
r − ζ 2

θ − (ζϕ − εS sin θ)2)E−1 − 1, ζr > 0 (|x| = 1), (2.19)

φ → φ∞ := 1
π3/2 exp(−(ζ1 − εU)2 − (ζ2 − εV)2 − ζ 2

3 )E
−1 − 1, as |x| → ∞,

(2.20)

where σw is given by (2.6).
In summary, the problem to be solved is (2.3), (2.19) with (2.6), and (2.20), where k, U,

V and S are independent of ε.
Finally, we make the following comment. According to the von Kármán relation (Sone

2007), the Reynolds number Re = ρ0|v∞|L/μ0, the Mach number Ma and the Knudsen
number Kn are not independent but are related to each other by the relation Re ∼ Ma/Kn.
Here, μ0 is the viscosity of the gas at the reference state. Thus, the present analysis
corresponds physically to a situation in which the Reynolds number is small, i.e.

Re ∼ ε

k
� 1. (2.21)

3. Asymptotic analysis

In this section, we carry out an asymptotic analysis of the boundary-value problem (2.3),
(2.19) with (2.6), and (2.20) for small ε, with the aim of obtaining expressions for the force
and the torque acting on the sphere. The analysis is a straightforward extension of that of
Taguchi (2015), in which the case of a non-rotating sphere (U = 1, V = 0 and S = 0)
is considered. However, the actual calculations are more involved because the flow is no
longer axisymmetric.

3.1. Inner solution
We first consider a solution to the problem whose length scale of variation is of the order
of unity (or of the order of L in dimensional space). We call this length scale the inner
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scale for the reason to be clarified below. Accordingly, the solution with this length scale
is called the inner solution and hereafter is designated by attaching the subscript F, i.e.
∂φF/∂xi = O(φF). We assume that the inner solution can be expanded in ε as

φF = εφF1 + ε2φF2 + o(ε2). (3.1)

It may be mentioned that the remainder may not be a simple power series of ε but contains
terms like ε3 ln ε, as in the Navier–Stokes theory (Proudman & Pearson 1957; Chester,
Breach & Proudman 1969). In the present study, we will not address this issue further and
concentrate on the force exerted on a particle to ε2 order.

Corresponding to the expansion (3.1), the macroscopic variables are also expanded in ε
as

hF = εhF1 + ε2hF2 + o(ε2) (h = ω, ui, τ,P,Pij,Qi). (3.2)

The relations between hFm and φFm (m = 1, 2, . . .) are obtained by substituting the
expansions of hF and φF into the definitions of the macroscopic variables (2.10) with
h = hF and φ = φF and by equating terms with the same power of ε. We thus obtain, for
the first two orders in ε,

ωF1 = 〈φF1〉, uiF1 = 〈ζiφF1〉, τF1 = 2
3 〈(ζ 2 − 3

2)φF1〉, (3.3a)

PF1 = ωF1 + τF1, PijF1 = 2〈ζiζjφF1〉, QiF1 = 〈ζiζ
2φF1〉 − 5

2 uiF1, (3.3b)

ωF2 = 〈φF2〉, uiF2 = 〈ζiφF2〉 − ωF1uiF1, (3.4a)

τF2 = 2
3 〈(ζ 2 − 3

2)φF2〉 − 2
3(ujF1)

2 − ωF1τF1, (3.4b)

PF2 = ωF2 + τF2 + ωF1τF1, PijF2 = 2〈ζiζjφF2〉 − 2uiF1ujF1, (3.4c)

QiF2 = 〈ζiζ
2φF2〉 − 5

2 uiF2 − ujF1PijF1 − 3
2 PF1uiF1. (3.4d)

Note that the nonlinearity enters the relations in the form of a product of lower-order terms
in (3.4).

If we substitute the expansion (3.1) into (2.3) and collect terms with the same power of
ε, we obtain a sequence of linearized Boltzmann equations for φFm (m = 1, 2), i.e.

ζi
∂φF1

∂xi
= 1

k
L (φF1), (3.5a)

ζi
∂φF2

∂xi
= 1

k
L (φF2)+ 1

k
J (φF1, φF1). (3.5b)

Equation (3.5a) is the linearized Boltzmann equation for φF1, while (3.5b) is the linearized
Boltzmann equation for φF2 with an inhomogeneous term. Similarly, if we insert the
expansion into the diffuse reflection condition on the sphere, i.e. (2.19) with (2.6), we
obtain a sequence of boundary conditions for φFm (m = 1, 2) on the sphere (see (3.7)
and (3.65)). Provided appropriate boundary conditions at infinity are given, they form a
sequence of boundary-value problems for φFm, which can be solved successively from the
lowest order.

3.2. Leading order
The equation and the boundary condition on the sphere for φF1 are given by

ζi
∂φF1

∂xi
= 1

k
L (φF1), (3.6)
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φF1 = K (φF1)+ 2Sζϕ sin θ, ζr > 0 (|x| = 1), (3.7)

where K (·) represents

K (g) = −2
√

π

∫
ζr<0

ζrg(ζ )E dζ . (3.8)

To derive the corresponding boundary condition at infinity, we expand φ∞ in (2.20) as
φ∞ = εφ∞1 + ε2φ∞2 + · · · and retain the leading-order term. This yields

φF1 → 2(ζ1U + ζ2V), as |x| → ∞. (3.9)

Equations (3.6)–(3.9) form a boundary-value problem of the linearized Boltzmann
equation for unknown φF1.

In view of the linearity of the problem, we seek the solution in the form

φF1 = Φ
(1)
U +Φ

(1)
S , (3.10)

where Φ(1)U and Φ(1)S solve the following problems:

ζi
∂Φ

(1)
J

∂xi
= 1

k
L (Φ

(1)
J ) (J = U, S), (3.11)

Φ
(1)
J = K (Φ

(1)
J )+ I(1)w,J, ζr > 0, |x| = 1, (3.12)

Φ
(1)
J → I(1)∞,J, as |x| → ∞, (3.13)

with

I(1)w,U = 0, I(1)w,S = 2ζϕS sin θ, (3.14a,b)

I(1)∞,U = 2Uζ1 + 2Vζ2, I(1)∞,S = 0. (3.15a,b)

The problem for Φ(1)S (hereafter referred to as problem S) describes the steady flow of a
rarefied gas around a rotating sphere without any flows at infinity (Loyalka 1992; Andreev
& Popov 2010; Taguchi et al. 2019). The problem forΦ(1)U (hereafter referred to as problem
U) is equivalent to the boundary-value problem describing a uniform flow of rarefied gas
past a sphere in the absence of sphere rotation, which has been extensively studied in the
literature (e.g. Cercignani et al. 1968; Sone & Aoki 1977a; Takata et al. 1993; Kalempa &
Sharipov 2020; see also Sone 2007).

Using the property of axial symmetry of the operator L given in Appendix B, we seek
Φ
(1)
U and Φ(1)S in the forms (i.e. similarity solutions)

Φ
(1)
U = (U cos θ + V sin θ cosϕ)ϕ(1)Ua (r, ζr, ζ )

+ [ζθ (U sin θ − V cos θ cosϕ)+ Vζϕ sinϕ]ϕ(1)Ub (r, ζr, ζ ), (3.16a)

Φ
(1)
S = Sζϕ sin θϕ(1)S (r, ζr, ζ ), (3.16b)

where the functions ϕ(1)Ua (r, ζr, ζ ), ϕ
(1)
Ub (r, ζr, ζ ) and ϕ

(1)
S (r, ζr, ζ ) solve the following

boundary-value problems in space in one dimension (in spherical coordinates):
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Inversion of the transverse force on a spinning sphere

Order Problem Function Functions appearing in Definition Note
the similarity solution

ε1 U Φ
(1)
U ϕ

(1)
Ua , ϕ(1)Ub (3.16a) Linear motion

ε1 S Φ
(1)
S ϕ

(1)
S (3.16b) Rotational motion

ε2 UU Φ
(2)
UU ϕ

(2)
UUa, ϕ(2)UUb, ϕ(2)UUc, ϕ(2)UUd (3.79) Linear motion

ε2 SS Φ
(2)
SS ϕ

(2)
SSa, ϕ(2)SSb, ϕ(2)SSc, ϕ(2)SSd (3.80) Rotational motion

ε2 US Φ
(2)�
US ϕ

(2)�
USa, ϕ(2)�USb, ϕ(2)�USc , ϕ(2)�USd (3.82) Cross effect

ε2 US Φ
(2)�
US ϕ

(2)�
USa, ϕ(2)�USb, ϕ(2)�USc, ϕ(2)�USd (3.83) Cross effect

Table 1. Functions appearing in the similarity solutions.

(a) Problem U

ζr
∂ϕ

(1)
Ua
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(1)
Ua
∂ζr

+ ζ 2 − ζ 2
r

r
ϕ
(1)
Ub = 1

k
L0(ϕ

(1)
Ua ), (3.17a)

ζr
∂ϕ

(1)
Ub
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(1)
Ub
∂ζr

− ζr

r
ϕ
(1)
Ub − ϕ

(1)
Ua
r

= 1
k
L1(ϕ

(1)
Ub ), (3.17b)

ϕ
(1)
Ua = K (ϕ

(1)
Ua ), ϕ

(1)
Ub = 0, ζr > 0, at r = 1, (3.17c)

ϕ
(1)
Ua → 2ζr, ϕ

(1)
Ub → −2, as r → ∞. (3.17d)

(b) Problem S

ζr
∂ϕ

(1)
S
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(1)
S
∂ζr

− ζr

r
ϕ
(1)
S = 1

k
L1(ϕ

(1)
S ), (3.18a)

ϕ
(1)
S = 2, ζr > 0, at r = 1, (3.18b)

ϕ
(1)
S → 0, as r → ∞. (3.18c)

Here, the operators L0 and L1 are defined in Appendix B. Note that L0(ϕ
(1)
Ua ), L1(ϕ

(1)
Ub )

and L1(ϕ
(1)
S ) appearing on the right-hand sides of (3.17a), (3.17b) and (3.18a) are

functions of r, ζr and ζ . For clarity, table 1 summarizes the notation for the similarity
solutions.

Suppose that ϕ(1)Ua and ϕ
(1)
Ub (or Φ(1)U ) and ϕ

(1)
S (or Φ(1)S ) are known. Then, the

leading-order macroscopic quantities ωF1, uiF1, etc., are obtained by substituting (3.10)
with (3.16) into (3.3). To this end, we first introduce the following notation:

ω̃[g] = 〈g〉, ũi[g] = 〈ζig〉, τ̃ [g] = 2
3 〈(ζ 2 − 3

2 )g〉, (3.19a)

P̃[g] = 2
3 〈ζ 2g〉 = ω̃[g] + τ̃ [g], P̃ij[g] = 2〈ζiζjg〉, Q̃i[g] = 〈ζi(ζ

2 − 5
2 )g〉, (3.19b)

where g = g(ζi). Note that, for every position x in the gas,Φ(1)U andΦ(1)S (and thus φF1) are
of the form g = a0g0(ζr, ζ )+ biζj(δij − x̂ix̂j)g1(ζr, ζ ), where x̂i = xi/r = xi/|x| (x̂2

i = 1)
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S. Taguchi and T. Tsuji

and a0 and bi are independent of ζi. For such a function, the components of ũg
i = ũi[g],

P̃g
ij = P̃ij[g] and Q̃g

i = Q̃i[g] in spherical coordinates are calculated as

ũg
r = a0〈ζrg0〉, ũg

i ti = biti
2

〈(ζ 2 − ζ 2
r )g1〉, P̃g

rr = 2a0〈ζ 2
r g0〉,

P̃g
ijtitj = a0〈(ζ 2 − ζ 2

r )g0〉, P̃g
rjtj = bjtj〈ζr(ζ

2 − ζ 2
r )g1〉,

Q̃g
r = a0

〈
ζr

(
ζ 2 − 5

2

)
g0

〉
, Q̃g

i ti = biti
2

〈
(ζ 2 − ζ 2

r )

(
ζ 2 − 5

2

)
g1

〉
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.20)

where ti is an arbitrary unit vector perpendicular to x̂i. Therefore, if we further introduce
the notation

ũr[ϕ] = 〈ζrϕ〉, ũt[ϕ] = 1
2 〈(ζ 2 − ζ 2

r )ϕ〉, (3.21a)

P̃rr[ϕ] = 2〈ζ 2
r ϕ〉,

P̃tt[ϕ] = 〈(ζ 2 − ζ 2
r )ϕ〉(= 2ũt[ϕ]),

P̃rt[ϕ] = 〈ζr(ζ
2 − ζ 2

r )ϕ〉,

⎫⎪⎪⎬
⎪⎪⎭ (3.21b)

Q̃r[ϕ] = 〈ζr(ζ
2 − 5

2 )ϕ〉, Q̃t[ϕ] = 1
2 〈(ζ 2 − ζ 2

r )(ζ
2 − 5

2 )ϕ〉, (3.21c)

where ϕ = ϕ(ζr, ζ ), the leading-order macroscopic quantities (as functions of (r, θ, ϕ))
are expressed in the forms

ωF1 = (U cos θ + V sin θ cosϕ)ω̃(1)Ua(r), (3.22a)

urF1 = (U cos θ + V sin θ cosϕ)ũ(1)r,Ua(r), (3.22b)

uθF1 = (U sin θ − V cos θ cosϕ)ũ(1)t,Ub(r), (3.22c)

uϕF1 = (V sinϕ)ũ(1)t,Ub(r)+ (S sin θ)ũ(1)t,S(r), (3.22d)

τF1 = (U cos θ + V sin θ cosϕ)τ̃ (1)Ua (r), (3.22e)

PF1 = (U cos θ + V sin θ cosϕ)P̃(1)Ua(r), (3.22f )

PrrF1 = (U cos θ + V sin θ cosϕ)P̃(1)rr,Ua(r), (3.22g)

PrθF1 = (U sin θ − V cos θ cosϕ)P̃(1)rt,Ub(r), (3.22h)

PrϕF1 = (V sinϕ)P̃(1)rt,Ub(r)+ (S sin θ)P̃(1)rt,S(r), (3.22i)

PθθF1 = PϕϕF1 = (U cos θ + V sin θ cosϕ)P̃(1)tt,Ua(r), (3.22j)

PθϕF1 = 0, (3.22k)

QrF1 = (U cos θ + V sin θ cosϕ)Q̃(1)r,Ua(r), (3.22l)

QθF1 = (U sin θ − V cos θ cosϕ)Q̃(1)t,Ub(r), (3.22m)

QϕF1 = (V sinϕ)Q̃(1)t,Ub(r)+ (S sin θ)Q̃(1)t,S(r), (3.22n)
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Inversion of the transverse force on a spinning sphere

where

ω̃
(1)
Ua = ω̃[ϕ(1)Ua ], ũ(1)r,Ua = ũr[ϕ(1)Ua ], τ̃

(1)
Ua = τ̃ [ϕ(1)Ua ], P̃(1)Ua = P̃[ϕ(1)Ua ],

P̃(1)rr,Ua = P̃rr[ϕ
(1)
Ua ], P̃(1)tt,Ua = P̃tt[ϕ

(1)
Ua ], Q̃(1)r,Ua = Q̃r[ϕ

(1)
Ua ],

ũ(1)t,Ub = ũt[ϕ
(1)
Ub ], P̃(1)rt,Ub = P̃rt[ϕ

(1)
Ub ], Q̃(1)t,Ub = Q̃t[ϕ

(1)
Ub ],

ũ(1)t,S = ũt[ϕ
(1)
S ], P̃(1)rt,S = P̃rt[ϕ

(1)
S ], Q̃(1)t,S = Q̃t[ϕ

(1)
S ].

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.23)

Note that ω̃(1)Ua , ũ(1)r,Ua, etc., depend on r through ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S , as shown explicitly in
(3.22). We will not repeat similar comments in what follows.

Finally, let us consider the force and the torque acting on the sphere. Let p0L2Fi and
p0L3Mi denote, respectively, the force and moment of force (about the origin) acting on
the sphere. Then, Fi and Mi are given in terms of the stress tensor as

Fi = −
∫

|x|=1
PijFnj dS, Mi = −

∫
|x|=1

εijkxjPklFnl dS, (3.24a,b)

where dS is the surface element, ni is the unit normal vector on the sphere pointing to
the gas, εijk (i, j, k = 1, 2, 3) is the Eddington epsilon (the permutation symbol) and the
integration is carried out over the whole surface |x| = 1. We expand the (dimensionless)
force and torque in ε as

Fi = εF (1)
i + ε2F (2)

i + o(ε2), Mi = εM(1)
i + ε2M(2)

i + o(ε2), (3.25a,b)

where F (m)
i and M(m)

i , m = 1, 2, are given by

F (m)
i = −

∫
|x|=1

PijFmnj dS, M(m)
i = −

∫
|x|=1

εijkxjPklFmnl dS. (3.26a,b)

Substituting (3.22g)–(3.22i) into (3.26a,b) with m = 1, the force F (1)
i and the moment of

force M(1)
i are obtained as

F (1)
1 = UhD, F (1)

2 = VhD, F (1)
3 = 0, (3.27a)

M(1)
1 = ShM, M(1)

2 = 0, M(1)
3 = 0, (3.27b)

where

hD = −4
3π(P̃(1)rr,Ua − 2P̃(1)rt,Ub)|r=1, (3.28)

hM = −8
3πP̃(1)rt,S|r=1. (3.29)

Introducing the two unit vectors

(ei)i=1,2,3 = (U,V, 0), (êi)i=1,2,3 = (1, 0, 0), (3.30a,b)

the force and the torque acting on the sphere are summarized as

Fi = εhDei + O(ε2), Mi = εShMêi + O(ε2). (3.31a,b)

Thus, no transverse force acts on the sphere at leading order, i.e. F3 = O(ε2). It should
be noted that hD and hM depend on k through ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S . Therefore, we write
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Inner region

Outer region

η = εr

r � 1

r � 1/ε

r = O(1)

η � 1

η → ∞
φ H

φ F

r

r �
 1

Crossover region

Figure 2. Schematic of the solution structure. The gas region is divided into two, the inner region
1 < r � ε−1 and the outer region 1 � r < ∞, overlapping each other in the crossover region 1 � r � ε−1.

hD = hD(k) and hM = hM(k). In other words, the magnitudes of the force and torque vary
with k.

To summarize, the sphere is subject to a drag force but no transverse force acts on the
sphere at the order ε. The drag and torque are modulated by the Knudsen number through
the functions hD(k) and hM(k) given by (3.28) and (3.29), respectively.

3.3. Slowly varying solution
In the preceding section, we considered the leading-order problem under the condition
that the length scale of variation of the solution is of the order of unity. The solution does
not support a transverse force on the sphere. Thus, we are motivated to proceed to the
next-order problem in ε.

We note that the linearized Boltzmann equation considered in the preceding subsection
may not provide an approximate solution to the original (nonlinear) problem for small
ε uniformly in space. Indeed, using the asymptotic representation of φF1 = Φ

(1)
U +Φ

(1)
S

for r = |x| 
 1 (see Proposition 3.1 given below), it can be shown that the linearization
is valid in the region |x| � ε−1 for ΦU, although no such restriction is found for ΦS.
In the region beyond this range, the nonlinear term J (εΦU, εΦU), integrated over a
long distance, gives a non-negligible contribution to the behaviour of εΦU. (Note that
the term ζi∂(εΦU)/∂xi is comparable with the nonlinear term J (εΦU, εΦU) when the
length scale of variation of ΦU is of the order of ε−1.) In other words, we encounter a
situation analogous to Whitehead’s paradox in the Navier–Stokes theory (Van Dyke 1975;
Taguchi 2015).

Given this observation, we introduce another length scale to describe the solution in
the far region. More specifically, from now on, we assume a solution whose length scale
of variation is of the order of 1/ε in the far region. We call this solution the slowly
varying solution (or the outer solution) and designate it by attaching the subscript H, i.e.
∂φH/∂xi = O(εφH). The situation is schematically shown in figure 2.

To analyse the slowly varying solution, it is convenient to introduce a new spatial
variable (called the outer or slow variable) by

yi = εxi, (3.32)
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Inversion of the transverse force on a spinning sphere

and assume that φH = φH( yi, ζi). Then, the Boltzmann equation for φH is recast as

ζi
∂φH

∂yi
= 1

kε
L (φH)+ 1

kε
J (φH, φH). (3.33)

We seek a solution to (3.33) in the form of a power series in ε, i.e.

φH = εφH1 + ε2φH2 + · · · . (3.34)

Likewise, the macroscopic quantities hH (h = ω, ui, τ , etc.) are expanded in ε as

hH = εhH1 + ε2hH2 + · · · . (3.35)

The relations between hHm and φHm are the same as those between hFm and φFm except
that the subscript should be changed from F to H (see (3.3) and (3.4)).

The above expansion for φH is a Hilbert-type expansion starting from the order ε, which
is equivalent to the S expansion (Sone 1971, 2002, 2007). Since a detailed description of
the expansion is given in Sone (2002, 2007), we only give the results necessary for the
subsequent analysis, omitting the derivation.

3.3.1. Fluid-dynamic-type equations
First, we summarize fluid-dynamic-type equations describing the behaviour of the gas in
the far region. That is, the macroscopic quantities hHm, m = 1, 2, . . ., are described by
the following (incompressible) Navier–Stokes-type equations (hereafter, we call them the
Navier–Stokes equations).

Order ε:

∂PH1

∂yi
= 0, (3.36)

∂ujH1

∂yj
= 0, (3.37a)

ujH1
∂uiH1

∂yj
= −1

2
∂PH2

∂yi
+ γ1k

2
�uiH1, (3.37b)

ujH1
∂τH1

∂yj
= γ2k

2
�τH1, (3.37c)

ωH1 = PH1 − τH1. (3.37d)

Order ε2:

∂ujH2

∂yj
= −ujH1

∂ωH1

∂yj
, (3.38a)

ujH1
∂uiH2

∂yj
+ (ωH1ujH1 + ujH2)

∂uiH1

∂yj

= −1
2
∂

∂yi

(
PH3 − γ1γ2 − 4γ3

6
k2�τH1

)

+ γ1k
2
�uiH2 + γ4k

2
∂

∂yj

[
τH1

(
∂uiH1

∂yj
+ ∂ujH1

∂yi

)]
, (3.38b)
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HS BGK Note

γ1 1.270042427 1 Viscosity
γ2 1.922284066 1 Thermal conductivity
γ3 1.947906335 1 Thermal stress
γ4 0.635021 1
γ5 0.961142 1

Table 2. The numerical values of γi for a hard-sphere gas (Sone 2002, 2007). The values for the BGK model
are also shown.

ujH1
∂τH2

∂yj
+ (ωH1ujH1 + ujH2)

∂τH1

∂yj
− 2

5
ujH1

∂PH2

∂yj

= γ1k
5

(
∂uiH1

∂yj
+ ∂ujH1

∂yi

)2

+ k
2
�
(
γ2τH2 + γ5

2
(τH1)

2
)
, (3.38c)

ωH2 = PH2 − τH2 − ωH1τH1. (3.38d)

Here, � = ∂2/∂y2
j is the Laplacian operator and γi, i = 1, . . . , 5, are constants defined by

γ1 = 2
15 〈ζ 4B〉, γ2 = 4

15 〈ζ 4A〉, (3.39a)

γ3 = 2
15 〈ζ 4AB〉 = 2

3 〈ζ 4D1〉 + 2
15 〈ζ 6D2〉 = − 4

15 〈ζ 4F〉, (3.39b)

γ4 = −5
2γ1 + 2

15 〈ζ 6B〉 + 1
15 〈ζ 4BC〉, (3.39c)

γ5 = −6γ2 + 4
15 〈ζ 6A〉 + 4

15 〈ζ 2AG〉, (3.39d)

where A(ζ ), B(ζ ), C(ζ ), D1(ζ ), D2(ζ ), F(ζ ) and G(ζ ) are functions defined in
Appendix C. Physically, γi are dimensionless transport coefficients. For example, the
viscosity μ0 and the thermal conductivity λ0 at the reference equilibrium state at rest
are expressed as

μ0 =
√

π

2
γ1

p00

(2RT0)1/2
, λ0 = 5

4
√

πγ2
Rp00

(2RT0)1/2
. (3.40a,b)

The numerical value of γi depends on the molecular model. For the BGK model, γi = 1.
The values of γi for the hard-sphere model are summarized in table 2.

3.3.2. Velocity distribution functions and boundary conditions for the Navier–Stokes
system at infinity

Suppose that the macroscopic variables PHm, uiHm and τHm (m ≥ 1) satisfy the
fluid-dynamic-type equations (3.36)–(3.38). Then, φHm, m = 1, 2, are expressed using
PHn, uiHn and τHn (n = 1, 2) as

φH1 = φeH1, (3.41a)

φH2 = φeH2 − 1
2

kζiζjB(ζ )
(
∂uiH1

∂yj
+ ∂ujH1

∂yi

)
− kζiA(ζ )

∂τH1

∂yi
, (3.41b)
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Inversion of the transverse force on a spinning sphere

where

φeH1 = PH1 + 2ζiuiH1 +
(
ζ 2 − 5

2

)
τH1, (3.42a)

φeH2 = PH2 + 2ζiuiH2 +
(
ζ 2 − 5

2

)
τH2 + 2ζiuiH1PH1 +

(
ζ 2 − 5

2

)
τH1PH1

+ 2
3

(
ζ 2 − 3

2

)
(ujH1)

2 + 2
(
ζiζj − ζ 2

3
δij

)
uiH1ujH1 + 2ζi

(
ζ 2 − 7

2

)
uiH1τH1

+ 1
2

(
ζ 4 − 7ζ 2 + 35

4

)
(τH1)

2, (3.42b)

and the functions A(ζ ) and B(ζ ) are defined in Appendix C. It should be noted that φeH1
and φeH2 are the first two terms of the expansion φeH = εφeH1 + ε2φeH2 + · · · of the
Maxwellian

(1 + φeH)E = 1 + PH

π3/2(1 + τH)5/2
exp
(

−(ζi − uiH)
2

1 + τH

)
, (3.43)

obtained by inserting the expansions of PH , uiH and τH in ε (see (3.35)). Therefore, for
φH to satisfy the boundary condition at infinity, i.e. (2.20) with φ = φH , the macroscopic
variables contained in φH1 and φH2 should satisfy the following conditions:

PH1 → 0, uiH1 → ei = (U,V, 0), τH1 → 0, as η → ∞, (3.44)

PH2 → 0, uiH2 → 0, τH2 → 0, as η → ∞, (3.45)

where

η = εr = |y| (outer variable). (3.46)

These conditions serve as a part of the boundary conditions for the Navier–Stokes
equations. The remaining conditions are derived by matching the outer solution with the
inner solution, as shown next.

3.4. Outer problem
In the preceding subsection, we introduced a slowly varying solution characterized by the
longer length scale of variation. This solution is meaningful only if it can be matched with
the inner solution while meeting the boundary condition at infinity. This subsection shows
that it is indeed the case and we determine the first two terms of the ε expansion of φH .

3.4.1. Preliminary
We begin with the following results.

PROPOSITION 3.1. Let (ϕ(1)Ua , ϕ
(1)
Ub ) be a solution to the boundary-value problem (3.17)

for k < ∞ and let ϕ(1)S be a solution to the boundary-value problem (3.18) for k < ∞.
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Then, they have the following asymptotic representations as r → ∞:

ϕ
(1)
Ua = 2ζr

(
1 + c1

r
+ c2

r3

)
+
(
ζ 2 − 5

2

)
c3

r2

+ k
r2

[
γ1c1 + 2c3

r
ζrA(ζ )− 1

2

(
c1 + 3c2

r2

)
(ζ 2 − 3ζ 2

r )B(ζ )
]

− k2

r3

{
2c1ζrD1(ζ )+ 2

[
c1(2ζ 2 − 3ζ 2

r )+ 3c2

r2 (3ζ
2 − 5ζ 2

r )

]
ζrD2(ζ )

− 3c3

r
(ζ 2 − 3ζ 2

r )F(ζ )
}
, (3.47)

ϕ
(1)
Ub = −2 − c1

r
+ c2

r3 + k
r3

(
c3A(ζ )+ 3c2

r
ζrB(ζ )

)

− k2

r3

{
c1D1(ζ )+

[
c1

2
(ζ 2 − 3ζ 2

r )+ 9c2

2r2 (ζ
2 − 5ζ 2

r )

]
D2(ζ )

+6c3

r
ζrF(ζ )

}
, (3.48)

ϕ
(1)
S = c4

r2

[
2 + 3k

r
ζrB(ζ )− 3k2

r2 (ζ
2 − 5ζ 2

r )D2(ζ )

]
, (3.49)

where ci, i = 1, 2, 3, 4, are constants independent of r, ζr and ζ , and A(ζ ), B(ζ ), D1(ζ ),
D2(ζ ) and F(ζ ) are the solutions to the integral equations (C1) with the subsidiary
conditions (C2), given in Appendix C. The constant γ1 is defined in (3.39a).

It should be noted that ci depends on k. The next proposition relates c1 and c4 with hD
and hM .

PROPOSITION 3.2. Constants c1 and c4 are related to hD and hM, defined in (3.28) and
(3.29), by

c1 = − hD

4πγ1k
, c4 = − hM

8πγ1k
(0 < k < ∞). (3.50a,b)

The proofs of Propositions 3.1 and 3.2 are given in Appendix D. We also mention that
the constant c3 is related to the thermophoretic force acting on a single sphere (Taguchi &
Suzuki 2017).

3.4.2. Leading- and second-order outer solutions
Let us consider an arbitrary point x in the domain such that r = |x| 
 1 and r = |x| �
1/ε. From Proposition 3.1, the leading-order inner solution at this point is approximated
by

ϕ
(1)
Ua (r, ζr, ζ ) = 2ζr

(
1 + c1

r

)
+ O(r−2), ϕ

(1)
Ub (r, ζr, ζ ) = −2 − c1

r
+ O(r−3), (3.51a)

ϕ
(1)
S (r, ζr, ζ ) = O(r−2), (3.51b)
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Inversion of the transverse force on a spinning sphere

or equivalently by

φF1 = 2ζ1U + 2ζ2V

+ 2ζr(U cos θ + V sin θ cosϕ)
c1

r
− ζθ (U sin θ − V cos θ cosϕ)

c1

r

− ζϕV sinϕ
c1

r
+ O(r−2), (3.52)

using (3.10) and (3.16). Thus, the inner solution has a far-field asymptotic representation
of the form

φF = ε

(
2ζ1U + 2ζ2V + 1

r
(· · · )+ O(r−2)

)
+ · · · , r = |x| 
 1, (3.53)

where the part ‘(· · · )’ in the parentheses is independent of r and ε. Now we consider
the limit ε ↘ 0 (and r ↗ ∞) with εr (= η) fixed. Substituting r = η/ε into the above
expression and arranging the resulting terms in increasing order of ε, we obtain an ε
expansion of φF of the form

φ∗
F = ε(2ζ1U + 2ζ2V)

+ ε2[2ζr(U cos θ + V sin θ cosϕ)− ζθ (U sin θ − V cos θ cosϕ)− ζϕV sinϕ]
c1

η

+ · · · , as ε ↘ 0 with εr (= η) fixed. (3.54)

Here, we have attached ∗ to indicate that φF is expressed using the outer variable η (or yi).
Thus, a term-by-term comparison between (3.41) (with (3.42)) and (3.54) shows that φH
can be made to match φ∗

F by imposing the following conditions:

PH1 → 0, uiH1 → (U,V, 0), τH1 → 0, (3.55)

PH2 → 0, (3.56a)

urH2 → (U cos θ + V sin θ cosϕ)
c1

η
, (3.56b)

uθH2 → −(U sin θ − V cos θ cosϕ)
c1

2η
, (3.56c)

uϕH2 → −V sinϕ
c1

2η
, (3.56d)

τH2 → 0, (3.56e)

as η → 0+. Together with the conditions (3.44) and (3.45), these conditions serve as
appropriate boundary conditions for the Navier–Stokes equations (3.36)–(3.38).

The leading-order problem, (3.36), (3.37), (3.44) and (3.55), is trivially solved by

uiH1 = ei, PH1 = τH1 = ωH1 = 0, PH2 = 0. (3.57a–c)

(Note that PH2 is determined up to an additive constant but this constant can be made to
vanish by using the condition (3.56a).) Then, the next-order set of equations (3.38) reduce
to the following system of linear partial differential equations:

∂ujH2

∂yj
= 0, (3.58a)
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ej
∂uiH2

∂yj
= −1

2
∂PH3

∂yi
+ γ1k

2
�uiH2, (3.58b)

ej
∂τH2

∂yj
= γ2k

2
�τH2, (3.58c)

ωH2 = −τH2, (3.58d)

which, equipped with the boundary conditions (3.45) and (3.56b)–(3.56e), describes the
behaviour of uiH2, PH3, τH2 and ωH2 in the far region. We first note that τH2 = 0 is the
trivial solution of (3.58c) satisfying (3.56e) and the last condition of (3.45). Next, (3.58b)
with (3.58a) is the Oseen equation for incompressible flow, and the solution subject to the
boundary conditions (3.56b)–(3.56d) and (3.45) is easily obtained (e.g. Rubinow & Keller
1961).

Here, we summarize the second-order macroscopic quantities in the outer region. They
are given by

urH2 = c1γ1k
2

1
η2

[
−1 +

(
1 + η

γ1k
(1 + U cos θ + V sin θ cosϕ)

)

× exp
(

− η

γ1k
(1 − U cos θ − V sin θ cosϕ)

)]
, (3.59a)

uθH2 = − c1

2η
(U sin θ − V cos θ cosϕ) exp

(
− η

γ1k
(1 − U cos θ − V sin θ cosϕ)

)
,

(3.59b)

uϕH2 = − c1

2η
V sinϕ exp

(
− η

γ1k
(1 − U cos θ − V sin θ cosϕ)

)
, (3.59c)

ωH2 = τH2 = PH2 = 0, (3.59d)

PH3 = c1γ1k
η2 (U cos θ + V sin θ cosϕ). (3.59e)

Note that (urH2, uθH2, uϕH2) are proportional to the k-dependent constant c1.
Finally, we can readily obtain the explicit forms of φH1 and φH2 from (3.41a) and (3.41b)

by substituting (3.57a–c) and (3.59). In particular, the outer solution is a Maxwellian to
order ε2, i.e.

(1 + φH)E = 1
π3/2 exp(−(ζi − εuiH1 − ε2uiH2)

2)(1 + o(ε2)). (3.60)

3.5. Second-order inner problem
Now we return to the near region and consider the second-order approximation, i.e. φF2.
As before, we consider an arbitrary point x such that |x| 
 1 and |x| � 1/ε. Because
(urH2, uθH2, uϕH2) are expanded for small η � 1 as

urH2(η, θ, ϕ) = c1

η
(U cos θ + V sin θ cosϕ)

+ c1

4γ1k
(U cos θ + V sin θ cosϕ − 1)[3(U cos θ + V sin θ cosϕ)+ 1]

+ O(η), (3.61a)
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Inversion of the transverse force on a spinning sphere

uθH2(η, θ, ϕ) = − c1

2η
(U sin θ − V cos θ cosϕ)

− c1

2γ1k
(U sin θ − V cos θ cosϕ) (U cos θ + V sin θ cosϕ − 1)

+ O(η), (3.61b)

uϕH2(η, θ, ϕ) = − c1

2η
V sinϕ − c1

2γ1k
V sinϕ(U cos θ + V sin θ cosϕ − 1)

+ O(η), (3.61c)

the outer solution φH = εφH1 + ε2φH2 + · · · has the following expansion in terms of the
inner variable:

φ∗
H = ε

[
2(ζ1U + ζ2V)+ 2ζr(U cos θ + V sin θ cosϕ)

c1

r

− ζθ (U sin θ − V cos θ cosϕ)
c1

r
− ζϕV sinϕ

c1

r

]

+ ε2
[
ζr(U cos θ + V sin θ cosϕ − 1)(3(U cos θ + V sin θ cosϕ)+ 1)

c1

2γ1k

− ζθ (U sin θ − V cos θ cosϕ)(U cos θ + V sin θ cosϕ − 1)
c1

γ1k

− ζϕV sinϕ(U cos θ + V sin θ cosϕ − 1)
c1

γ1k
+ 2(ejζj)

2 − 1
]

+ · · · , as ε ↘ 0 with η/ε (=r) fixed. (3.62)

Here, ∗ has been attached to indicate that φH is expressed using the inner variable r (or
xi). We observe that the ε-order term coincides with the far-field expansion of εφF1 for
r 
 1 (see (3.52)). Hence, for the inner solution to match the outer solution to order ε2,
we should impose the following matching condition:

φF2 → ζr(U cos θ + V sin θ cosϕ − 1)[3(U cos θ + V sin θ cosϕ)+ 1]
c1

2γ1k

− ζθ (U sin θ − V cos θ cosϕ) (U cos θ + V sin θ cosϕ − 1)
c1

γ1k

− ζϕV sinϕ (U cos θ + V sin θ cosϕ − 1)
c1

γ1k
+ 2(ejζj)

2 − 1, as |x| → ∞.

(3.63)

In summary, the equation and boundary conditions for φF2 are given by

ζj
∂φF2

∂xj
= 1

k
L (φF2)+ 1

k
J (φF1, φF1), (3.64)

φF2 = K (φF2)+ (2ζ 2
ϕ − 1)S2 sin2 θ + 2K (φF1)ζϕS sin θ, ζr > 0, |x| = 1, (3.65)

φF2 → ζr(U cos θ + V sin θ cosϕ − 1)(3(U cos θ + V sin θ cosϕ)+ 1)
c1

2γ1k

− ζθ (U sin θ − V cos θ cosϕ) (U cos θ + V sin θ cosϕ − 1)
c1

γ1k
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− ζϕV sinϕ (U cos θ + V sin θ cosϕ − 1)
c1

γ1k

+ 2(ejζj)
2 − 1, as |x| → ∞. (3.66)

Note that φF2 depends on the leading-order solution φF1 through J (φF1, φF1), K (φF1)
and c1(= −hD/4πγ1k). In the remaining part, assuming the existence of a solution for the
above problem, we derive expressions for the force and torque acting on the sphere.

3.6. Similarity solutions for the second-order problem and the second-order force and
torque acting on the sphere

We begin by noting the following.

(i) The right-hand side of (3.66) is arranged in the form

(right-hand side) = − c1

2γ1k
(2ejζj)+ (other terms). (3.67)

Note that the first term is a constant multiple of Φ(1)U at infinity (see (3.13) with
J = U).

(ii) Since φF1 = Φ
(1)
U +Φ

(1)
S , the inhomogeneous term in (3.64) is decomposed as

J (φF1, φF1) = J (Φ
(1)
U , Φ

(1)
U )+ J (Φ

(1)
S , Φ

(1)
S )+ 2J (Φ

(1)
U , Φ

(1)
S ). (3.68)

Then, noting the linearity of the problem, we seek φF2 in the form

φF2 = − c1

2γ1k
Φ
(1)
U +Φ

(2)
UU +Φ

(2)
SS +Φ

(2)
US . (3.69)

Here, Φ(2)UU, Φ(2)SS and Φ(2)US solve the following problems:

ζi
∂Φ

(2)
J

∂xi
= 1

k
L (Φ

(2)
J )+ 1

k
I(2)J (J = UU, SS, US), (3.70)

Φ
(2)
J = K (Φ

(2)
J )+ I(2)w,J, ζr > 0, r = |x| = 1, (3.71)

Φ
(2)
J → I(2)∞,J as r = |x| → ∞, (3.72)

where

I(2)UU = J (Φ
(1)
U , Φ

(1)
U ), I(2)SS = J (Φ

(1)
S , Φ

(1)
S ), I(2)US = 2J (Φ

(1)
U , Φ

(1)
S ), (3.73a)

I(2)w,UU = 0, I(2)w,SS = (2ζ 2
ϕ − 1)S2 sin2 θ, I(2)w,US = 2K (Φ

(1)
U |r=1)ζϕS sin θ, (3.73b)

I(2)∞,UU = (U cos θ + V sin θ cosϕ)2
(

3
2

c1

γ1k
ζr + 3 ζ 2

r − ζ 2
)

+ (U cos θ + V sin θ cosϕ)[(U sin θ − V cos θ cosϕ)ζθ + V sinϕ ζϕ]

×
(

− c1

γ1k
− 4ζr

)
+ 2

{
[(U sin θ − V cos θ cosϕ)2 − V2 sin2 ϕ]

ζ 2
θ − ζ 2

ϕ

2

+ 2V sinϕ(U sin θ − V cos θ cosϕ)ζθζϕ

}
− c1

2γ1k
ζr + ζ 2 − ζ 2

r − 1, (3.73c)
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Inversion of the transverse force on a spinning sphere

I(2)∞,SS = I(2)∞,US = 0. (3.73d)

Note that K (Φ
(1)
S |r=1) = 0 has been used in the second condition of (3.73b).

Physically, the problem for Φ(2)UU (or for Φ(2)SS ) describes the second-order Mach number
effect in the uniform flow over a sphere (or in the swirling flow around a rotating sphere).
On the other hand, the problem for ϕ(2)US describes the cross effect between the flow past a
sphere and the flow induced by a sphere rotation. We call them problems UU, SS and US,
respectively. As we see below, only problem US is essential for the transverse force acting
on the sphere.

Using the similarity solutions for Φ(1)U and Φ(1)S shown in (3.16) and the formulas in
Appendix B, we can transform the inhomogeneous term I(2)J (J = UU, SS,US) into

I(2)UU = (U cos θ + V sin θ cosϕ)2

×
[
J0(ϕ

(1)
Ua , ϕ

(1)
Ua )− ζ 2 − ζ 2

r

2
J2(ϕ

(1)
Ub , ϕ

(1)
Ub )− J3(ϕ

(1)
Ub , ϕ

(1)
Ub )

]

+ 2(U cos θ + V sin θ cosϕ)[(U sin θ − V cos θ cosϕ)ζθ + V sinϕ ζϕ]J1(ϕ
(1)
Ua , ϕ

(1)
Ub )

+
{

[(U sin θ − V cos θ cosϕ)2 − V2 sin2 ϕ]
ζ 2
θ − ζ 2

ϕ

2

+ 2V sinϕ(U sin θ − V cos θ cosϕ)ζθζϕ

}
J2(ϕ

(1)
Ub , ϕ

(1)
Ub )

+ ζ 2 − ζ 2
r

2
J2(ϕ

(1)
Ub , ϕ

(1)
Ub )+ J3(ϕ

(1)
Ub , ϕ

(1)
Ub ), (3.74)

I(2)SS = S2 sin2 θ

[
ζ 2 − ζ 2

r

2
J2(ϕ

(1)
S , ϕ

(1)
S )+ J3(ϕ

(1)
S , ϕ

(1)
S )

]

− S2 sin2 θ
ζ 2
θ − ζ 2

ϕ

2
J2(ϕ

(1)
S , ϕ

(1)
S ), (3.75)

I(2)US = I(2)�US + I(2)�US , (3.76)

I(2)�US = 2S sin θ(U cos θ + V sin θ cosϕ)ζϕJ1(ϕ
(1)
Ua , ϕ

(1)
S )

+ 2S sin θ

[
−V sinϕ

ζ 2
θ − ζ 2

ϕ

2
+ (U sin θ − V cos θ cosϕ)ζθζϕ

]
J2(ϕ

(1)
Ub , ϕ

(1)
S )

+ 2SV sin θ sinϕ
[
ζ 2 − ζ 2

r

2
J2(ϕ

(1)
Ub , ϕ

(1)
S )+ J3(ϕ

(1)
Ub , ϕ

(1)
S )

]
, (3.77)

I(2)�US = 2S sin θ (U sin θ − V cos θ cosϕ) ζrJ4(ϕ
(1)
Ub , ϕ

(1)
S ). (3.78)

Here, the operators Ji, i = 0, 1, 2, 3, 4, are defined in Appendix B. Note also that Ji(·, ·)
appearing above are functions of r, ζr and ζ through ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S . Given these forms,
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we consider the following similarity solutions for Φ(2)UU, Φ(2)US and Φ(2)SS (see table 1):

Φ
(2)
UU = (U cos θ + V sin θ cosϕ)2 ϕ(2)UUa(r, ζr, ζ )

+ (U cos θ + V sin θ cosϕ)[(U sin θ − V cos θ cosϕ)ζθ + V sinϕ ζϕ]ϕ(2)UUb(r, ζr, ζ )

+
[
((U sin θ − V cos θ cosϕ)2 − V2 sin2 ϕ)

ζ 2
θ − ζ 2

ϕ

2

+ 2V sinϕ(U sin θ − V cos θ cosϕ)ζθ ζϕ

]
ϕ
(2)
UUc(r, ζr, ζ )+ ϕ

(2)
UUd(r, ζr, ζ ),

(3.79)

Φ
(2)
SS = S2 cos2 θϕ

(2)
SSa(r, ζr, ζ )+ S2 cos θ sin θ ζθϕ

(2)
SSb(r, ζr, ζ )

+ S2 ζ
2
θ − ζ 2

ϕ

2
sin2 θϕ

(2)
SSc(r, ζr, ζ )+ S2ϕ

(2)
SSd(r, ζr, ζ ), (3.80)

Φ
(2)
US = Φ

(2)�
US +Φ

(2)�
US , (3.81)

Φ
(2)�
US = S sin θ(U cos θ + V sin θ cosϕ)ζϕϕ

(2)�
USa(r, ζr, ζ )

+ S cos θ [(U sin θ − V cos θ cosϕ)ζϕ − V sinϕ ζθ ]ϕ(2)�USb(r, ζr, ζ )

+ S sin θ

[
−V sinϕ

ζ 2
θ − ζ 2

ϕ

2
+ (U sin θ − V cos θ cosϕ)ζθ ζϕ

]
ϕ
(2)�
USc(r, ζr, ζ )

+ SV sin θ sinϕ ϕ(2)�USd(r, ζr, ζ ), (3.82)

Φ
(2)�
US = S sin θ(U sin θ − V cos θ cosϕ)ϕ(2)�USa(r, ζr, ζ )

+ S[(U sin 2θ − V cos 2θ cosϕ)ζθ + V cos θ sinϕ ζϕ]ϕ(2)�USb(r, ζr, ζ )

+ S sin θ

[
(U sin θ − V cos θ cosϕ)

ζ 2
θ − ζ 2

ϕ

2
+ V sinϕ ζθζϕ

]
ϕ
(2)�
USc(r, ζr, ζ )

+ SUϕ(2)�USd(r, ζr, ζ ), (3.83)

where (ϕ(2)UUα, ϕ
(2)
SSα, ϕ

(2)�
USα, ϕ

(2)�
USα), α = a, b, c, d, which are functions of r, ζr and ζ , are

the solutions to the boundary-value problems shown in Appendix E. Note that they also
depend on the parameter k.

Because of the similarity solutions, we can obtain the explicit dependency of the
second-order macroscopic quantities on θ and ϕ. Below, we only give the results for PrrF2,
PrθF2 and PrϕF2 for conciseness. That is, substituting (3.69) with (3.79)–(3.83) into the
definition of PijF2 (see (3.4c)), we obtain

PrrF2(r, θ, ϕ) = − c1

2γ1k
(U cos θ + V sin θ cosϕ)P̃(1)rr,Ua

+ (U cos θ + V sin θ cosϕ)2(P̃rr[ϕ
(2)
UUa] − 2 ( ũ(1)r,Ua)

2)
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+ P̃rr[ϕ
(2)
UUd] + S2 cos2 θ P̃rr[ϕ(2)SSa] + S2P̃rr[ϕ

(2)
SSd]

+ SV sin θ sinϕP̃rr[ϕ(2)�USd] + S sin θ(U sin θ − V cos θ cosϕ)P̃rr[ϕ(2)�USa]

+ SUP̃rr[ϕ(2)�USd], (3.84a)

PrθF2(r, θ, ϕ) = − c1

2γ1k
(U sin θ − V cos θ cosϕ)P̃(1)rt,Ub

+ (U cos θ + V sin θ cosϕ)(U sin θ − V cos θ cosϕ)

× (P̃rt[ϕ
(2)
UUb] − 2 ũ(1)r,Ua ũ(1)t,Ub)

+ S2 cos θ sin θ P̃rt[ϕ
(2)
SSb] − SV cos θ sinϕP̃rt[ϕ

(2)�
USb]

+ S(U sin 2θ − V cos 2θ cosϕ)P̃rt[ϕ
(2)�
USb], (3.84b)

PrϕF2(r, θ, ϕ) = − c1

2γ1k
V sinϕP̃(1)rt,Ub + (U cos θ + V sin θ cosϕ)V sinϕ

× (P̃rt[ϕ
(2)
UUb] − 2ũ(1)r,Uaũ(1)t,Ub)

+ S sin θ (U sin θ + V sin θ cosϕ)(P̃rt[ϕ
(2)�
USa] − 2ũ(1)r,Uaũ(1)t,S)

+ S cos θ (U sin θ − V cos θ cosϕ)P̃rt[ϕ
(2)�
USb]

+ SV cos θ sinϕP̃rt[ϕ
(2)�
USb], (3.84c)

where P̃rr[ · ] and P̃rt[ · ] are defined in (3.21b) and the underlined quantities are functions
of r. Finally, substituting (3.84) into (3.26a,b) (with m = 2) and carrying out the surface
integral, we obtain the second-order force and torque as follows:

F (2)
1 = − c1

2γ1k
UhD, F (2)

2 = − c1

2γ1k
VhD, F (2)

3 = −SVhL, (3.85a)

M(2)
1 = M(2)

2 = M(2)
3 = 0, (3.85b)

where the dimensionless transverse force hL is defined by

hL = 4
3
π(P̃rt[ϕ

(2)�
USa] − P̃rt[ϕ

(2)�
USb] + P̃rr[ϕ

(2)�
USd])|r=1. (3.86)

Note that hL depends on k through ϕ(2)�USa, ϕ(2)�USb and ϕ(2)�USd, and hence we write hL = hL(k).
Also, it is interesting to note that the transverse force is determined by Φ(2)US describing the
cross effect between the uniform and rotational flows, in particular by the part Φ(2)�US .

3.7. Summary of the force and torque acting on the sphere
Here, we summarize the expressions of the force and torque acting on the sphere derived
from the asymptotic analysis. Let us consider a slightly general situation in which the
flow velocity at infinity and the angular velocity of the sphere are given by v∞ =
(v∞1, v∞2, v∞3) and Ω0 = (Ω0,1,Ω0,2,Ω0,3), respectively. We also define the small
parameter ε = |v∞|/(2RT0)

1/2 as before, and denote the dimensionless angular velocity
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by Si = LΩ0,i/|v∞|. Then, the force p0L2Fi and the torque p0L3Mi acting on the sphere
are written as

Fi = ε

(
1 + hD(k)

8π(γ1k)2
ε

)
eihD(k)+ ε2(εijlejSl) hL(k)+ o(ε2), (3.87)

Mi = εSihM(k)+ o(ε2), (3.88)

where ei = v∞i/|v∞| and hD, hL and hM are given by (3.28), (3.86) and (3.29),
respectively. In (3.87), we have used (3.50a) to eliminate c1. Note also that the functional
dependencies of hD, hL and hM on k are explicitly shown in the above formulas.

The formulas (3.87) and (3.88) give the force and torque acting on a rotating sphere
as functions of k once the functions hD(k), hM(k) and hL(k) are known. The numerical
values of hD(k) were obtained in Takata et al. (1993) (see also Sone 2007), in which
the steady flow of a rarefied gas past a sphere (problem U with U = 1 and V = 0) was
investigated based on the linearized Boltzmann equation for a hard-sphere gas under
the diffuse reflection boundary condition. Later, Taguchi & Suzuki (2017) obtained the
numerical values of hD(k) for the ellipsoidal statistical model (Holway 1966; Andries et al.
2000; Brull & Schneider 2008). Concerning hM , Taguchi et al. (2019) investigated the
steady flow around a rotating sphere (problem S) based on the ellipsoidal statistical model
(and the BGK model), in which the numerical values of hM(k) were obtained for both
the BGK and the ellipsoidal statistical model. We also mention that the time-dependent
behaviour of a gas caused by the impulsive rotation of a sphere has been recently studied
(Taguchi, Tsuji & Kotera 2021). For readers’ convenience, we summarize the values of
hD(k) and hM(k) obtained in those studies in tables 3 and 4, respectively, together with new
data obtained in the present study. On the other hand, the function hL(k), which describes
the effect of gas rarefaction on the transverse force, is unknown. Therefore, in the next
section, we compute hL(k) based on the BGK model.

In table 3, the values of hD for a hard-sphere gas and for the BGK model are shown
against k. The viscosity is not adjusted between these models (cf. (3.40a)). If we regard the
viscosity given by (3.40a) as the common basic quantity, we obtain the relation kBGK =
1.2700042427 × kHS. With this conversion, a better agreement of hD between the two
models can be obtained (Takata et al. 1993; see also figure 4a below). The drag problem
for a rarefied gas has also been investigated by Kalempa & Sharipov (2020) based on the
Shakhov kinetic model. We can derive the values of hD for the Shakhov model from their
results.

For subsequent discussions, let us summarize the asymptotic expressions of hD(k), hL(k)
and hM(k) for small k � 1 (for the general molecular model). They are given by

hD = 6πγ1k(1 + k0k + O(k2)), k � 1, (3.89a)

hL = 2π(1 + 3k0k + O(k2)), k � 1, (3.89b)

hM = −8πγ1k(1 + 3k0k + O(k2)), k � 1. (3.89c)

Here, k0 represents the slip coefficient (shear slip). The value of k0 under the diffuse
reflection boundary condition is known as (Sone 2002, 2007)

k0 =
{

−1.25395 (hard-sphere gas),
−1.01619 (BGK model).

(3.90)
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Inversion of the transverse force on a spinning sphere

k HS BGK k HS BGK

0.009 — 0.1681 1 9.5625 8.4168
0.01 — 0.1866 1.2 — 9.0040
0.02 — 0.3694 1.5 — 9.6637
0.03 — 0.5485 2 11.2772 10.4056
0.04 — 0.7240 3 — 11.2381
0.05 1.1091 0.8960 4 12.2333 11.6897
0.06 — 1.0645 5 — 11.9721
0.07 — 1.2297 6 12.5557 12.1645
0.08 — 1.3916 7 — 12.3040
0.09 — 1.5503 8 — 12.4096
0.1 2.1168 1.7056 9 — 12.4923
0.15 — 2.4378 10 12.8071 12.5588
0.2 3.8110 3.1008 12 — 12.6590
0.3 — 4.2446 15 — 12.7598
0.4 6.2292 5.1864 20 — 12.8611
0.5 — 5.9679 30 — 12.9626
0.6 7.7951 6.6228 40 — 13.0133
0.7 — 7.1781 50 — 13.0436
0.8 — 7.6522 ∞ 13.1653 13.1653
0.9 — 8.0611

Table 3. Values of hD for various k for a hard-sphere gas (HS) (Takata et al. 1993) and for the BGK model
(Taguchi & Suzuki 2017) under the diffuse refection boundary condition. Here k = ∞ shows the value of hD
in the free molecular limit (hD(∞) = 2

√
π(π + 8)/3). For the BGK model, the values of hD for k < 0.1 and

k > 10 have been newly obtained in this study.

k BGK k BGK k BGK

0.01 0.2437 0.3 3.3047 5 4.6405
0.02 0.4727 0.4 3.6197 6 4.6551
0.03 0.6873 0.5 3.8271 7 4.6655
0.04 0.8882 0.6 3.9723 8 4.6732
0.05 1.0760 0.7 4.0790 9 4.6792
0.06 1.2514 0.8 4.1602 10 4.6840
0.07 1.4152 0.9 4.2239 12 4.6912
0.08 1.5681 1 4.2752 15 4.6983
0.09 1.7108 1.5 4.4293 20 4.7054
0.1 1.8441 2 4.5058 50 4.7179
0.15 2.3903 3 4.5813 ∞ 4.7265
0.2 2.7862 4 4.6185

Table 4. Values of −hM for various k for the BGK model under the diffuse refection boundary condition
(Taguchi et al. 2019). Here k = ∞ shows the value of −hM in the free molecular limit (hM(∞) = −8

√
π/3).

The values of hM for k < 0.1 and k > 10 have been newly obtained in this study.

The next-order term in the formulas (3.89a) and (3.89c), namely the k2-order term in the
parentheses, can be found in Sone (2007) for hD and in Taguchi et al. (2019) for hM . Note
that the expression (3.89b) is new; we give more details on its derivation in § 4.3.

To conclude this section, we present the force and torque using the dimensional
quantities initially introduced at the beginning of § 2.1 for a moving sphere. Let F
and M denote the force and the moment of force (around the centre) acting on the
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sphere, respectively. Then, they are given by

F = −6πμ0Lv0(1 + 3
8 Re h̄D(k))h̄D(k)+ πρ0L3(Ω0 × v0)h̄L(k), (3.91)

M = −8πμ0L3Ω0h̄M(k)(1 + o(Re)), (3.92)

where

h̄D(k) = hD(k)
6πγ1k

, h̄L(k) = hL(k)
2π

, h̄M(k) = − hM(k)
8πγ1k

, (3.93a–c)

and Re is the Reynolds number (see the last paragraph of § 2). The drag F D and the lift F L
(transverse force) are therefore written as

F D = −6πμ0Lv0(1 + 3
8 Re h̄D(k))h̄D(k), (3.94)

F L = πρ0L3(Ω0 × v0)h̄L(k). (3.95)

We remark that although the asymptotic analysis has been carried out under the
assumption k = O(1), the formulas are applicable to arbitrary k as long as the Reynolds
number Re is small. In particular, using the asymptotic expressions (3.89) in (3.94),
(3.95), and (3.92) (with (3.93a–c)), we obtain for small k (= (

√
π/2)Kn) the following

expressions:

F D = −6πμ0Lv0(1 + κ0Kn + 3
8 Re + · · · ), Kn � 1, (3.96)

F L = πρ0L3(Ω0 × v0)(1 + 3κ0Kn + · · · ), Kn � 1, (3.97)

M = −8πμ0L3Ω0(1 + 3κ0Kn + · · · ), Kn � 1, (3.98)

where κ0 = (
√

π/2)k0 and Kn has been used instead of k (κ0 ≈ −1.11128 for the
hard-sphere model and κ0 ≈ −0.90057 for the BGK model; see (3.90)).

4. Computation of the transverse force acting on a sphere

In this section, we construct hL(k) numerically based on the BGK model. Unlike hD and
hM , hL is defined through a second-order problem (see (3.86)). Therefore, the difficulty
of computing hL is much more severe than that of computing hD or hM . Thus, we are
motivated to devise an alternative approach to obtain hL, reducing the complexity and
making the computation tractable. In this section, we obtain hL along this line. The key is
to use a symmetry relation associated with the linearized Boltzmann equation.

Below, we first give some general remarks on the asymptotic analysis based on the BGK
model and then derive an alternative formula for hL for the general Boltzmann collision
operator (including the BGK operator as a particular case). Finally, we compute hL with
the aid of this formula in the case of the BGK collision operator.

4.1. Remarks on the asymptotic analysis based on the BGK model
The asymptotic analysis described in § 3 can be carried out also for the BGK model in
a similar way, and essentially the same results are derived. To present the results for the
BGK model in a unified way, we expand the operator J BGK(φ) (see (2.13)) as

J BGK(φ) = ◦
J BGK(φ, φ)+ O(φ3), (4.1)

933 A37-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
48

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1048


Inversion of the transverse force on a spinning sphere

where

◦
J BGK(φ, φ) = 2

(
ζiζj − ζ 2

3
δij

)
ũi[φ]ũj[φ] + 2ζi

(
ζ 2 − 5

2

)
ũi[φ]τ̃ [φ]

+ 1
2

(
ζ 4 − 5ζ 2 + 15

4

)
τ̃ [φ]2 + ω̃[φ]L BGK(φ), (4.2)

and O(φ3) is the remainder. Here, ω̃[ · ], ũi[ · ] and τ̃ [ · ] are defined in (3.19a). Operator
◦

J BGK(φ, φ) is a nonlinear operator and quadratic in φ. We can therefore define the
symmetric bilinear form associated with

◦
J BGK(φ, φ) by

◦
J BGK(ψ, φ) = 1

2
(

◦
J BGK(ψ + φ,ψ + φ)− ◦

J BGK(ψ,ψ)− ◦
J BGK(φ, φ))

=
(
ζiζj − ζ 2

3
δij

)
(ũi[ψ]ũj[φ] + ũi[φ]ũj[ψ])

+ ζi

(
ζ 2 − 5

2

)
(ũi[ψ]τ̃ [φ] + ũi[φ]τ̃ [ψ])

+ 1
2

(
ζ 4 − 5ζ 2 + 15

4

)
τ̃ [ψ] τ̃ [φ]

+ 1
2
(ω̃[ψ] L BGK(φ)+ ω̃[φ] L BGK(ψ)). (4.3)

Note that L BGK(φ) = 2
◦

J BGK(1, φ) holds (cf. the sentence below (A8)). With these
preparations, the results in § 3 apply to the case of the BGK model by taking into account
the following correspondence:

L → L BGK, J → ◦
J BGK (except for (3.33)),

Li → L BGK
i (i = 0, 1, 2), Ji → ◦

J BGK
i (i = 0, 1, 2, 3, 4),

}
(4.4)

where L BGK
i and

◦
J BGK

i are the operators derived from L BGK and
◦

J BGK , whose
explicit forms are given in Appendix B (see (B9) and (B10)). Note that in (3.33), the
term J (φH, φH) should be replaced by J BGK(φH).

Since
◦

J BGK
4 (·, ·) = 0 holds identically (see (B10e)), the inhomogeneous terms for the

problem (E10)–(E12) are absent for the BGK model (see also (E16)). Consequently, the
term Φ

(2)�
US (or ϕ(2)�USα , α = a, b, c, d) in Φ(2)US happens to be identically zero for this model.

4.2. Cross-coupling formula
We now derive an alternative formula for hL for the general collision operator. We
can immediately obtain the corresponding result for the BGK model by adopting the
corresponding BGK collision operators as shown in (4.4). The following discussion is
based on the symmetry relation that relates two problems described by the linearized
Boltzmann equation (see, e.g. Sharipov 1994; Takata 2009a,b).

We consider the following auxiliary problem:
(Problem U′) Consider a sphere (radius L) at rest with uniform surface temperature

T0 immersed in a rarefied gas. Let Lxi denote Cartesian coordinates whose origin
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is at the sphere centre. We denote by ρ0, T0, p0(= ρ0RT0) and v′∞ the (constant)
density, temperature, pressure and flow velocity of the gas at infinity and let v′∞ =
(0, 0, (2RT0)

1/2u∞) (u∞ > 0). We investigate the steady behaviour of the gas under the
same assumptions as (i) and (ii) in § 2 and

(iii)’ the flow velocity at infinity v′∞ (or u∞) is so small that the equation and boundary
conditions can be linearized around the reference state at rest with density ρ0 and
temperature T0.

In other words, we consider the same sphere as in the original problem in § 2, but the
sphere is at rest, and the flow over it is perpendicular to the x1x2 plane.

Let ρ0(2RT0)
−3/2(1 + u∞Φ(1)U∗ (x, ζ ))E denote the velocity distribution function of the

gas molecules in problem U′. Then, using the same notation as before, Φ(1)U∗ satisfies the
following equation and boundary conditions:

ζi
∂Φ

(1)
U∗

∂xi
= 1

k
L (Φ

(1)
U∗ ), |x| > 1, (4.5a)

Φ
(1)
U∗ = K (Φ

(1)
U∗ ), ζr > 0, |x| = 1, (4.5b)

Φ
(1)
U∗ → 2ζ3 as |x| → ∞. (4.5c)

Note that by assumption (i), we implicitly assume that the molecular model is common for
problem U′ and the original one in § 2.

The problem U′ is essentially problem U that arose in § 3.2 (see (3.11)–(3.13) with J =
U), but there is a difference in the flow direction at infinity. We chose this flow direction to
be consistent with the direction of the transverse force in the original problem. Moreover,
the equivalence between problem U′ and problem U suggests that we can write Φ(1)U∗ in
terms of the similarity solutions. Indeed, straightforward computations show that Φ(1)U∗ is
given by

Φ
(1)
U∗ = (sin θ sinϕ)ϕ(1)Ua (r, ζr, ζ )− (ζθ cos θ sinϕ + ζϕ cosϕ)ϕ(1)Ub (r, ζr, ζ ), (4.6)

where ϕ(1)Ua and ϕ(1)Ub are the solution to (3.17). Therefore, if we know the solution to problem
U, we essentially know the solution to problem U′.

We now return to the boundary-value problem for Φ(2)US arising in the second-order
problem in the asymptotic analysis, that is, (3.70)–(3.72) with J = US. The equations
for Φ(1)U∗ and Φ(2)US are both linearized Boltzmann equations, and the application of the
symmetry relation described in Takata (2009a) (Proposition 2 there) leads to the following
identity, valid for the entire range of k (0 < k < ∞):

SVhL =
∫

|x|=1
〈ζrΦ

(1)
U∗ I(2)−

w,US〉 dS − 1
k

∫
|x|>1

〈Φ(1)U∗ I(2)−US 〉 dx, (4.7)

where I(2)w,US and I(2)US are given in (3.73b) and (3.73a), dx = dx1 dx2 dx3 and − indicates
the reflection operator acting on the variable ζi, that is, F−(ζi) = F(−ζi) for any function
F(ζi). The range of the first (second) integral is the whole surface of the sphere (the whole
gas region). Note that I(2)w,US and I(2)US are determined by Φ(1)U and Φ(1)S . Therefore, if we

know Φ
(1)
U and Φ(1)S (and thus Φ(1)U∗ ), the above identity gives a closed expression for hL,
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Inversion of the transverse force on a spinning sphere

which can be evaluated without knowledge ofΦ(2)US. Moreover, substituting (3.16) and (4.6)
and integrating the result with respect to θ and ϕ, we can further simplify (4.7) to

hL = 4
3
π

[
Iw − 1

k
(I1 + I2)

]
, (4.8)

where

Iw = K (ϕ
(1)
Ua |r=1)P̃

(1)
rt,Ub(r = 1), (4.9a)

I1 = 2
∫ ∞

1
r2
〈
ϕ
(1)
Ua

[
ζ 2 − ζ 2

r

2
J2(ϕ

(1)
Ub , ϕ

(1)
S )− + J3(ϕ

(1)
Ub , ϕ

(1)
S )−

]〉
dr, (4.9b)

I2 = 2
∫ ∞

1
r2
〈
ζ 2 − ζ 2

r

2
ϕ
(1)
UbJ1(ϕ

(1)
Ua , ϕ

(1)
S )−

〉
dr. (4.9c)

Here, Jl(·, ·)−(r, ζr, ζ ) = Jl(·, ·)(r,−ζr, ζ ), l = 1, 2, 3. In this formula, hL is expressed
in terms of (ϕ(1)Ua , ϕ

(1)
Ub ) and ϕ(1)S only, namely the solutions of the elementary problems U

and S. In this way, we can bypass the difficulty to solve the second-order problem as far as
hL is concerned.

The formula (4.8) (or (4.7)) underlines that the transverse force is a cross effect
between the translational and swirling motion. In this sense, we may refer to (4.8) as
a cross-coupling formula. Sharipov (2011) discussed a similar expression for a general
weakly perturbed Boltzmann system. In this connection, we stress that, although the
transverse force in the present problem is of second order in ε, it is a leading-order
effect since the first-order transverse force degenerates. We also remark that the asymptotic
properties of Φ(1)U∗ and Φ(2)US as |x| → ∞ play a crucial role in deriving the formula (4.7),
as discussed in Takata (2009a). To see this point more clearly, we give a direct derivation
of the formula in Appendix F.

4.3. The function hL(k) for k → ∞ and for k � 1
As an application of the formula (4.8), let us first consider two limiting cases, the case of
k → ∞ and the case of k � 1.

First, we explain the case of k → ∞ (i.e. the free molecular gas or collisionless gas). In
this case, the term k−1(I1 + I2) is negligibly small compared to Iw and therefore is ignored.
On the other hand, the term Iw can be easily calculated with the aid of the free molecular
solution for problem U (see Appendix G for a summary of the free molecular solution).
Since K (ϕ

(1)
Ua |r=1) = −√

π and P̃(1)rt,Ub(r = 1) = 1/
√

π (cf. (G3e)), we obtain

hL → −4
3π as k → ∞ (collisionless gas). (4.10)

Meanwhile, we can also compute hL directly from (3.86) using the second-order
macroscopic quantities for the free molecular flow. According to (G6e), (G7c) and
(G7e), we have P̃rr[ϕ

(2)�
USd](r = 1) = 0, P̃rt[ϕ

(2)�
USb](r = 1) = 0 and P̃rt[ϕ

(2)�
USa](r = 1) = −1.

Therefore, (3.86) gives hL = −(4/3)π, which coincides with (4.10).
Equation (4.10) implies that a sphere moving in a collisionless gas with translational

and angular velocities v0 and Ω0 is subject to the (dimensional) transverse force
−2

3πρ0L3(Ω0 × v0). The direction of the force is therefore opposite to the corresponding
force in the continuum flow (e.g. Rubinow & Keller 1961). This result, pointed out by
Wang (1972), Ivanov & Yanshin (1980) and Borg et al. (2003), is known as the inverse
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Magnus effect. It may be worth noting that Ivanov & Yanshin (1980) arrived at this
conclusion without the smallness assumptions for Ω0 and v0.

Next, we consider the case of k � 1. To explicitly evaluate the terms Iw, I1 and I2 in
(4.8), we need the explicit forms of the velocity distribution function for problems U and
S (i.e. ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S ) for small k. Such expressions can be obtained with the aid
of the asymptotic theory of the Boltzmann equation with small Knudsen numbers (Sone
2002, 2007). More precisely, we first apply the theory to the system (3.11)–(3.13) to obtain
asymptotic expressions for ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S for small k. Then, we substitute them into
(4.9) to compute Iw, I1 and I2 explicitly.

In this study, we intend to derive an expression for hL(k) for small k up to order k.
This means that we need to obtain I1 and I2 (or Iw) to order k2 (or k). The derivation is
straightforward but lengthy. Therefore, we omit it here and only give the final results. That
is, Iw, I1 and I2 are expressed for small k as

Iw = −9
4γ

2
1 k2 + O(k3), k � 1, (4.11a)

I1 = −11
8 k(1 + 3k0k + O(k2)), k � 1, (4.11b)

I2 = −1
8 k(1 + 3k0k + O(k2)), k � 1. (4.11c)

Substituting them into (4.8), we obtain (3.89b). Note that the leading-order term of
(3.89b) coincides with the result obtained by Rubinow & Keller (1961) based on the
incompressible Navier–Stokes equation (with no-slip boundary conditions). Since k0 is
negative (see (3.90)), the magnitude of the transverse force decreases with an increase of
k when k � 1.

4.4. hL(k) for intermediate values of k
In this subsection, we compute the function hL(k) numerically utilizing the formula (4.8).
We employ the BGK model of the Boltzmann equation to reduce the complexity in the
numerical integration. We thus replace the operators Ji (i = 1, 2, 3) in I1 and I2 with

◦
J BGK

i (see Appendix B for their explicit forms). Consequently, many integrals with
respect to the molecular velocity can be carried out, and we obtain for the BGK model
the following:

I1 = −
∫ ∞

1
r2ũ(1)t,Ubũ(1)t,S(P̃

(1)
rr,Ua − P̃(1)Ua) dr, (4.12a)

I2 = 2
∫ ∞

1
r2ũ(1)t,S(−ũ(1)r,UaP̃(1)rt,Ub + τ̃

(1)
Ua Q̃(1)t,Ub) dr

+ 2
∫ ∞

1
r2ω̃

(1)
Ua

[
ũ(1)t,Ubũ(1)t,S

−π

∫ ∞

0

∫ π

0
ζ 4 sin3 θζ ϕ

(1)
Ub (r, θζ , ζ )ϕ

(1)
S (r,π − θζ , ζ )E dθζ dζ

]
dr. (4.12b)

Here, ũ(1)t,Ub(r), ũ(1)t,S(r), P̃(1)rr,Ua(r), P̃(1)Ua(r), ũ(1)r,Ua(r), P̃(1)rt,Ub(r), τ̃
(1)
Ua (r), Q̃(1)t,Ub(r) and ω̃(1)Ua(r),

defined in (3.23), are the macroscopic variables arising in problems U and S. In the last
term of I2, the variable θζ = cos−1(ζr/ζ ) (0 ≤ θζ ≤ π) is used in place of ζr. Accordingly,
ϕ
(1)
Ub and ϕ(1)S are regarded as functions of r, θζ and ζ . Note that the integral with respect

to θζ is a convolution of ϕ(1)Ub and ϕ(1)S .
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Inversion of the transverse force on a spinning sphere

hL

k
10–2 10–1 100 101 102

–6

–4

–2

0

2

Rubinow & Keller (1961)

Asymptotic formula

(3.89b)

0.710

4

6

8

Figure 3. Plot of hL versus k for the BGK model under the diffuse reflection boundary condition. The circle
symbols represent the numerical results. The asymptotic formula (3.89b) with k0 = −1.01619 (see (3.90))
is shown by the dashed curve. The asymptotic values at k → 0 (the continuum limit) and k → ∞ (the free
molecular limit) are shown by the solid and dash-dotted lines, respectively. The value of hL decreases with k
and intersects hL = 0 at k = kth ≈ 0.710.

The numerical solutions of (ϕ(1)Ua , ϕ
(1)
Ub ) and ϕ(1)S based on the BGK model have been

prepared beforehand in Taguchi & Suzuki (2017) for problem U and in Taguchi et al.
(2019) for problem S, using an accurate finite difference method (Takata et al. 1993).
Therefore, we can make use of these data to carry out the numerical integration in (4.12).
We also made additional computations to supplement the data, in particular for k < 0.1
and k > 10 (see also the second paragraph of § 3.7). See Appendix H for further details of
the numerical computations.

Figure 3 shows the obtained hL as a function of k. In the figure, the symbols represent the
numerical results, the values of which are also tabulated in table 5. As seen from the figure
and table, hL decreases monotonically with k. The dashed curve shows the asymptotic
formula (3.89b) for small k, and the solid (horizontal) line represents its leading-order
term (hL = 2π), corresponding to the Navier–Stokes result (Rubinow & Keller 1961). The
dash-dotted line shows the result for the free molecular gas (see (4.10)). The numerical
results tend to approach both 2π and −4

3π as k → 0 and k → ∞, respectively. The values
of hL in these limits have different signs, and the curve hL(k) intersects hL = 0 at an
intermediate value of k. Writing this value kth (i.e. the threshold of k above which the
negative lift occurs), we find kth = 0.710 for the present computation based on the BGK
model and the diffuse reflection boundary condition. In this way, the present asymptotic
theory supplemented by the numerical computations for hL can describe the change of
the transverse force in terms of the Knudsen number and, in particular, the transition to
negative lift.

In order to obtain further insight into the present results, we compare the formulas (3.87)
and (3.88) with existing numerical results, in particular with those obtained by the DSMC
method (Volkov 2011). To this end, we consider the case in which the angular velocity of
the sphere Ω0 is perpendicular to the flow velocity at infinity v∞, i.e. Ω0 = (Ω0, 0, 0) and
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k hL k hL k hL

0.01 6.0935 (6.0916)a 0.3 2.2129 4 −3.1052
0.02 5.9047 (5.9001)a 0.4 1.4763 5 −3.3085
0.03 5.7189 (5.7085)a 0.5 0.8970 6 −3.4481
0.04 5.5358 (5.5170)a 0.6 0.4272 7 −3.5498
0.05 5.3563 (5.3254)a 0.7 0.0362 8 −3.6271
0.06 5.1806 (5.1339)a 0.8 −0.2935 9 −3.6879
0.07 5.0089 (4.9424)a 0.9 −0.5762 10 −3.7368
0.08 4.8417 (4.7508)a 1 −0.8213 12 −3.8108
0.09 4.6789 (4.5593)a 1.5 −1.6807 15 −3.8855
0.1 4.5204 (4.3677)a 2 −2.1964 20 −3.9607
0.2 3.1866 3 −2.7827 50 −4.0972

Table 5. Values of hL for various k for the BGK model under the diffuse refection boundary condition. Note
that hL → − 4

3 π ≈ −4.1888 as k → ∞. aThe results obtained by using the asymptotic formula (3.89b).

v∞ = (0, v∞, 0) with Ω0 > 0 and v∞ > 0 (or α0 = π/2) in figure 1. Following Volkov
(2011), we introduce the drag, lift and torque coefficients by

CD = FD
1
2ρ0πL2v2∞

, CL = −FL
1
2ρ0πL3v∞Ω0

, CT = −M
1
2ρ0πL5Ω2

0

, (4.13a–c)

where (0,FD, 0), (0, 0,FL) and (M, 0, 0) are the drag, lift and moment of force (torque)
acting on the sphere. Note that these coefficients depend on physical parameters Kn =
0/L, Ma = v∞/(5RT0/3)1/2 and Ω̂0 = LΩ0/(2RT0)

1/2. If we use the expressions of the
forces and torque for small Ma � 1 obtained in the present study, CD, CL and CT are
given, at leading order in Ma, as√

5
6

MaCD = hD

π
, (4.14a)

CL = hL

π
, (4.14b)

Ω̂0CT = −hM

π
. (4.14c)

In figure 4, we compare CD, CL and CT based on (4.14) with those obtained by Volkov
(2011) for various Kn and Ma in the case of Ω̂0 = 0.1. Here, to evaluate CD, CL and CT
from (4.14), we have used the numerical data of hD, hL and hM for the BGK model shown
in tables 3, 5 and 4. For k < 0.01, we have used the asymptotic formulas (3.89a)–(3.89c).
Note that the DSMC results are for a hard-sphere gas, but the data hD, hL and hM are for the
BGK model. For the drag, it is known that the agreement between the BGK model and the
hard-sphere model is enhanced if we make a conversion of the Knudsen number (see the
third paragraph of § 3.7). This conversion has been used in figure 4(a), that is, CD for the
BGK model is shown against Kn/1.270 · · · . We also mention that the original values of the
Knudsen number presented in Volkov (2011) (e.g. figure 8 there) have been multiplied by√

π in figure 4(a–c); otherwise, the values of CD by Volkov (2011) deviate systematically
from the known results based on the linearized Boltzmann equation for a hard-sphere
gas (Takata et al. 1993), resulting in an inconsistency. As seen from figure 4(b), the
agreement of CL between the present results and the DSMC results is quite encouraging.
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Inversion of the transverse force on a spinning sphere

Kn
10–2 10–1 100 101 102

CD

0

50

100

150 Eq. (4.14a) (BGK)
Volkov (2011)
Takata et al. (1993)

Ma = 0.03

Ma = 0.1

Ma = 0.2

(a)

Kn

CL

10–2 10–1 100 101 102

–1

0

1

2

Eq. (4.14b) (BGK)
Ma = 0.03
0.1
0.2
0.6

Volkov (2011)

0.801

(b)

Kn

CT

0

5

10

15

20

Eq. (4.14c) (BGK)

(c)

10–2 10–1 100 101 102

Ma = 0.03
0.1
0.2
0.6

Volkov (2011)

Figure 4. Coefficients (a) CD, (b) CL and (c) CT as a function of Kn in the case of LΩ0/(2RT0)
1/2 = 0.1. The

solid lines represent (4.14) using the data of hD, hL and hM for the BGK model. The symbols show the results
of the DSMC computations for a hard-sphere gas (Volkov 2011). The results for CD based on the linearized
Boltzmann equation for a hard-sphere gas (Takata et al. 1993) (i.e. (4.14a) using the data of hD for hard-sphere
gas in table 3) are also shown in (a).

When Ma = 0.03, CL obtained by the present formula (the solid curve) and CL by the
DSMC data (the red circle) are close each other for Kn � 0.4. In particular, the Knudsen
number at which CL vanishes in the DSMC simulations seems to be close to the point
Kn = Knth ≈ 0.801 obtained by the present theory, despite the difference in the molecular
model. As the Mach number increases, the discrepancy between the DSMC and present
results becomes larger. We also notice that the discrepancy is more pronounced for smaller
Kn. We recall that the Mach number should be smaller than Kn for the present theory to
be applicable (the Reynolds number should be small). Therefore, the limit Kn → 0 with
Ma fixed does not correspond to our analysis, which explains the observed discrepancy for
small Kn. The torque coefficient obtained through hM also compares favourably with the
DSMC results when Ma ≤ 0.2 (see figure 4c).
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5. Concluding remarks

In this paper, we considered the flow around a spinning sphere moving in a rarefied gas.
In this situation, the sphere is subject to a transverse force (lift force) in addition to a
drag force. Previous studies suggest that the transverse force acting on the sphere changes
direction with an increase of the Knudsen number. This study aimed to reveal precisely
the transition of the transverse force with the Knudsen number, assuming that the relative
speed between the sphere and the surrounding gas is small (weakly nonlinear setting).

The present analysis is based on the method of matched asymptotic expansions for the
Boltzmann equation for small Mach numbers. The physical space is divided into two
regions based on the solution’s underlying characteristic length. Then, we constructed
the asymptotic solution in each region by considering their matching in the crossover
region. As a result, we successfully derived the boundary-value problems of the linearized
Boltzmann equation for the near region up to the second order of Mach numbers. Then,
with the aid of the similarity solutions, we derived the expressions of the force and torque
acting on the sphere, which are summarized in (3.87) and (3.88) (or (3.91) and (3.92)).

The second outcome of this study is the actual construction of the force formula.
In the derived expressions, the force and torque exerted on the sphere depend on the
Knudsen number through the functions hD(k), hL(k) and hM(k), and their numerical data
are necessary to complete the formulas. The numerical values of hD(k) and hM(k) are
available in the existing literature, but hL is new. In this study, we obtained hL(k) (the
transverse force) numerically based on the BGK model of the Boltzmann equation for
a wide range of k (we also derived its asymptotic expression for small k for the general
collision model). The obtained hL exhibits a monotonic decrease in k and changes sign
when crossing the threshold kth ≈ 0.710. Thus, the transverse force acting on the sphere
reverses its direction when the Knudsen number is above this threshold for any sphere
velocity v0 and rotation Ω0 in the present weakly perturbed system.

Wang (1972), Ivanov & Yanshin (1980) and Borg et al. (2003) pointed out that the
direction of the transverse force is opposite in the free molecular gas with respect to that for
the continuum flow. The present work connects these two limits and clarifies the transition
of the transverse force in terms of the Knudsen number.
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Appendix A. The Boltzmann equation and the BGK model

Using the quantities introduced at the beginning of § 2.2, the time-independent Boltzmann
equation is written as

ξi
∂f
∂Xi

= J( f , f ), (A1)

J( f , f ) = 1
m

∫
( f (ξ ′)f (ξ ′

∗)− f (ξ)f (ξ∗))B
( |α · V |

|V | , |V |
)

dΩ(α) dξ∗, (A2)
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Inversion of the transverse force on a spinning sphere

ξ ′ = ξ + [(ξ∗ − ξ) · α]α, ξ ′
∗ = ξ∗ − [(ξ∗ − ξ) · α]α, (A3a,b)

where Xi (= Lxi) (or X (= Lx)) is the space rectangular coordinate system (or the position
vector), α is the unit vector, dΩ(α) is the solid angle element in the direction of α and B is
a non-negative function of |α · V |/|V | and |V | with V = ξ∗ − ξ , whose functional form
is determined by the intermolecular force. The domain of integration in (A2) is the whole
space for ξ∗ and all directions for α. Note that the dependency of f on X is not shown in
(A2).

Let

B0 =
∫

1
(2πRT0)3

exp
(

−|ξ |2 + |ξ∗|2
2RT0

)
B dΩ(α) dξ∗ dξ , (A4)

where the domain of integration is the whole space for ξ and ξ∗ and all directions for α.
Then, the dimensionless counterpart B̂ of B is defined by

B−1
0 B = B̂

(
|α · V̂ |

|V̂ | , |V̂ |
)
, V̂ = V

(2RT0)1/2
= ζ ∗ − ζ . (A5a,b)

With this relation and the variables introduced in (2.1), the Boltzmann equation (A1) is
transformed into the dimensionless form (2.3), where the operators L (φ) and J (φ, φ)

are given by

L (φ) =
∫

E∗(φ(ζ ′)+ φ(ζ ′
∗)− φ(ζ )− φ(ζ ∗))B̂ dΩ(α) dζ ∗, (A6a)

J (φ, φ) =
∫

E∗(φ(ζ ′)φ(ζ ′
∗)− φ(ζ )φ(ζ ∗))B̂ dΩ(α) dζ ∗, (A6b)

with
ζ ′ = ζ + [(ζ ∗ − ζ ) · α]α, ζ ′

∗ = ζ ∗ − [(ζ ∗ − ζ ) · α]α, (A7a,b)

and E∗ = π−3/2 exp(−|ζ ∗|2). The domain of integration in (A6a) and (A6b) is the whole
space for ζ ∗ and all directions for α. Note that the dependency of φ on x is not shown.

The symmetric bilinear operator associated with the quadratic form J (φ, φ) is given
by

J (ψ, φ) = 1
2
(J (ψ + φ,ψ + φ)− J (ψ,ψ)− J (φ, φ))

= 1
2

∫
E∗(ψ(ζ ′)φ(ζ ′

∗)+ φ(ζ ′)ψ(ζ ′
∗)− ψ(ζ )φ(ζ ∗)

− φ(ζ )ψ(ζ ∗))B̂ dΩ(α) dζ ∗. (A8)

Note that L (φ) = 2J (1, φ) holds.
The molecular mean free path in the equilibrium state at rest with density ρ0 and

temperature T0 is given by 0 = (2/
√

π)(2RT0)
1/2/[(ρ0/m)B0] (e.g. Sone 2007). For a

gas consisting of hard-sphere molecules with diameter dm (i.e. a hard-sphere gas), B is
given by B = (d2

m/2)|α · V |. Therefore, we have

B0 = 2
√

2πd2
m(2RT0)

1/2, B̂ = |α · V̂ |
4
√

2π
, (A9a,b)

for this model, and the mean free path is given by 0 = 1/[
√

2πd2
m(ρ0/m)].
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The (time-independent) BGK model of the Boltzmann equation is obtained by replacing
J( f , f ) in (A1) with

QBGK( f ) ≡ Acρ( fe − f ), (A10)

fe = ρ

(2πRT)3/2
exp
(

−(ξi − vi)
2

2RT

)
, (A11)

ρ =
∫

f dξ , vi = 1
ρ

∫
ξi f dξ , T = 1

3Rρ

∫
(ξi − vi)

2f dξ , (A12a–c)

where Ac is a constant and ρ, vi and T are the local density, the flow velocity and the
temperature of the gas, respectively. The integrals with respect to ξ in (A12) are carried
out over the whole space. With the dimensionless quantities introduced in (2.1), the
dimensionless form of the BGK equation is obtained as

ζi
∂φ

∂xi
= 1

k
QBGK(φ), (A13)

QBGK(φ) = (1 + ω)(φe − φ), (A14)

where φe is defined in (2.15). Linearizing QBGK(φ) around the reference state, we obtain
the well-known linearized BGK collision operator L BGK(φ) as shown in (2.12). On the
other hand, we define J BGK(φ) as the remainder of QBGK(φ) subtracted by L BGK(φ).
We then obtain (2.13).

Appendix B. Axial symmetry of the operators L and J

Let ai (i = 1, 2, 3) be any fixed unit vector and let ζ‖ = ζiai, ζ̄i = ζj(δij − aiaj) and ζ =
|ζ | = (ζ 2

‖ + ζ̄ 2
i )

1/2. For any function f of ζ‖ and ζ , L ( f ), L (ζ̄i f ) and L (ζ̄iζ̄j f ), i, j =
1, 2, 3, are expressed in the following forms (Sone 2002, 2007):

L ( f ) = L0( f ), (B1a)

L (ζ̄i f ) = ζ̄iL1( f ), (B1b)

L (ζ̄iζ̄j f ) = ζ̄iζ̄jL2( f )+ (δij − aiaj)L3( f ), (B1c)

where Ll( f ), l = 0, 1, 2, 3, are functions of ζ‖ and ζ . Also, for any functions f and g
of ζ‖ and ζ , J ( f , g), J ( f , ζ̄ig), 1

2(J (ζ̄i f , ζ̄jg)+ J (ζ̄j f , ζ̄ig)) and 1
2 (J (ζ̄i f , ζ̄jg)−

J (ζ̄j f , ζ̄ig)), i, j = 1, 2, 3, are expressed in the following forms (Sone 2002, 2007):

J ( f , g) = J0( f , g), (B2a)

J ( f , ζ̄ig) = J (ζ̄ig, f ) = ζ̄iJ1( f , g), (B2b)
1
2 (J (ζ̄i f , ζ̄jg)+ J (ζ̄j f , ζ̄ig)) = ζ̄iζ̄jJ2( f , g)+ (δij − aiaj)J3( f , g), (B2c)

1
2 (J (ζ̄i f , ζ̄jg)− J (ζ̄j f , ζ̄ig)) = εijmamζ‖J4( f , g), (B2d)

where Jl( f , g), l = 0, 1, 2, 3, 4, are functions of ζ‖ and ζ . Note that J0( f , g), J2( f , g)
and J3( f , g) are symmetric and J4( f , g) is antisymmetric with respect to interchange
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of f and g, i.e.

Jl( f , g) = Jl(g, f ), l = 0, 2, 3, J4( f , g) = −J4(g, f ) (J4( f , f ) = 0).
(B3a,b)

From (B1c), we have
L (ζ̄ 2

k f ) = ζ̄ 2
k L2( f )+ 2L3( f ). (B4)

Multiplying this by 1
2 (δij − aiaj) and subtracting the result from (B1c), we obtain

L

((
ζ̄iζ̄j − ζ̄ 2

k
2
(δij − aiaj)

)
f

)
=
(
ζ̄iζ̄j − ζ̄ 2

k
2
(δij − aiaj)

)
L2( f ). (B5)

Next, adding both sides of (B2c) and (B2d), we obtain

J (ζ̄i f , ζ̄jg) = ζ̄iζ̄jJ2( f , g)+ (δij − aiaj)J3( f , g)+ εijmamζ‖J4( f , g). (B6)

In our spherical coordinate system, it follows from (B1b) and (B5) that

L (ζθF) = ζθL1(F), L (ζϕF) = ζϕL1(F),

L

(
ζ 2
θ − ζ 2

ϕ

2
F

)
= ζ 2

θ − ζ 2
ϕ

2
L2(F), L (ζθ ζϕF) = ζθ ζϕL2(F),

⎫⎪⎪⎬
⎪⎪⎭ (B7)

where F is any function of ζr and ζ . From (B2b) and (B6), it follows that

J (F, ζθG) = ζθJ1(F,G), J (F, ζϕG) = ζϕJ1(F,G),

J (ζθF, ζθG) = ζ 2
θ J2(F,G)+ J3(F,G),

J (ζϕF, ζϕG) = ζ 2
ϕJ2(F,G)+ J3(F,G),

J (ζθF, ζϕG) = ζθ ζϕJ2(F,G)+ ζrJ4(F,G),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B8)

where F and G are any functions of ζr and ζ .
For the BGK collision model, L and J in the above formulas should be replaced by

L BGK (see (2.12)) and
◦

J BGK (see (4.3)), respectively. If we denote the corresponding
counterparts of Ll (l = 0, 1, 2, 3) and Jl (l = 0, 1, 2, 3, 4) by L BGK

l and
◦

J BGK
l , the

formulas (B7) and (B8) hold with

L BGK
0 (F) = ω̃[F] + 2ζrũr[F] + (ζ 2 − 3

2)τ̃ [F] − F, (B9a)

L BGK
1 (F) = 2ũt[F] − F, (B9b)

L BGK
2 (F) = −F, (B9c)

L BGK
3 (F) = ũt[F] + ζrũr[(ζ 2 − ζ 2

r )F] + 1
2 (ζ

2 − 3
2)τ̃ [(ζ 2 − ζ 2

r )F], (B9d)

◦
J BGK

0 (F,G) = 2
3(3ζ

2
r − ζ 2)ũr[F]ũr[G] + ζr(ζ

2 − 5
2 )(ũr[F]τ̃ [G] + ũr[G]τ̃ [F])

+ 1
2 (ζ

4 − 5ζ 2 + 15
4 )τ̃ [F]τ̃ [G]

+ 1
2 (ω̃[F]L BGK

0 (G)+ ω̃[G]L BGK
0 (F)), (B10a)

◦
J BGK

1 (F,G) = 2ũt[G][ζrũr[F] + 1
2 (ζ

2 − 5
2)τ̃ [F]] + 1

2 ω̃[F]L BGK
1 (G), (B10b)
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S. Taguchi and T. Tsuji
◦

J BGK
2 (F,G) = 2ũt[F]ũt[G], (B10c)

◦
J BGK

3 (F,G) = −2
3ζ

2ũt[F]ũt[G], (B10d)

◦
J BGK

4 (F,G) = 0, (B10e)

where ω̃ and τ̃ (or ũr and ũt) are given by (3.19a) (or (3.21a)).

Appendix C. Functions related to the linearized collision operator L

Let us introduce functions A(ζ ), B(ζ ), D1(ζ ), D2(ζ ) and F(ζ ) as the solutions to the
following equations:

L (ζiA) = −ζi(ζ
2 − 5

2), (C1a)

L

((
ζiζj − ζ 2

3
δij

)
B
)

= −2
(
ζiζj − ζ 2

3
δij

)
, (C1b)

L ((ζiδjk + ζjδki + ζkδij)D1 + ζiζjζkD2)

= γ1(ζiδjk + ζjδki + ζkδij)− ζiζjζkB, (C1c)

L

((
ζiζj − ζ 2

3
δij

)
F
)

=
(
ζiζj − ζ 2

3
δij

)
A, (C1d)

where γ1 is defined in (3.39a), and A(ζ ), D1(ζ ) and D2(ζ ) are subject to the following
subsidiary conditions:

〈ζ 2A〉 = 〈5ζ 2D1 + ζ 4D2〉 = 0. (C2)

With A(ζ ) and B(ζ ) introduced above, functions C(ζ ) and G(ζ ) are defined by the
relations

2J

(
ζ 2 − 3

2
,

(
ζiζj − ζ 2

3
δij

)
B
)

=
(
ζiζj − ζ 2

3
δij

)
C, (C3a)

2J (ζ 2 − 3
2 , ζiA) = ζiG. (C3b)

For the BGK model, the functions A, . . . ,F are explicitly given by

A(ζ ) = ζ 2 − 5
2 , B(ζ ) = 2, D1(ζ ) = −1,

D2(ζ ) = 2, F(ζ ) = −ζ 2 + 5
2 .

}
(C4)

Appendix D. Proofs of Propositions 3.1 and 3.2

In this appendix, we present the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1
We recall the relations (3.10) and (3.16) and go back to the original problem (3.6)–(3.9)

for φF1. Consider a large sphere (say, S0) with radius r0 (>1) centred at the origin,
enclosing the original sphere inside. For a sufficiently large r0, the length scale of variation
of φF1 is of the order of r0 near the surface of S0. Since r0 can be taken arbitrarily
large, we can assume that the local Knudsen number, k/r0, is small near the surface of
S0. Consequently, the behaviour of the gas is described by the Grad–Hilbert expansion
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Inversion of the transverse force on a spinning sphere

(e.g. Sone 2007, Chap. 3) there. As a result, the macroscopic variables ωF1, uiF1, τF1, PF1
are described by the following partial differential equations (i.e. Stokes-type equations):

∂uiF1

∂xi
= 0, (D1a)

γ1k�uiF1 − ∂PF1

∂xi
= 0, (D1b)

�τF1 = 0, (D1c)

ωF1 = PF1 − τF1, (D1d)

where � = ∂2/∂x2
j is the Laplacian operator and γ1 is the constant defined in (3.39a).

Moreover, with PF1, uiF1 and τF1 that satisfy (D1), the velocity distribution is expressed
in the form

φF1 = PF1 + 2ζiuiF1 +
(
ζ 2 − 5

2

)
τF1

− k
2
ζiζjB(ζ )

(
∂uiF1

∂xj
+ ∂ujF1

∂xi

)
− kζiA(ζ )

∂τF1

∂xi

+ k2

2
[(ζiδjl + ζjδli + ζlδij)D1(ζ )+ ζiζjζlD2(ζ )]

∂

∂xi

(
∂ulF1

∂xj
+ ∂ujF1

∂xl

)

− k2ζiζjF(ζ )
∂2τF1

∂xi∂xj
+ · · · , (D2)

where the functions A(ζ ),B(ζ ), . . . ,F(ζ ) are defined in Appendix C. Because of the
condition (3.9), PF1, uiF1 and τF1 contained in (D2) are required to satisfy the condition

PF1 → 0, (uiF1)i=1,2,3 → (U,V, 0), τF1 → 0, as |x| → ∞. (D3a–c)

This serves as boundary conditions for (D1) at infinity.
Now we introduce (3.10) together with the similarity forms (3.16). Consequently, PF1,

uiF1 and τF1 take the forms given by (3.22b)–(3.22f ). Substituting them into (D1), we
obtain a set of ordinary differential equations for ũ(1)r,Ua(r), ũ(1)t,Ub(r), P̃(1)Ua(r), τ̃

(1)
Ua (r) and

ũ(1)t,S(r) (we omit the resulting equations for conciseness). The most general solution
satisfying the condition at infinity (D 3) is given by

ũ(1)r,Ua(r) = 1 + c1

r
+ c2

r3 , ũ(1)t,Ub(r) = −1 − c1

2r
+ c2

2r3 ,

P̃(1)Ua(r) = γ1k
c1

r2 , τ̃
(1)
Ua (r) = c3

r2 , ũ(1)t,S(r) = c4

r2 ,

⎫⎪⎬
⎪⎭ (D4)

where ci, i = 1, . . . , 4, are undetermined constants. Meanwhile, if we use (3.22b)–(3.22f )
together with (3.10) and (3.16) in (D2), we obtain the expressions of ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S
in terms of ũ(1)r,Ua, ũ(1)t,Ub, P̃(1)Ua, τ̃ (1)Ua and ũ(1)t,S. Substituting (D4) into ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S thus
obtained, we arrive at the expressions (3.47)–(3.49). This concludes the proof.

Proof of Proposition 3.2
Multiplying (3.6) by ζi and integrating over ζ , we obtain ∂PijF1/∂xj = 0 everywhere

in the gas region. We then multiply 1 or εlkixk to this and integrate the result over
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S. Taguchi and T. Tsuji

the domain enclosed by the original sphere (radius 1) and the sphere S0 (radius
r0) considered in Proposition 3.1 to obtain F (1)

i = − ∫|x|=r0
PijF1njdS and M(1)

i =
− ∫|x|=r0

εijmxjPmlF1nldS, where ni is the outward unit normal vector on S0 and F (1)
i and

M(1)
i are defined in (3.26a,b). Using (3.22g)–(3.22i), this in turn implies that

hD = −4
3πr2

0 (P̃
(1)
rr,Ua(r0)− 2P̃(1)rt,Ub(r0)), (D5)

hM = −8
3πr3

0P̃(1)rt,S(r0). (D6)

Now, direct computations using (3.47)–(3.49) show that P̃(1)rr,Ua, P̃(1)rt,Ub and P̃(1)rt,S (see
(3.23)) have the following asymptotic properties for large r 
 1:

P̃(1)rr,Ua = 3γ1kc1

r2 + O(r−4), P̃(1)rt,Ub = O(r−4), P̃(1)rt,S = 3γ1kc4

r3 , r 
 1. (D7a–c)

Substituting (D 7) with r = r0 into (D5) and (D6) and letting r0 → ∞, we obtain (3.50a,b).

Appendix E. Boundary-value problems for the second-order inner problem

In this appendix, we show boundary-value problems for (ϕ(2)UUα, ϕ
(2)
SSα, ϕ

(2)�
USα, ϕ

(2)�
USα), α =

a, b, c, d, appearing in the similarity solutions (3.79)–(3.83). They are summarized as
follows.

(a) Problem UU

ζr
∂ϕ

(2)
UUa
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
UUa
∂ζr

+ 3
2
ζ 2 − ζ 2

r

r
ϕ
(2)
UUb = 1

k
L0(ϕ

(2)
UUa)+ 1

k
I(2)UUa, (E1a)

ζr
∂ϕ

(2)
UUb
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
UUb
∂ζr

− ζr

r
ϕ
(2)
UUb − 2

r
ϕ
(2)
UUa + ζ 2 − ζ 2

r

r
ϕ
(2)
UUc

= 1
k
L1(ϕ

(2)
UUb)+ 1

k
I(2)UUb, (E1b)

ζr
∂ϕ

(2)
UUc
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
UUc
∂ζr

− 2
ζr

r
ϕ
(2)
UUc − ϕ

(2)
UUb
r

= 1
k
L2(ϕ

(2)
UUc)+ 1

k
I(2)UUc, (E1c)

ζr
∂ϕ

(2)
UUd
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
UUd
∂ζr

− ζ 2 − ζ 2
r

2r
ϕ
(2)
UUb = 1

k
L0(ϕ

(2)
UUd)+ 1

k
I(2)UUd, (E1d)

b.c.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
(2)
UUa = K (ϕ

(2)
UUa),

ϕ
(2)
UUb = 0,

ϕ
(2)
UUc = 0,

ϕ
(2)
UUd = K (ϕ

(2)
UUd),

ζr > 0, r = 1, (E2)
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Inversion of the transverse force on a spinning sphere

b.c.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
(2)
UUa → 3

2
c1

γ1k
ζr + 3ζ 2

r − ζ 2,

ϕ
(2)
UUb → − c1

γ1k
− 4ζr,

ϕ
(2)
UUc → 2,

ϕ
(2)
UUd → − c1

2γ1k
ζr + ζ 2 − ζ 2

r − 1,

as r → ∞. (E3)

(b) Problem SS

ζr
∂ϕ

(2)
SSa
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
SSa
∂ζr

+ 3
2
ζ 2 − ζ 2

r

r
ϕ
(2)
SSb = 1

k
L0(ϕ

(2)
SSa)+ 1

k
I(2)SSa, (E4a)

ζr
∂ϕ

(2)
SSb
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
SSb
∂ζr

− ζr

r
ϕ
(2)
SSb − 2

r
ϕ
(2)
SSa + ζ 2 − ζ 2

r

r
ϕ
(2)
SSc

= 1
k
L1(ϕ

(2)
SSb)+ 1

k
I(2)SSb, (E4b)

ζr
∂ϕ

(2)
SSc
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
SSc
∂ζr

− 2
ζr

r
ϕ
(2)
SSc − ϕ

(2)
SSb
r

= 1
k
L2(ϕ

(2)
SSc)+ 1

k
I(2)SSc, (E4c)

ζr
∂ϕ

(2)
SSd
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)
SSd
∂ζr

− ζ 2 − ζ 2
r

2r
ϕ
(2)
SSb = 1

k
L0(ϕ

(2)
SSd)+ 1

k
I(2)SSd, (E4d)

b.c.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
(2)
SSa = K (ϕ

(2)
SSa)− (ζ 2 − ζ 2

r − 1),

ϕ
(2)
SSb = 0,

ϕ
(2)
SSc = −2,

ϕ
(2)
SSd = K (ϕ

(2)
SSd)+ ζ 2 − ζ 2

r − 1,

ζr > 0, r = 1, (E5)

b.c. ϕ
(2)
SSα → 0 as r → ∞ (α = a, b, c, d). (E6)

(c) Problem US

ζr
∂ϕ

(2)�
USa
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USa
∂ζr

− ζr

r
ϕ
(2)�
USa + ζ 2 − ζ 2

r

2r
ϕ
(2)�
USc + ϕ

(2)�
USd
r

= 1
k
L1(ϕ

(2)�
USa)+ 1

k
I(2)�USa, (E7a)

ζr
∂ϕ

(2)�
USb
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USb
∂ζr

− ζr

r
ϕ
(2)�
USb + ζ 2 − ζ 2

r

2r
ϕ
(2)�
USc − ϕ

(2)�
USd
r

= 1
k
L1(ϕ

(2)�
USb)+ 1

k
I(2)�USb, (E7b)
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ζr
∂ϕ

(2)�
USc
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USc
∂ζr

− 2
ζr

r
ϕ
(2)�
USc − ϕ

(2)�
USa
r

− ϕ
(2)�
USb
r

= 1
k
L2(ϕ

(2)�
USc)+ 1

k
I(2)�USc, (E7c)

ζr
∂ϕ

(2)�
USd
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USd
∂ζr

− ζ 2 − ζ 2
r

2r
ϕ
(2)�
USa + ζ 2 − ζ 2

r

2r
ϕ
(2)�
USb

= 1
k
L0(ϕ

(2)�
USd)+ 1

k
I(2)�USd, (E7d)

b.c.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
(2)�
USa = 2K (ϕ

(1)
Ua ),

ϕ
(2)�
USb = 0,

ϕ
(2)�
USc = 0,

ϕ
(2)�
USd = K (ϕ

(2)�
USd),

ζr > 0, r = 1, (E8)

b.c. ϕ
(2)�
USα → 0 as r → ∞ (α = a, b, c, d), (E9)

ζr
∂ϕ

(2)�
USa
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USa
∂ζr

− 3
ζ 2 − ζ 2

r

r
ϕ
(2)�
USb = 1

k
L0(ϕ

(2)�
USa)+ 1

k
I(2)�USa, (E10a)

ζr
∂ϕ

(2)�
USb
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USb
∂ζr

− ζr

r
ϕ
(2)�
USb + ϕ

(2)�
USa
r

+ ζ 2 − ζ 2
r

2r
ϕ
(2)�
USc

= 1
k
L1(ϕ

(2)�
USb)+ 1

k
I(2)�USb, (E10b)

ζr
∂ϕ

(2)�
USc
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USc
∂ζr

− 2
ζr

r
ϕ
(2)�
USc − 2

ϕ
(2)�
USb
r

= 1
k
L2(ϕ

(2)�
USc)+ 1

k
I(2)�USc, (E10c)

ζr
∂ϕ

(2)�
USd
∂r

+ ζ 2 − ζ 2
r

r
∂ϕ

(2)�
USd
∂ζr

+ 2
ζ 2 − ζ 2

r

r
ϕ
(2)�
USb = 1

k
L0(ϕ

(2)�
USd)+ 1

k
I(2)�USd, (E10d)

b.c.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
(2)�
USa = K (ϕ

(2)�
USa),

ϕ
(2)�
USb = 0,

ϕ
(2)�
USc = 0,

ϕ
(2)�
USd = K (ϕ

(2)�
USd),

ζr > 0, r = 1, (E11)

b.c. ϕ
(2)�
USα → 0 as r → ∞ (α = a, b, c, d), (E12)
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Inversion of the transverse force on a spinning sphere

where the operators Ll(·), l = 0, 1, 2, are defined in Appendix B and the inhomogeneous
terms I(2)UUα , I(2)SSα , I(2)�USα and I(2)�USα (α = a, b, c, d) are given by

I(2)UUa = J0(ϕ
(1)
Ua , ϕ

(1)
Ua )− ζ 2 − ζ 2

r

2
J2(ϕ

(1)
Ub , ϕ

(1)
Ub )− J3(ϕ

(1)
Ub , ϕ

(1)
Ub ),

I(2)UUb = 2J1(ϕ
(1)
Ua , ϕ

(1)
Ub ), I(2)UUc = J2(ϕ

(1)
Ub , ϕ

(1)
Ub ),

I(2)UUd = ζ 2 − ζ 2
r

2
J2(ϕ

(1)
Ub , ϕ

(1)
Ub )+ J3(ϕ

(1)
Ub , ϕ

(1)
Ub ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(E13)

I(2)SSa = −ζ
2 − ζ 2

r

2
J2(ϕ

(1)
S , ϕ

(1)
S )− J3(ϕ

(1)
S , ϕ

(1)
S ), I(2)SSb = 0,

I(2)SSc = −J2(ϕ
(1)
S , ϕ

(1)
S ),

I(2)SSd = ζ 2 − ζ 2
r

2
J2(ϕ

(1)
S , ϕ

(1)
S )+ J3(ϕ

(1)
S , ϕ

(1)
S ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(E14)

I(2)�USa = 2J1(ϕ
(1)
Ua , ϕ

(1)
S ), I(2)�USb = 0, I(2)�USc = 2J2(ϕ

(1)
Ub , ϕ

(1)
S ),

I(2)�USd = (ζ 2 − ζ 2
r )J2(ϕ

(1)
Ub , ϕ

(1)
S )+ 2J3(ϕ

(1)
Ub , ϕ

(1)
S ),

}
(E15)

I(2)�USa = 2ζrJ4(ϕ
(1)
Ub , ϕ

(1)
S ), I(2)�USb = I(2)�USc = I(2)�USd = 0. (E16a,b)

It should be noted that L0(·), L1(·) and L2(·) in (E1), (E4), (E7) and (E10) as well as
Jl(·, ·), l = 0, 1, 2, 3, 4, in (E13)–(E16) are functions of r, ζr and ζ .

Appendix F. Derivation of (4.7)

In this appendix, we present a direct derivation of the formula (4.7). We begin with
repeating the equation and boundary conditions for Φ(1)U∗ and Φ(2)US. Writing Φ(1)U∗ = φI

and Φ(2)US = φII for brevity, they are summarized as

(problem I)

ζi
∂φI

∂xi
= 1

k
L (φI), |x| > 1, (F1a)

φI = K (φI), ζr > 0, |x| = 1, (F1b)

φI → 2ζ3, as |x| → ∞; (F1c)

(problem II)

ζi
∂φII

∂xi
= 1

k
L (φII)+ 2

k
J (Φ

(1)
U , Φ

(1)
S ), |x| > 1, (F2a)

φII = K (φII)+ 2ζϕS sin θK (Φ
(1)
U ), ζr > 0, |x| = 1, (F2b)

φII → 0, as |x| → ∞, (F2c)

whereΦ(1)U andΦ(1)S appearing in the inhomogeneous terms of problem II are the solutions
to the problem (3.11)–(3.13) (with J = U or S). The following derivation follows the line
of Takata (2009a) and takes several steps.
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We first define the reflection operator as follows: F(ζi)
− ≡ F(−ζi) for any function F

of ζi. Obviously, (F−)− = F and 〈F−〉 = 〈F〉. Multiplying both sides of (F2a) by φI− and
integrating the result over ζ , we obtain

∂

∂xi
〈ζiφ

I−φII〉 +
〈
φII−ζi

∂φI

∂xi

〉
− 1

k
〈φI−L (φII)〉 = 2

k
〈φI−J (Φ

(1)
U , Φ

(1)
S )〉. (F3)

Because the operator L is self-adjoint and commutes with the reflection operator ( · )−,
that is, L (F−) = (L F)− for any F = F(ζi), we can transform the third term as

1
k
〈φI−L (φII)〉 = 1

k
〈φIIL (φI−)〉 = 1

k
〈φIIL (φI)−〉

= 1
k
〈φII−L (φI)〉 =

〈
φII−ζi

∂φI

∂xi

〉
= (the second term). (F4)

Thus, we are left with the identity

∂

∂xi
〈ζiφ

I−φII〉 = 2
k
〈φI−J (Φ

(1)
U , Φ

(1)
S )〉. (F5)

Further integration with respect to x over the gas region enclosed by a sphere with radius
r0 
 1 leads to, after letting r0 → ∞,

lim
r0→∞

∫
|x|=r0

〈ζrφ
I−φII〉 dS −

∫
|x|=1

〈ζrφ
I−φII〉 dS

= 2
k

∫
|x|>1

〈φI−J (Φ
(1)
U , Φ

(1)
S )〉 dx, (F6)

where the divergence theorem has been used on the left-hand side. Note that the improper
integral on the right-hand side is well defined (Proposition 3.1).

We argue that we can replace φII in the second term of (F6) by gII
w ≡

2ζϕS sin θK (Φ
(1)
U |r=1). This is because

〈ζrφ
I−(φII − gII

w)〉 =
∫
ζr>0

ζrφ
I−(φII − gII

w)E dζ +
∫
ζr<0

ζrφ
I−(φII − gII

w)E dζ

=
∫
ζr>0

ζrφ
I−(φII − gII

w)E dζ −
∫
ζr>0

ζrφ
I(φII− − gII−

w )E dζ

= K (φII)

∫
ζr>0

ζrφ
I−E dζ − K (φI)

∫
ζr>0

ζr(φ
II− − gII−

w )E dζ

= −K (φII)

∫
ζr<0

ζrφ
IE dζ + K (φI)

∫
ζr<0

ζrφ
IIE dζ

= 1
2
√

π
K (φII)K (φI)− 1

2
√

π
K (φI)K (φII)

= 0, (F7)

holds on the boundary |x| = 1, where (F1b) and (F2b) have been used in the third equality.
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Inversion of the transverse force on a spinning sphere

Concerning the first term of (F6), we write the integral as∫
|x|=r0

〈ζrφ
IIφI−〉 dS =

∫
|x|=r0

〈ζrφ
II(φI− + 2ζ3)〉 dS − 2

∫
|x|=r0

〈ζ3ζrφ
II〉 dS. (F8)

Meanwhile, multiplying (F2a) by ζ3 and integrating over ζ , we have ∂〈ζ3ζjφ
II〉/∂xj =

0 for |x| > 1, implying that
∫
|x|=r0

〈ζ3ζrφ
II〉 dS = ∫|x|=1〈ζ3ζrφ

II〉 dS. Therefore, we can
transform the last term of (F8) as

−2
∫

|x|=r0

〈ζ3ζrφ
II〉 dS = −2

∫
|x|=1

〈ζ3ζrφ
II〉 dS

= −2
∫

|x|=1
〈ζ3ζrΦ

(2)
US〉 dS = −SVhL. (F9)

Here, the last equality follows from (3.81)–(3.83) and (3.86) together with (3.21) (note
that

∫
|x|=1〈ζ3ζrΦ

(2)�
US 〉 dS = 0). Concerning the first term of (F8), it can be shown that φII

(= Φ
(2)
US) behaves for large |x| as

φII(x, ζ ) = 2ζidII
i + O(|x|−2), |x| 
 1, (F10)

where dII
i is a quantity of O(|x|−1) (see the last paragraph of this appendix). Since

φI behaves as φI(x, ζ ) = 2ζ3 + 2ζidI
i + O(|x|−2) for |x| 
 1, where dI

i is a quantity of
O(|x|−1) (Proposition 3.1), we conclude that the first term on the right-hand side of
(F8) vanishes as r0 → ∞. Then, the identity (4.7) follows from (F6), since φI = Φ

(1)
U∗ ,

gII
w = I(2)w,US and I(2)US = 2J (Φ

(1)
U , Φ

(1)
S ).

Finally, we briefly explain the derivation of the asymptotic property given in (F10). To
see the asymptotic behaviour ofΦ(2)US at large |x| 
 1, we apply a procedure similar to that
described in the proof of Proposition 3.1. A difference is that the equation for Φ(2)US has
an inhomogeneous term, which depends on Φ(1)U and Φ(1)S . In this case, we can simplify
the analysis by using the S expansion (Sone 2007) instead of applying the Grad–Hilbert
expansion to (F2a). More precisely, we first apply the S expansion to (2.3), assuming
the local Knudsen number is small, to derive the Navier–Stokes-type system equivalent
to (3.36)–(3.38), which we sum up to obtain the equations for the (total) macroscopic
variables for φF in the far region. Then, substituting the expansion (3.2) and rearranging
the terms, we extract a system of partial differential equations describing the macroscopic
behaviour corresponding to φF2. The derived equations consist of the Stokes equations
for uiF2 and PF2 with sources and the Laplace equation for τF2 with sources, whose
homogeneous counterparts are similar to (D1) (the source terms consist of lower-order
terms, i.e. uiF1, τF1, etc.). The remaining process is parallel to that in Proposition 3.1 for
the derivation of (D4) and that of (3.47)–(3.49). The asymptotic property (F10) is obtained
in this way.

Appendix G. Asymptotic analysis in the case of a free molecular gas

In this appendix, we give a summary of the asymptotic analysis (§ 3) in the case of a
free molecular (or collisionless) gas. We note that Wang (1972), Ivanov & Yanshin (1980)
and Borg et al. (2003) investigated this case and showed the essential feature of the force
and the torque acting on a sphere moving in a collisionless gas. Here, we study the same
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problem in the framework of the present asymptotic analysis. We use the notation of the
main text. Then, the basic equation is given by (2.3) with the right-hand side replaced by
zero. The boundary conditions (2.5) and (2.8) are unchanged.

G.1. Leading order in ε

The leading-order solution is obtained in the form of (3.10) with (3.16) with ϕ(1)Ua , ϕ(1)Ub and
ϕ
(1)
S given by

ϕ
(1)
Ua =

{
−√

πZ1(r, θζ ), 0 ≤ θζ < sin−1(1
r ),

2ζ cos θζ , sin−1(1
r ) < θζ ≤ π,

(G1a)

ϕ
(1)
Ub =

⎧⎨
⎩−

√
π

ζ
Z2(r, θζ ), 0 ≤ θζ < sin−1(1

r ),

−2, sin−1(1
r ) < θζ ≤ π,

(G1b)

ϕ
(1)
S =

{
2r, 0 ≤ θζ < sin−1(1

r ),

0, sin−1(1
r ) < θζ ≤ π,

(G1c)

where θζ = cos−1(ζr/ζ ) and

Z1(r, θζ ) =
√

1 − r2 sin2 θζ cos θζ + r sin2 θζ , (G2a)

Z2(r, θζ ) = r cos θζ −
√

1 − r2 sin2 θζ , (G2b)

(0 ≤ θζ ≤ sin−1(1/r)). Note that ϕ(1)Ua , ϕ(1)Ub and ϕ(1)S are discontinuous at θζ = sin−1(1/r).
The leading-order macroscopic quantities are given in the form of (3.22). In particular,

ũ(1)r,Ua = 1
8

(
1 − 1

r

)(
3 + 3

r
+ 2

r2

)
+ 1

2

(
1 − 1

r2

)3/2

+ r
16

(
1 − 1

r2

)2

ln
(

r + 1
r − 1

)
, (G3a)

ũ(1)t,Ub = − 5
16

− 1
16r2 − 1

8r3 − 1
4

√
1 − 1

r2

(
1
r2 + 2

)

− r
32

(
1 − 1

r2

)(
1
r2 + 3

)
ln
(

r + 1
r − 1

)
, (G3b)

ũ(1)t,S = r
2

[
1 −

√
1 − 1

r2

(
1 + 1

2r2

)]
, (G3c)

P̃(1)rr,Ua = −
√

π

10

[
2r −

(
1 − 1

r2

)3/2 (
2r + 3

r

)
+ 20

πr2

(
2 − 1

r2

)
+ 1

r2

(
5 − 2

r2

)]
,

(G3d)
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Inversion of the transverse force on a spinning sphere

P̃(1)rt,Ub = −
√

π

10

[
r −
(

1 − 1
r2

)3/2 (
r + 3

2r

)
−
(

10
π

+ 1
)

1
r4

]
, (G3e)

P̃(1)rt,S = 1√
πr3 . (G3f )

With (G3d)–(G3f ), we can derive PrrF1, PrθF1 and PrϕF1 from (3.22g)–(3.22i).

G.2. Second order in ε
Next, we consider the second-order problem in ε. The equation is ζi∂φF2/∂xi =
0, equipped with the boundary condition on the sphere (3.65) with K (φF1) =
−√

π(U cos θ + V sin θ cosϕ). The condition at infinity is given by

φF2 → 2(ejζj)
2 − 1 as |x| → ∞, (G4)

where ei is defined in (3.30a). Note that the condition (G4) is identical to the condition
(3.66) with c1 = 0. This is consistent with the fact that c1 vanishes as k → ∞ (see
(3.50a)). Accordingly, we can obtain the solution in the form φF2 = Φ

(2)
UU +Φ

(2)
SS +Φ

(2)
US

(cf. (3.69) with c1 = 0), where Φ(2)UU, Φ(2)SS and Φ
(2)
US are of the form (3.79)–(3.83).

Moreover, because inhomogeneous terms are absent in the problem for Φ(2)�US (see (E16)),
Φ
(2)�
US is identically zero for the free molecular gas (thus, Φ(2)US = Φ

(2)�
US ). Then ϕ(2)UUα , ϕ(2)SSα

and ϕ(2)�USα (α = a, b, c, d) are given by

ϕ
(2)
UUa = Z2

1 − Z2
2

2
sin2 θζ , ϕ

(2)
UUb = 2

Z1Z2

ζ
, ϕ

(2)
UUc = Z2

2
ζ 2 ,

ϕ
(2)
UUd = Z2

2
2

sin2 θζ , ϕ
(2)
SSa = Z2

1 −
(

Z2
2
ζ 2 + 2r2

)
ζ 2 sin2 θζ

2
,

ϕ
(2)
SSb = 2

Z1Z2

ζ
, ϕ

(2)
SSc = Z2

2
ζ 2 − 2r2,

ϕ
(2)
SSd =

(
Z2

2
ζ 2 + 2r2

)
ζ 2 sin2 θζ

2
− 1,

ϕ
(2)�
USa = −2

√
πrZ1, ϕ

(2)�
USb = 0, ϕ

(2)�
USc = −2

√
πr

Z2

ζ
,

ϕ
(2)�
USd = −2

√
πr

Z2

ζ

ζ 2 sin2 θζ

2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(G5a)

for 0 ≤ θζ < sin−1(1/r) and

ϕ
(2)
UUa = ζ 2(3 cos2 θζ − 1), ϕ

(2)
UUb = −4ζ cos θζ , ϕ

(2)
UUc = 2,

ϕ
(2)
UUd = ζ 2 sin2 θζ − 1, ϕ

(2)
SSa = 0, ϕ

(2)
SSb = 0, ϕ

(2)
SSc = 0, ϕ

(2)
SSd = 0,

ϕ
(2)�
USa = 0, ϕ

(2)�
USb = 0, ϕ

(2)�
USc = 0, ϕ

(2)�
USd = 0,

⎫⎪⎪⎬
⎪⎪⎭ (G5b)

for sin−1(1/r) < θζ ≤ π. Here, Z1 = Z1(r, θζ ) and Z2 = Z2(r, θζ ) are defined in (G2).
Note that the solutions are discontinuous at θζ = sin−1(1/r).
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Unlike the case with finite Knudsen numbers, we do not require the slowly varying outer
solution, and the inner solution is directly connected to the boundary condition at infinity
in the case of a free molecular gas.

The components (PrrF2, PrθF2, PrϕF2) of the second-order stress tensor PijF2 are given
in the from (3.84a)–(3.84c) with c1 = 0, where

P̃rr[ϕ
(2)
UUa] = − 1

140

[
−
(

1 − 1
r

)(
1 + 1

r

)(
2 − 9

r2

)(
3 − 38

r2

)
r2

(
1 −

√
1 − 1

r2

)

−277 + 445
r2 − 84

r3 − 342
r4 + 48

r5

]
, (G6a)

P̃rr[ϕ(2)UUd] = 1
140

[
−
(

1 − 1
r

)(
1 + 1

r

)(
2 − 11

r2 + 114
r4

)
r2

(
1 −

√
1 − 1

r2

)

+
(

1 − 1
r

)(
1 + 1

r
+ 126

r2 + 98
r3 − 16

r4

)]
, (G6b)

P̃rr[ϕ
(2)
SSa] = 1

140

[
−
(

1 − 1
r

)(
1 + 1

r

)(
64 + 68

r2 − 27
r4

)
r2

(
1 −

√
1 − 1

r2

)

+
(

1 − 1
r

)(
32 + 32

r
− 63

r2 + 21
r3 + 48

r4

)]
, (G6c)

P̃rr[ϕ
(2)
SSd] = − 1

140

[
−
(

1 − 1
r

)(
1 + 1

r

)(
68 + 46

r2 − 9
r4

)
r2

(
1 −

√
1 − 1

r2

)

+
(

1 − 1
r

)(
34 + 34

r
− 21

r2 + 7
r3 + 16

r4

)]
, (G6d)

P̃rr[ϕ
(2)�
USd] = 1

12

{
3
(

1 − 1
r

)2 (
1 + 1

r

)2 (
1 + 1

r2

)
r
[

r
2

ln
(

r − 1
r + 1

)
+ 1
]

+
(

1 − 1
r

)
1
r

(
1 − 11

r
− 5

r2 + 3
r3

)}
, (G6e)

P̃rr[ϕ
(2)�
USa] = P̃rr[ϕ

(2)�
USd] = 0, (G6f )

P̃rt[ϕ
(2)
UUb] = − 1

35

[(
1 − 1

r

)(
1 + 1

r

)(
8 + 40

r2 + 57
r4

)
r2

(√
1 − 1

r2 − 1

)

+ 74 + 17
r2 − 7

r3 − 57
r4 + 8

r5

]
, (G7a)

P̃rt[ϕ
(2)
SSb] = − 1

70

[(
1 − 1

r

)(
1 + 1

r

)(
16 + 10

r2 + 9
r4

)
r2

(√
1 − 1

r2 − 1

)
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+
(

1 − 1
r

)2 (
8 + 16

r
+ 23

r2 + 16
r3

)]
, (G7b)

P̃rt[ϕ
(2)�
USb] = 0, (G7c)

P̃rt[ϕ
(2)�
USb] = 0, (G7d)

P̃rt[ϕ
(2)�
USa] = − 1

12

{
3
(

1 − 1
r

)2 (
1 + 1

r

)2 (
1 + 1

r2

)
r
[

r
2

ln
(

r − 1
r + 1

)
+ 1
]

+
(

1 + 6
r2 + 8

r3 − 3
r4

)
1
r

}
. (G7e)

Appendix H. Some comments on the numerical computations

In this appendix, we give more details of the numerical computations for hL. We restrict the
ranges of r and ζ to 1 ≤ r ≤ rmax and 0 ≤ ζ ≤ ζmax, where rmax and ζmax are appropriately
chosen constants, which are large enough. In our computations, the value of rmax is varied
depending on k (rmax = 150 k is used for most of the cases). For numerical integration,
the domain [1, rmax] × [0,π] × [0, ζmax] (r × θζ × ζ directions) is further subdivided
by (Nr + 1)× (2Nθζ + 1)× (Nζ + 1) lattice points non-uniformly distributed along each
direction. For every k, the same lattice system is used for solving both problems U and S.
Note that (ϕ(1)Ua , ϕ

(1)
Ub ) and ϕ(1)S are discontinuous on θζ = sin−1(1/r) and this discontinuity

is fully accounted for in the present computations (see Takata et al. 1993; Taguchi &
Suzuki 2017). The values of Nr, Nθζ and Nζ used for the results shown in table 5 and
figure 3 are as follows:

(Nr,Nθζ ,Nζ ) =
{
(3200, 1024, 74) for 0.01 ≤ k ≤ 0.09,

(1600, 512, 74) for 0.09 ≤ k ≤ 50.
(H1)

Note that, by restricting the range of r to 1 ≤ r ≤ rmax, the upper limits of the
integrals I1 and I2 in (4.8) are also restricted. Using the asymptotic expressions given
in Proposition 3.1, we can estimate the error introduced by this restriction as follows.
That is, writing

∫∞
0 = ∫ rmax

0 + ∫∞
rmax

, the contribution from the second integral is found to
be 2kc1c4/rmax + O(r−2

max) for I1 + I2. Since c1 and c4 are known from hD and hM (see
Proposition 3.2), the term 2kc1c4/rmax is known and can be used to correct the numerical
result for the first integral. The results presented in table 5 and figure 3 are obtained in this
way.

To assess the accuracy of the data presented in table 5, we consider the following
quantity:

E =
∣∣∣∣hL[S1] − hL[S1/2]

hL[S1]

∣∣∣∣ . (H2)

Here, hL[S1] denotes the value obtained using a lattice system with (Nr,Nθζ ,Nζ ) shown
in (H1) and hL[S1/2] the value obtained using a lattice system with Nr and Nθζ halved.
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Then, the values of E in our computations are summarized as

E ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.7 × 10−6 (0.01 ≤ k ≤ 0.04),
2.8 × 10−5 (0.05 ≤ k ≤ 0.09),
7.3 × 10−4 (0.1 ≤ k ≤ 0.4),
6.4 × 10−3 (0.5 ≤ k ≤ 0.9),
1.2 × 10−4 (1 ≤ k ≤ 4),
5.6 × 10−5 (5 ≤ k ≤ 9),
1.5 × 10−5 (10 ≤ k ≤ 20),
2.6 × 10−4 (k = 50).

(H3)
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