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Abstract

Using a mixed-type Fourier transform of a general form in the case of water of infinite
depth and the method of eigenfunction expansion in the case of water of finite depth, several
boundary-value problems involving the propagation and scattering of time harmonic surface
water waves by vertical porous walls have been fully investigated, taking into account the
effect of surface tension also. Known results are recovered either directly or as particular
cases of the general problems under consideration.

1. Introduction

The problems of propagation of surface water waves due to a vertical wave maker
have been treated by various researchers using the classical wave maker theory de-
veloped by Havelock [6]. This wave maker theory has been further generalised by
Rhodes-Robinson [12] when the effect of surface tension is taken into account. The
complications of handling this more general class of problems lie in the fact that a
third-order derivative appears, in a natural way, in the mathematical description of
one of the boundary conditions, whereas the basic partial differential equation that is
required to be solved is Laplace's equation, in two dimensions. Rhodes-Robinson [ 12]
has devised a method based on the Green's integral theorem to solve the boundary-
value problem of concern. Later on, Rhodes-Robinson [13] employed the reduction

^ technique of Williams [18] to solve more general boundary-value problems of this
class. Mandal and Chakrabarti [11] devised a method based on the Fourier cosine
transform to solve the wave maker problem of Havelock [6]. Mandal and Bandy-

" opadhyay [10] generalised the problem of Mandal and Chakrabarti [11] with the extra
effect of surface tension. In these works the wave maker has been represented by a
vertical impermeable wall oscillating horizontally.
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It was pointed out by Madsen [9] that the leakage effect will be large in reducing the
wave amplitude. Chwang [4] developed a porous wave maker theory to investigate the
porous effect of a wave maker in the case of water of finite depth and Chakrabarti [1]
generalised Chwang's study with the extra effect of surface tension by using a mixed
type of Fourier transform. Currently Gorgui, Faltas and Ahmed [5] have studied the
problem of capillary gravity waves in the presence of an infinite porous wall, by using
Green's integral theorem.

Recently Chakrabarti and Sahoo [2] have studied the reflection of water waves by
a nearly vertical porous wall, by using a mixed type of Fourier transform similar to
that utilised by Chakrabarti [1] earlier.

The amplitude and the frequency of the waves depend on both the surface tension
and gravity. In most cases, like oceans, lakes and reservoirs, the effect of surface
tension can be neglected. But while doing experimental study it may not be possible
to neglect the effect of surface tension. As mentioned by Hocking and Mahdmina [8],
another important reason for including surface tension is that in the absence of surface
tension the transient motion initiated by an impulsive start is singular, but when the
effect of surface tension is taken into account this singularity is removed.

In the present study we have investigated the effect of surface tension on a piston
type porous wave maker having fine pores on it, in the case of water of infinite as well
as finite depths. Because of the effect of surface tension, the uniqueness of the solution
of the problems depend on the behaviour of a special combination of the derivatives of
the velocity potential at the edge, that is, at the points (0±, 0), which is still a topic of
research. In the case of impermeable obstacles like surface-piercing vertical barriers
or a wall, Hocking [7] gave a more acceptable edge condition which relates the slope
of the contact line to the wave maker. As far as permeable obstacles are concerned
no valid results are available in the literature. In our present work, we will use an
edge condition which is similar to that of Hocking [7] with certain modifications as
suggested by Rhodes-Robinson [17]. In the case of water of infinite depth, we have
reinvestigated the results of Gorgui, Faltas and Ahmed [5], by using a general mixed
transform of Fourier type. In the case of water of finite depth, we have used the
eigenfunction expansion method as has been discussed by Rhodes-Robinson [14] in
a different investigation.

As an application of the one-sided porous wave maker problem, the full solution .
of the boundary-value problem related to the reflection of water waves by a porous
wall in the case of water of finite depth is derived. The full solution in the case of the
problem of reflection of water waves by the porous wall is obtained by subtracting out "
the incident waves from the velocity potential to obtain a special case of the one-sided
wave maker problem as discussed in Section 5. As an application of the two-sided
wave maker problem as well as the problem of reflection of water waves by a porous
wall, the problem of scattering of water waves by a vertical porous plate in the case of
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water of finite depth is studied by way of obtaining the full solution of the boundary-
value problem associated with it. The full solution in the case of the scattering problem
is derived by reducing the boundary-value problem to two boundary-value problems,
which are particular cases of the problem of reflection of water waves by the porous
wall. The one-sided porous wave maker problem is expected to have applications in
the study of surface waves in rock filled dams and land slides during earthquakes in
water reservoirs and lakes. Sometimes it is needed to reduce the wave amplitude by
using certain kind of porous devices. The two-sided porous wave maker problem has
applications in cases where generation of surface waves is of main interest. Since the
velocity potential is known completely, the pressure difference along the two sides
of the plate, the surface elevation and the other important physical quantities can
be determined easily by using the final solution, once the edge slope constant for
the material is known completely. Certain numerical results involving the reflection
coefficients in the case of reflection of water waves by a vertical porous wall as well as
the reflection and transmission coefficients in the case of scattering of water waves by
a vertical porous plate, have been obtained in the case of finite depth of the fluid. These
numerical results have been presented in the forms of graphs (see Figures 1, 2, 3).

In the present study we have assumed the wall to be made of materials with fine
pores.

2. Waves generated by the piston type two-sided porous wave maker

The problem under consideration is two dimensional in nature. We use a rectangular
Cartesian co-ordinate system (x, y) in which the x-axis extends horizontally and _y-axis
is taken in the vertically downward direction. A piston type porous wave maker made
up of fine pores occupies the position x = 0, in the semi-infinite fluid region y > 0.
This wave maker is assumed to oscillate with the velocity Re(U(y)e~iu"). Assuming
that the fluid is incompressible and inviscid and the motion is irrotational and simple
harmonic in time with angular frequency u>, we have the existence of the velocity
potential <t>j(x, y, t) = ${#,-(*, y)e~ia"}, 'W denoting the real part. The functions
(/>j for j = 1,2 represent respectively the velocity potentials for x > 0 and x < 0
respectively. We study the effect of surface tension on the wave maker in both the
cases of water of infinite and finite depths by way of determining the velocity potentials
4>j(x, y), after dropping the factor e~'°" from the whole mathematical formulation of

. the physical problem, which satisfies the partial differential equation

V20,=O in the fluid region (2.1)

subject to the free surface boundary conditions

M(f>jyyy + <pjy + K<f>j = 0 on y = 0, (2.2)
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where K = a>2/g, M = T/(pg) have their usual meaning (see Rhodes-Robinson [16]).
On the wave maker (see Chwang [4]), we have that

4>j, = -'k(<t>i-4>2) + U(y), on x = 0, (2.3)

where k = bpco//x, /n, is the dynamic viscosity, p is the constant density of the fluid.
The conditions at infinity are

0 1 -»• #1<

</>2 -* R2e-koy-'k<>x a s x - • - o o , (2 .4)

0 ; , | V 0 y | ->• 0

as
as

as y -

•> o o ,

•> - o o ,

•» o o ,

in case of water of infinite depth where Rt and R2 are unknown constants to be
determined and k0 is the real positive root of the cubic equation a(l + Ma2) = K,
in a.

Whereas, in the case of water of finite depth, the infinity and the bottom conditions
are

(pi -*• A0cosh&0(^ — y)e'koX as JC —> oo,

02 —*• B0coshk0(h — y)e~lk°x as x -*• —oo,
(.Z.j)

and

<pjy = 0 on y = h,

where y = h is the rigid bottom surface and ko is the solution of the transcendental
equation ko(l + Mk2,) sinhfc0^ = K coshkoh.

Further for the uniqueness of the solution of the boundary-value problems under
consideration, we have to meet with the generalized edge conditions (see Rhodes-
Robinson [17])

0uy(O+, 0) + iJfc(0,,(O, 0) - 02y(O, 0)) = TTA+, (2.6)

02*y(O-, 0) + ifc(0,,(O, 0) - 02,(0, 0)) = nX~, (2.7)

where A.J, AQ are indeterminate in nature and would be determined from the dynamical
edge conditions.

3. Method of solution for the case of water of infinite depth

We set

(3.1)

02 = ^2 + R2e-^-ihx (3.2)
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and define a Fourier type integral transform rjfj(x, £) for the function tyix, y) as given
by the relation

/•OO

i fax,%)= L($,y)xlfj(x,y)dy-$Mx/fjy(x,O), £ > 0, (3.3)
f Jo

where

The expression (3.1) for ij/j(x, £) can be rewritten after integrating by parts as

(3.5)

Using the Fourier sine inversion to the relation (3.5) we obtain that

irjix, y) = Clj(x)e-koy + C2j(x)e-^ + C

where CXj{x), C2J(x), Cy(x) are arbitrary functions of x and ko, cot and u>2 are the
roots of the cubic equation a( l + Ma2) = K, k0 is real and positive, u>i and co2 are
the complex roots with negative real parts. Because of the behaviour of i/fj(x, y) as
y -> oo we must have

C2J(x) = C3j(x) = 0 . (3.7)

Substituting for fy from (3.1) and (3.2) and using the mixed transform to the equa-
tions (2.1) along with the boundary conditions (2.2) and (2.4) we obtain that iffjix, £)
satisfy the ordinary differential equations

j,"-$2$j=0, 0'= 1,2), (3.8)

prime denoting ordinary derivative with respect to x (note that % is just a transform
- parameter), with the infinity condition as given by

^y(*.f) -*• 0 as |JC| -*• oo. (3.9)

The solutions of the equations (3.8) satisfying the conditions (3.9) are given by

fax, | ) = A,(M)e-*M, 0 = 1, 2) (3.10)

where A,(f) are determined as described below.
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Substituting for ij/j(x, £) in the expression (3.6) we obtain that

2 f°° L(£, y)
\j/j(x, y) = C\j(x)e~ko>' H— / — '— Aj(t-)e~^x^ d%. (3.11)

Again using the fact that i/j(x, v)'s satisfy the Laplace equation with \ffj(x, y) —• 0
as |x | —*• oo we obtain that

Clj(x) = 0. (3.12)

Thus, from the relations (3.1), (3.2), (3.11) and (3.12), we derive that

1 f
(3.13)

<Pi{x, y) = R 2 e °y oX H — / —— .^' N, —A2{%)e*xd%. (3.14)
JK JC\ S \ ^ *'•* S / 1^ **•

From the conditions (2.3) we have that

4>u — fax on x = 0, y > 0, (3.15)

which, after substituting for <j)x (x, y) and foix, y) from the relations (3.13) and (3.14),
gives that (see Rhodes-Robinson [12])

and (3.16)

where C is an arbitrary constant.
In the present study, we will assume that the motion is antisymmetric and hence

C = 0. Thus the full solution will be obtained by determining Ai(£), A2(t-), R\
and ?̂2-

Substituting for </>i and <p2 in the relation (2.3) from the expressions (3.13) and (3.14)
after making use of the results (3.16) with the assumption C = 0, we obtain that

Considering the mixed transform of the relation (3.17), and making use of the res-
ult (2.6), we obtain that

- $MnxA / tf -2ik).[/(y)L(|, y)dy - $Mnk+ / (£ - 2i*). (3.18)
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In a similar way from the conditions (2.3) and making use of the result (2.6), we obtain
that

. (3.19)

From the relations (3.16), (3.18) and (3.19) with C = 0 we obtain that

which suggests that the plate is of same material on both sides.
Next, to determine Ru as the motion is anti symmetric, we have

')• (3-21)

From the expression (3.13) we derive that

2K

and

L '^oc,y)e-^dy = ̂ ^ . - ^ i „;;•":; : ,„?„, (3.23)

so that, after eliminating the integral, we obtain

</>„(*, 0) fr
K Mk0

(3.24)

Operating both sides of the relation (3.24) by j^+2ik and making use of the conditions
^ (2.3) and (2.6), we obtain, after taking limit as x -»• 0+, that

= 2i[Ka{ko)Mkox*Z}
1 (l+3Mk2)(k + 2k) ' ( ' '

where a(ko) = /0°° U(s)e~k°sds. Substituting for Rt in the relation /?, = ~R2, we
can obtain R2. Thus the full solution in this case is obtained completely, when the
relations (3.13), (3.14), (3.18)-(3.20) and (3.25) are utilized.
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4. Method of solution for the case of water of finite depth

In this case, using the method of separation of variables, the solution of the
boundary-value problems for </>i and <j>2 satisfying the conditions (2.1), (2.2) and \
(2.5) have the form

(j>\{x, y) = Aocoshkp(h — y)e'koX + y ' An coskn(h — y)e~k"x, x > 0, (4.1)

oo

02(x, y) = Bo coshko(h - y)e~ik°x + ^ Bn coskn{h - y)ek"x, x < 0, (4.2)
n = l

where An, Bn are arbitrary constants which have to be determined and fcn's are the
infinite number of roots of the transcendental equation

kn{\ - Mk2
n) sinknh + K cosknh = 0.

From (2.3) we have

4>u = 4>2x o n x = 0 . (4.3)

Substituting for (j>\ and 02 from (4.1) and (4.2) in (4.3), we obtain that

o + B0)coshA:o(/i - y) - ^ f c n ( A n + Bn)coskn(h -y)=0 forO < y < h.
n=\ (4.4)

T h e full solution of the boundary-value problem will be determined, in this case,
provided the An's and B n ' s are completely determined.

Let us define the inner product

ifn.fm) = / fmWfnWdy + T7/n'(0)/;(0), for TO, II = 0, 1, 2, . . . , (4.5)
Jo K

where fo(y) = cosh&o(/i — y), 0 < y < h, and fn(y) = coskn(h — y), 0 < y < h,
n = 1, 2 , . . . . Then we have that

* M
My) fn(y) dy = —kokn s'mhkoh sinknh, n = 1, 2 , . . . , (4.6)Jo K

and

L
h M

fm(y)fn(y)dy = — kmkn s m k m h s i n k n h , for m ^ n m , n = 1 , 2 , . . . .
K (4.7)
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Again

0) = -kmkn sinkmh sinknh, for m ^ n, m, n = 1, 2 , . . . ,
(4.8)

/o'(O)/n'(O) = -/cokn sinhkoh sinknh, for n = 1, 2 (4.9)

From the relations (4.6)-(4.9) we thus have

(fm,fn) = 0, f o r m # n , m,n = 1,2, . . . , (4.10)

which suggests that the set of functions {/0, / , , . . . } are orthogonal with respect to
the inner product as defined by the relation (4.5). It is assumed that the above set of
functions forms a complete set (for details see Rhodes-Robinson [14]).

Then, by using the orthogonality property satisfied by the functions /n 's for n =
0, 1, 2 , . . . , we obtain from the relations (4.4) that

4koMiCt(l + Mkl) sinh^/i
K{2koh(l + Mkl) + (1 + 3MkD s i n h 2koh)'

4knM(l - Mkl)iCt sinknh (4.11)

K{2knh(l ~

forn = 1,2, . . . ,

where Ci is an arbitrary constant. As in the case of water of infinite depth, we will
assume that the motion is antisymmetric and hence C\ = 0 in (4.11).

Again, we have

A. A) = — 4 M 1 - •'•* ( 4 1 2 )

and

{fn,fn) = — ' " ? / , ' , ^ •"""•»' °""-nn'\ /I = 1 , 2 , . . . .

Further, substituting for fa and 02 from (4.1) and (4.2) in (2.3) after using (4.11) with
C\ = 0, we obtain that

iA0(lco + 2k)My) - J^(kn - 2ik)Anfn(y) = U(y). (4.14)

Taking the inner product with My) w e 8e t

4iko(\ + Mkl) [lo U(s) coshko(h -s)ds- ^7rA.Jsi

° ~ (*b + 2k) {2k0h(l + Mk2
0) + (1 + 3MA:O

2) sinh2M} ( 4
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and

4/*b(l + Mkl) [/„* U{s) cosh ko(h -s)ds- ^nk^ sinh kQh\

° ~ (*o + 2k) {2k0h(l + Mkl) + (1 + 3M*g) sinh2*0/j} " ( 4 1 6 )

Using (4.11), (4.15) and (4.16) with C, = 0, we obtain

*o+ = ^o - (4-17)

which suggest that the wave maker is made up of the same material on both sides.
Further, from (4.14), taking the inner product with fn(y), we obtain that

4kn(l - Mk2
n) \lo U(s) coskn(h -s)ds- ZfnK s i n ^ l

(*„ - 2ik) {2knh(l - Mkl) + (1 - 3MkDsin2knh]

Hence Bn can be determined from(4.11), (4.17) and(4.18). Substituting for Ao, Bo, An

and Bn in (4.1) and (4.2) we obtain the complete solution in this case.

5. Waves generated by the one-sided porous wave maker

In this case we are interested in the generation of surface waves only in the direction
of positive jc-axis. In such circumstances the potential function (p(x, y) satisfies the
equation (2.1) with the boundary condition (2.2). The conditions (2.3) are replaced
by

<px + ik(p = U(y) on x = 0, y > 0, (5.1)

(This condition was derived in detail in Chakrabarti and Sahoo [2].) The infinity
conditions are

4> - > R e - k o y + i k a x , as x -> oo (5.2)

and

(f>, |V0| -» 0 as y -> oo, (5.3)

in case of water of infinite depth where R is an unknown constant to be determined.
In the case of water of finite depth, the conditions to be meet with are

4> -+ A0cosh ko(h - y)eik<>* as x -> oo (5.4)
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and

(f>y = 0 on y = h. (5.5)

Finally the edge condition of the problems are given by

<M°+. 0) + ik<t>y{0, 0) = nk, (5.6)

where k is another undeterminable generalized edge slope constant (see Chakrabarti
and Sahoo [3] and Rhodes-Robinson [17], where this condition was suggested).

Proceeding as in Section 3 for water of infinite depth and as in Section 4 for water
of finite depth, we obtain that

2

Here

f r°° 1 /
• - ik), (5.8)= -\f

o
-2i{Ka(ko)-Mkonk}

A =

in case of water of infinite depth, where a(k0) is as defined in (3.25) and

h-y)e-k"x, x > 0, (5.10)

in case of water of finite depth, where

4/&o(l + Mk\) fg U(s) coshko(h — s)ds —

°~ (ko + k) [2k0h{\ + Mk\) + (1 + 3Mk£) sir

and

4<:n(l — Mk2
n) JQ U(s)cosfcn(/i — s)ds + Mkn/Knksinknh

j^ — L Ĵ
(kn - ik) [2knh(l - Mk$) + (1 - 3Mk%) sm2knh\
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6. Reflection of water waves by a vertical porous wall

As an application of the solutions obtained in Section 5, let us consider the reflection
of water waves by a vertical porous wall. The case of water of infinite depth has been
investigated by Rhodes-Robinson [17] and Chakrabarti and Sahoo [3]. Here, we will
only consider the case of water of finite depth.

In this case the conditions (5.1), (5.4) are replaced by

(j>x + ik<f> = 0 on x = 0, 0 < y < h (6.1)

and

<t> -* cosh ko(h - y) {e~ik°x + Aoe
ik°x} as x - » oo, (6.2)

where Ao is the unknown reflection coefficient to be determined.
Setting <p(x, y) = \Js(x, y) + e~'*°* coshk0(h — y), in the boundary-value problem

for <p(x, y), a problem for \f/(x, y) is obtained which is a particular case of the wave
maker problem considered in Section 5, with U(y) = i(ko — k) cosh ko(h — y), and
in the edge condition nk is replaced by nk — iko(ko — k) sinh koh.

The velocity potential in this case after using the results of Section 5 is given by

</>(*, y) =coshko(h - y)e-ikox + A0coshko(h - y)eikoX

00

-I- ^ An coskn(h - y)e~k"x, x > 0, (6.3)

n = l

where

k0 - k 4inMklk(l + Mkl) sinhM
ko + k

= 4nMk2
nk(l-Mk2

n) sinknh

K{km-ik)[2knh(l-""" ' " ° " " " ' ~' ' ' "

When there is no surface tension the result agrees fully with the results of
Chakrabarti and Sahoo [2]. Also when it = 0 = M, it is easily checked that Ao = 1
and An = 0 verifying the known results that the incident wave gets fully reflected
back.

7. Scattering of water waves by a vertical porous plate

As an application of the solution of the two-sided wave maker problem as well
as the problem of reflection of water waves by the vertical porous wall discussed
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above, in Sections 4 and 6, let us consider the problem of scattering of water waves
by a vertical porous plate. The case of water of infinite depth has been discussed by
Rhodes-Robinson [17]. Here, we will only discuss the case of water of finite depth.

| In this case, as in Section 2, the conditions (2.3), (2.4) and (2.5) are replaced by

0,, = - i*(0, - 02) on x = 0, (7.1)

"" with the conditions at infinity given by

0, -* cosh ko(h - y) {e~ikox + Aoe
ib>x} as x -» oo,

02 ->• coshkf)(h - y)Boe~ik°x as x -> - o o

and

(j>jy = 0 on y — h,

where Ao and Bo are the reflection and transmission coefficients to be determined.
The velocity potentials 0, and 02 are expressed in the forms as in the case of

Section 4, as given by

oo

0i(x, y) = cosh ko(h — y) {e~lk°x + Aoe'*0"} + ^]An coskn(h — y)e~Kx, x > 0,
»-' (7.3)

oo

4>2(x, y) = BQcoshko(h - y)e-
ik°x + ^Bn coskn(h - y)ek"x, x < 0. (7.4)

n=\

with

Ao ~l~ BQ = 1 +

An + Bn =

K{2k<>h(l
4A:nM(l - Mk2

n)iC2 sin Jfc,,A (7.5)

K[2knh(l -
forn = 1,2, . . . ,

where C2 is an arbitrary constant.
The full solution will be obtained once the unknown constants are determined

"" completely.
Setting <i>(x, y) = 0, (*, y) - fo(.-x, y) and * (* , y) = 0,(JC, y) + foi-x, y), we

obtain two boundary-value problems for <t>(x, y) and *(x, y) which are particular
cases of the problem already discussed in Section 6 with certain changes as described
below:

The condition (6.1) is replaced by

, + 2/fc<J> = 0 on x = 0 (7.6)
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and

*, = 0 on x = 0. (7.7)

In the infinity condition (6.2), Ao is replaced by Ao — Bo and Ao + Bo in the problems
for 4>(x, y) and 4>(x, _y) respectively.

Finally, the edge condition (5.6) is replaced by

<t>xy + 2ik<by = TT(A+ - Ao), at (x,y) = (0+,0) (7.8)

and

+ l-), at (x,y) = (0+,0). (7.9)

Substituting for the expressions 4>{(x, y) and (fcOc, y) from (7.3) and (7.4) in the
relation for <&(x, y) and V(x, y) and using the results of Section 6, we obtain

y) = coshko(h - y){e-ik°* + (Ao - B0)e
lktx)

h-y), (7.10)

^ A-3'), (7.11)

n = l

with

/c0 — 2A; 4ijr(Aj + A.o"
A o — Bo = +

k0 + 2k (ko + 2k) {2koh(l + Mkl) + 0 + 3M*o) smh2k0h]'

K +^o) cos knh, r, (7.13)
:n-2ik)\2knh(l-Mkl) + (l-3Mkl)s'm2knh\ ,

A + B = 1 +0 ° {2koh(l

and

for n = 1, 2, . . . ,

(7.14) >

4^M(AjXo)cos/:n/ i
n + Bn = -. r, for n = l,2,....

{2kMlMkt) + (l3Mk2)i2kh}' ( 7
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From the relations (7.12M7-15), we derive

553

Ao =

Bo =

AinM [(£<) + k)X% - kX^] cosh koh

2k

2k) {2koh(l + Mk2) + (1 + 3Mk2) si

AinM [kX^ - (ko + k)k^] coshk0h

An =

and

k0 + 2k (k0 + 2k) {2k0h(l + Mk2) + (1 + 3Mk2) si

AMn [(kn — ik)Xo + ikX^] cos knh

(7.16)

(7.17)

-, — r , for n = l , 2 , . . .
(kn - 2ik) \2knh(\ - Mk2) + (1 - 3Mk2) sin2knh\ (n ,Q,

1 " " ' (7.1o)

AMn [ikk^ + (kn - ik)X0 ] cos knh
n - \ l

Substituting for An, Bn for n = 0, 1, 2 , . . . , in the expressions (7.3) and (7.4) for
4>i(x, y) and <j>2(x, y) we obtain the full solution in this case.

From the relations (7.5) and (7.14) we obtain C2 = n(k^ — XQ). Also it is observed
that the reflection and transmission coefficients depend on the edge slope constants
on both sides of the wall.

|A0|

FIGURE 1. Reflection coefficient for different Kh in the case of a one-sided porous wall.
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8. Numerical results and discussions

[16]

Certain numerical results are determined in the case of water of finite depth by way
of computing the wave amplitudes at large distances in the cases of scattering of water
waves by a vertical porous plate as well as in the case of reflection of water waves by a
vertical porous wall. Though in the formulation of the problem, we have assumed that
A. is an undeterminable constant and the full solution depends on this constant, in order
to have certain observations about the effect of surface tension on the porous wall,
the values of reflection coefficients versus the non-dimensional porosity factors have
been plotted in Figure 1, for two different values of the wave effect parameter K h (see
Chwang [4]) for a fixed values of the edge slope constant A. and the surface tension
parameter M. It is observed that for large values of the porosity factors, the reflection
coefficients coincide in both the cases. In Figure 2, the reflection coefficients versus
the porosity factors have been plotted with and without the effect of surface tension.
Here, also after a certain stage in both the cases, the reflection coefficients coincide.
Finally in Figure 3, the reflection and transmission coefficients versus the porosity
factor are plotted keeping the edge slope constants, the surface tension parameter as
well as the wave effect parameter fixed in the case of scattering of water waves by
vertical porous plate as has been discussed in Section 7.

|A0|

8 10

FIGURE 2. Reflection coefficient in the case of a one-sided porous wall with and without surface
tension.
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1

0.8

0.6

0.4

0.2

n

YlBol

_——
M

lAol
—

= 0.075. Kh = 5.V = 5, XQ = 3

10 20 30 40 50

FIGURE 3. Reflection and transmission coefficients in the case of the scattering of water waves by the
porous plate.

9. Conclusion

The problems of forced surface waves generated by a harmonically oscillating
porous wave maker immersed in a fluid in the presence of surface tension have
been studied by way of solving certain boundary-value problems associated with the
two-dimensional Laplace equation. Both the cases of water of infinite as well as of
finite depths are considered. In the case of water of infinite depth, a generalised mixed
Fourier type transform has been employed to handle the boundary-value problems and
in the case of water of finite depth, a generalisation of the eigenfunction expansion
method has been exploited. As application of the general problems, the problem
of reflection of water waves by a porous wall as well as the scattering by a porous
plate have been considered in the case of water of finite depth. It can be noted
that the results for the two-sided wave maker problems can be obtained from the
one-sided wave maker problem by applying the reduction procedure adopted by
Rhodes-Robinson [17] as well as by the procedure discussed in Section 7.
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