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We present results on the effect of dispersed droplets in vertical natural convection (VC)
using direct numerical simulations based on a two-way fully coupled Euler–Lagrange
approach with a liquid phase and a dispersed droplets phase. For increasing thermal
driving, characterised by the Rayleigh number, Ra, of the two analysed droplet volume
fractions, α = 5 × 10−3 and α = 2 × 10−2, we find non-monotonic responses to the
overall heat fluxes, characterised by the Nusselt number, Nu. The Nu number is larger
when the droplets are thermally coupled to the liquid. However, Nu values remain close
to the 1/4-laminar VC scaling, suggesting that the heat transport is still modulated
by thermal boundary layers. Local analyses reveal the non-monotonic trends of local
heat fluxes and wall-shear stresses: whilst regions of high heat fluxes are correlated
to increased wall-shear stresses, the spatio-temporal distribution and magnitude of the
increase are non-monotonic, implying that the overall heat transport is obscured by
competing mechanisms. Most crucially, we find that the transport mechanisms inherently
depend on the dominance of droplet driving to thermal driving that can quantified by
(i) the bubblance parameter b, which measures the ratio of energy produced by the
dispersed phase and the energy of the background turbulence, and (ii) Rad/Ra, where
Rad is the droplet Rayleigh number, which we introduce in this paper. When b � O(10−1)
and Rad/Ra � O(100), the Nu scaling is expected to recover to the VC scaling without
droplets, and comparison with b and Rad/Ra from our data supports this notion.
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1. Introduction

Bubbles are ubiquitous. Within a liquid, they can play an important role in the transport
of mass and heat. Such complex interactions of bubbles and liquids can be found in various
applications and process technologies, for example in cooling systems of power plants,
metallurgical industries, catalytic reactions and in the mixing of chemicals (Brennen 2005;
Balachandar & Eaton 2010; Mathai, Lohse & Sun 2020). One commonly studied class of
bubble–liquid interaction is the bubble column (Mudde 2005), where liquid turbulence is
generated and sustained by a rising swarm of bubbles. This form of turbulence is typically
referred to as pseudo-turbulence (Lance & Bataille 1991; van Wijngaarden 1998; Mercado
et al. 2010) or bubble-induced agitation (Risso 2018).

Various parameters can be controlled to modulate heat transport in a bubbly flow.
For instance, one can use microbubbles to increase heat transport in the boundary layer
(Kitagawa & Murai 2013) or by inclining the domain (Piedra et al. 2015). The fluid
properties can also be varied. For example, Deen & Kuipers (2013) studied the effects of
bubble deformability and found localised increase of heat fluxes when bubble coalescence
prevails in the near-wall region, whereas Dabiri & Tryggvason (2015) showed that nearly
spherical bubbles tend to aggregate at the walls, which in turn agitate the thermal boundary
layers and result in higher heat transport than for the case with deformable bubbles. From
these studies, one key observation that can be made is that heat transport enhancement
has been largely linked to boundary layer effects, e.g. thinning of the thermal boundary
layers or ejection of thermal plumes. On the other hand, a recent experimental campaign
using a homogeneous bubble column found that the heat transport, characterised by the
Nusselt number Nu, not only increases by up to 20 times, but also becomes insensitive
to the thermal driving of the background flow, characterised by the Rayleigh number Ra
(Gvozdić et al. 2018; Gvozdić et al. 2019). The Ra-insensitivity persists across a range of
bubble volume fractions α between 5 × 10−3 and 5 × 10−2, implying that bubble-induced
liquid agitation overwhelmingly dominates the heat transport mechanism across the
thermal boundary layers. Indeed, the multifold enhancement in Nu is consistent with
engineering estimates in the design of bubble column gas–liquid reactors (Deckwer 1980).

Is there, however, any link between bubbly flows that directly influence the boundary
layers versus bubble column experiments? And if any, are the boundary layers uniformly
affected by the dispersed phase when α > 0? In this paper, we ask the question of how
other parameters, specifically the density ratio of the dispersed phase to liquid phase,
influence heat transport. Inspired by the water column experiments in Gvozdić et al. (2018)
and to make contact with recent studies, we selected a set-up of natural convection in a
rectangular cell containing a dispersed phase consisting of freely rising and deformable
light droplets.

The model set-up of the flow is thermal natural convection, in particular, a flow sustained
by applying a temperature difference between two opposing walls. Classical examples
of thermal natural convection include Rayleigh–Bénard convection (Ahlers, Grossmann
& Lohse 2009), where the hot wall is at the bottom and the cold wall at the top, and
horizontal convection (Hughes & Griffiths 2008; Shishkina, Grossmann & Lohse 2016),
where heating and cooling is applied at the same horizontal level. When the flow is
confined between a hot vertical wall and a cold vertical wall, gravity acts orthogonal to the
heat flux and this set-up is referred to as vertical natural convection (VC). For confined VC,
the bulk flow is quiescent (see mean profiles in figure 1a and visualisation in figure 1b) and
at low Ra, the laminar-like boundary layers are expected to dominate heat and momentum
transport (Shishkina 2016). This flow is unlike the unconfined, doubly periodic VC (Ng
et al. 2015, 2017) where a mean shear is present and determines heat transport in the bulk
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FIGURE 1. Visualisations of instantaneous temperature fields for VC at a Rayleigh number of
2 × 108. In panel (a), the red and blue curves correspond to mean velocity and temperature
profiles at x = 0.25Lx , 0.5Lx and 0.75Lx , respectively, at α = 0. Volume fractions shown are
(b) α = 0, (c) 5 × 10−3 and (d) 2 × 10−2. Rendered flow fields are for droplets with mechanical
coupling.

flow region (Ng et al. 2018). Hereinafter, we refer to the rectangular VC cell set-up as VC,
for simplicity.

When light droplets are introduced into VC, we ask two specific questions:

(i) Do the heat and momentum transport statistics exhibit monotonicity for droplets (i.e.
when the density of droplets are close to the density of the liquid)?

(ii) How important is the role of thermal coupling between the droplets and the liquid?

To answer these questions, we perform direct numerical simulations (DNS) of VC with
droplets where we have control over the density ratio and thermal coupling of the droplet
phase to the liquid phase. The droplets are fully coupled to the liquid phase DNS using
the immersed boundary method (IBM) and the interaction potential approach, both of
which are versatile numerical methodologies to simulate fully coupled fluid flows with
deformable interfaces (e.g. Meschini et al. 2018; Spandan, Verzicco & Lohse 2018b; Viola,
Meschini & Verzicco 2020). Furthermore, IBM offers some computational advantages
over existing numerical methods for multiphase flows (e.g. volume of fluid, level-set
and front tracking), for instance, the underlying discretised grid is fixed and no sharp
interfaces need to be resolved (Spandan et al. 2017). Recent advancements in the numerical
methodology have allowed the use of sparser discretisations of the deformable interface
relative to the underlying grid (Spandan et al. 2018a) without compromising numerical
accuracy, further easing the computational requirements for large-scale multiphase flows.
The disadvantage of IBM, however, is that droplet coalescence or splitting is hard to model
and correspondingly in this paper we refrain from attempting to do so.

Our paper is organised as follows: in § 2, we first describe the flow set-up and numerical
details for the fluid and dispersed phase. In § 3, the numerical results are examined in
detail. By analysing the near-wall heat fluxes (§ 4) and wall-shear stresses (§ 5), we relate
the droplet driving dynamics to changes in the near-wall statistics. In § 6, we discuss
and compare the influence of our selected parameters and the experimental parameters
as reported in Gvozdić et al. (2018). Finally, in § 7, we summarise our results and provide
an outlook.
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2. Flow set-up

Our reference set-up is the single-phase VC flow (figure 1b), which is a buoyancy driven
flow confined between two differentially heated vertical walls and two adiabatic horizontal
walls. This reference flow will be referred to as the liquid carrier phase. The flow is
governed by mass conservation, balances of momentum and energy conservation which
within the Boussinesq approximation read,

∂iui = 0, (2.1)

∂tui + uj∂jui = − 1
ρref

∂ip + δi1gβ(θ − θref ) + ν∂2
j ui + fi, (2.2)

∂tθ + uj∂jθ = κ∂2
j θ + qθ , (2.3)

where ∂t ≡ ∂/∂t, ∂i ≡ ∂/∂xi, (i, j = 1, 2, 3) and repeated indices imply summation. In
(2.2), fi is the back-reaction forces of the dispersed phase on the fluid arising from the
IBM. At an Eulerian point k, it is defined as f k

i = ∑Nl
l=1 clΦ

l
kF

l
i , where Nl is the number

of Lagrangian markers associated with the Eulerian point, cl is a scaling factor that
enforces conservation of momentum when transferring forces back and forth between
the Lagrangian and Eulerian locations, Φ l

k is the transfer function containing the shape
function coefficients for each Lagrangian marker (here, based on the moving least squares
(MLS) approximation) and Fl

i is the desired volume force component at the Lagrangians
l (refer to de Tullio & Pascazio (2016) and Spandan et al. (2017) for details). For
single-phase VC, fi = 0. The thermal analogue to fi in (2.2) is qθ in (2.3), which we
selectively enable or disable in the present study. We define ρref as the reference density,
θref as the reference temperature, β is the thermal expansion coefficient of the fluid, ν
the kinematic viscosity and κ the thermal diffusivity, all assumed to be independent
of temperature. The unit length is defined as the distance between the heated plates,
Lz, and the streamwise and spanwise domain lengths are Lx = 2.4Lz and Ly = 0.25Lz,
respectively. Hereinafter, all length scales are non-dimensionalised by Lz. No-slip and
no-penetration boundary conditions are imposed on the velocity at all four walls, whereas
periodic boundary conditions are imposed in the y-direction. The left and right walls
are imposed with temperatures hotter and cooler than the reference temperature θref ≡
(θh + θc)/2.

There are eight non-dimensional governing parameters for the VC flow with droplets and
we have selected three parameters to vary, namely the strength of thermal driving Ra, the
dispersed phase volume fraction α and the strength of droplet driving Rad (Ra is defined
below and Rad is defined in § 2.5). The remaining parameters are fixed and consists of the
Prandtl number (Pr, defined below), the domain aspect ratio (Lx/Lz), the Weber number
(We, defined in § 2.1), density ratio of the dispersed phase to fluid phase (ρ̂) and the ratio
of droplet diameter to unit length (D/Lz).

The governing parameters for VC are the Rayleigh and Prandtl numbers which are,
respectively, defined as

Ra ≡ gβΔL3
z

νκ
, Pr ≡ ν

κ
, (2.4a,b)

where � ≡ θh − θc. The aspect ratio (Lx/Lz) can also be an additional control parameter
for confined thermal convection problems (van der Poel, Stevens & Lohse 2011; Zwirner
& Shishkina 2018), but at present, we restrict our analyses to a fixed value. Our simulations
cover the values of Ra = 1.3 × 108–1.3 × 109 and for Pr = 7, corresponding to water.
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The typical flow response is described by the Nusselt and Reynolds numbers,

Nu ≡ fwLz

Δκ
, Re ≡ UsLz

ν
, (2.5a,b)

which quantify the dimensionless heat flux and degree of turbulence, respectively. In
(2.5a), fw ≡ −κ(〈θ〉xy/dz)|w is the wall heat flux and (·)|w denotes the wall value. Here,
Us is the ‘wind’-based velocity scale for VC (Ng et al. 2015) and accordingly, we
set Us ≡ 〈u〉xy,max , which is the maximum mean vertical velocity. Here, we use the
notations 〈·〉xy and 〈·〉yz to denote xy-averaged and yz-averaged quantities, respectively
(time-averaging is implied). The associated fluctuating components are denoted by (·)′

xy
and (·)′

yz, e.g. u′
xy = u − 〈u〉xy . With the addition of the thermal forcing term, qθ , in (2.3), a

different definition for Nu becomes necessary because (d〈θ〉xy/dz)|z=0 /=(d〈θ〉xy/dz)|z=Lz

and the mean temperature equation now obeys 〈w′θ ′〉xy − κd〈θ〉xy/dz − 〈qθ 〉xyz = const.
To overcome this difficulty, we employ the dissipation rate-based definition for the Nusselt
number

Nu ≡ εθ

κ(�/Lz)2
= 〈θh(d〈θ〉xy/dz)h − θc(d〈θ〉xy/dz)c〉

�2/Lz
+ 〈θ · qθ 〉

κ(�/Lz)2
, (2.6)

where εθ is the volume-averaged thermal dissipation due to turbulent fluctuations and
〈·〉 denotes time- and volume-averaged quantities. When qθ = 0, (2.6) equals to (2.5a).
The definition in (2.6) is also a direct analogue to the drag reduction calculations for
multiphase Taylor–Couette flows (e.g. Sugiyama, Calzavarini & Lohse 2008; Spandan,
Verzicco & Lohse 2018b), making it convenient when comparing heat transport at matched
Ra (discussed in § 3.5). Throughout this paper, we will use (2.6) when reporting values of
Nu, unless defined otherwise.

The droplets are fully resolved using IBM for deformable interfaces and the interaction
potential approach (de Tullio & Pascazio 2016; Spandan et al. 2017, 2018a). The
simulations are also coupled in a so-called four-way manner, i.e. the simulation is capable
of handling droplet–fluid forcing, fluid–droplet forcing, droplet–droplet collisions and
droplet–wall collisions (see § 2.1 for details on collision detection and modelling). Our
numerical methodology differs from point-particle-type simulations with heat transport
(e.g. Oresta et al. 2009): since the droplets with diameter D (at the point of injection)
are significantly larger than the turbulent Kolmogorov length scale η, we therefore
fully resolve the inhomogeneous hydrodynamic forces acting at the droplet interface.
To illustrate this point, we wish to stress that D/η ≈ 7–19 in our simulations. Here,
η ≡ (ν3/ε)1/4, where ε ≡ ν〈(∂ui/∂xj)

2〉 is the volume-averaged turbulent kinetic energy
dissipation rate. The key points of our IBM are detailed in § 2.1. This is followed by
numerical validations (§ 2.2), a description of the Lagrangian governing equations (§ 2.3),
a description on the model for thermally coupled droplets (§ 2.4) and, finally, the droplet
Rayleigh number (§ 2.5).

2.1. Numerical details
The liquid phase is solved using DNS by a staggered second-order accurate finite
difference scheme and marched in time using a fractional-step approach (Verzicco &
Orlandi 1996). We employ equal grid spacings in the x- and y-directions, whereas the
z-direction is stretched using a Chebychev type clustering. The selected resolutions are
constrained by considerations of three issues:
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(i) the resolution at the corner flow regions;
(ii) the resolution at the bulk flow; and

(iii) minimum number of grid points per droplet diameter.

Concerning point (i), we based our estimate from the minimum resolution guidelines
proposed for laminar-like thermal convection simulations (Shishkina et al. 2010). As a
check, a coarser simulation with 20 % fewer grid points results in Nu values that are within
0.5 %, indicating good convergence for our resolution. For point (ii), we determined that
max[Δx+

i ≡ Δxi/δν] ≈ 2.4 (details in table 1), where Δxi are the grid spacings in each
ith-direction and δν ≡ ν/uτ is the viscous length scale based on the local shear velocity
scale uτ ≡ [ν(∂〈u〉y(x)/∂z)|w]1/2. Here, 〈·〉y denotes averaging in the y-direction and in
time. Point (iii) is closely related to point (ii); although the bulk resolutions are coarse,
they are carefully selected such that D/(max[Δxi]) � 28, comparable to other immersed
boundary studies in turbulent flow with finite-size particles (Wang, Vanella & Balaras
2019). Other numerical strategies are certainly possible, such as employing uniform grid
spacings (Lu, Fernández & Tryggvason 2005) or by eliminating walls in the simulations
(Uhlmann & Chouippe 2017), however, these strategies are either limited by the Reynolds
numbers, or can be computationally costly. The resolutions employed here are therefore a
careful compromise for our values of droplet rise Reynolds numbers,

Red ≡ UdD/ν, (2.7)

where Ud is the time-averaged vertical rise velocity of the droplet. Additional validation
tests for our IBM are provided in § 2.2. Finally, to justify this point, we compare our IBM
resolutions with the minimum resolution conditions for a flow over a rigid sphere (Johnson
& Patel 1999). Given that our maximum droplet rise Reynolds number, max[Red] ≈ 220,
for an equivalent sphere Reynolds number, the dimensionless boundary layer thickness
at its stagnation point is δsp/D ≈ 1.13Re−1/2

d ≈ 0.08 (Schlichting & Gersten 2000). Our
simulation resolution assures that at least two grid points reside within the droplet
boundary layer. It may be tempting to treat this grid resolution as inadequate, however,
we emphasise that this estimate is not only based on the extreme boundary layer criterion
at the stagnation point, it is also based on the maximum Red value and largest grid spacing
in our set-up. Our IBM resolution improves at lower Red (i.e. for thicker droplet boundary
layers) and for finer near-wall grid spacings.

Our IBM employs the fast MLS algorithm (Spandan et al. 2017, 2018a). Two volume
fractions are simulated: α = 5 × 10−3 and 2 × 10−2 (see table 1). We also fixed the ratio
of initial droplet diameter to unit length, D/Lz = 0.08. Therefore, at any point of our
simulations, there are 12 droplets for α = 5 × 10−3 and 48 droplets for α = 2 × 10−2. The
ratio of D/Lz employed in our simulations is somewhat larger than laboratory experiments
with bubbles (e.g. Gvozdić et al. 2018) where the ratio of bubble diameter to channel
width ∼O(10−2). Sizes of dispersed phase have been shown to play a role in influencing
momentum and heat transport (Shen, Ceccio & Perlin 2006; Kitagawa & Murai 2013;
Verschoof et al. 2016); however, our choice of D/Lz is necessary in order to avoid
terminally expensive resolutions in accordance to our immersed boundary criteria (iii)
above. To ascertain whether the periodic (spanwise) domain size is sufficiently large to
avoid self-interactions of droplets, it is instructive to estimate the extent of a typical
droplet’s wake. As an approximation, the length of a sphere wake for a comparable
value of Red ≈ O(100) of our simulations is Lw/D ≈ 1 (cf. Clift, Grace & Weber (2005),
Chapter 5). Given that Ly/D ≈ 3.1 > 1, the spanwise domain size is sufficiently large and
we assume that the droplets do not interact with their own wake.
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Ra α Δx+ Δy+ Δz+
w Δz+

c Ts/(Lz/U�) Ts/〈td〉
(×109) (×10−2)

0.1 — 0.8 0.8 0.3 1.1 400 —
0.2 — 1.0 1.0 0.3 1.4 570 —
0.4 — 1.3 1.3 0.4 1.7 570 —
0.7 — 1.3 1.3 0.3 1.8 480 —
1.3 — 1.6 1.6 0.4 2.2 470 —

Mech. coupling 0.1 0.5 0.9 0.9 0.3 1.2 250 44
0.2 0.5 1.1 1.1 0.3 1.5 190 24
0.4 0.5 1.4 1.3 0.4 1.9 230 22
0.7 0.5 1.3 1.3 0.4 1.9 320 22
1.3 0.5 1.6 1.6 0.4 2.3 400 21

Mech. coupling 0.1 2.0 0.9 0.9 0.3 1.3 230 40
0.2 2.0 1.1 1.1 0.3 1.5 220 27
0.4 2.0 1.4 1.3 0.4 1.9 240 22
0.7 2.0 1.4 1.4 0.4 1.9 300 21
1.3 2.0 1.7 1.7 0.5 2.4 390 21

Mech. + therm. coupling 0.1 0.5 0.9 0.9 0.3 1.2 220 39
0.2 0.5 1.1 1.1 0.3 1.5 210 27
0.4 0.5 1.4 1.3 0.4 1.9 260 25
0.7 0.5 1.3 1.3 0.4 1.9 320 22
1.3 0.5 1.6 1.6 0.4 2.3 410 22

Mech. + therm. coupling 0.1 2.0 0.9 0.9 0.3 1.3 200 36
0.2 2.0 1.1 1.1 0.3 1.5 200 26
0.4 2.0 1.4 1.3 0.4 1.9 230 22
0.7 2.0 1.4 1.4 0.4 1.9 290 20
1.3 2.0 1.7 1.7 0.5 2.4 400 21

TABLE 1. Summary of simulation parameters. The corresponding number of grid points are
(nx , ny, nz) = (960, 96, 384) for Ra � 0.4 × 109 and (nx , ny, nz) = (1200, 120, 480) for Ra �
0.7 × 109. Here, Ts/(Lz/U�) and Ts/〈td〉 are the total simulation sampling interval in terms of
the free-fall velocity and droplet rise times, respectively.

At the start of each simulation, droplets are spatially initialised as spheres in a 4 × 3
array (in the xz-plane at y = 0.5Ly) for α = 5 × 10−3 and a 12 × 4 array for α = 2 × 10−2.
The droplet initial velocities are prescribed using a simple constant acceleration equation
as a function of their vertical height, with the assumption that the droplet velocities are
zero at x = 0. Droplets do not cross or touch the horizontal boundaries; once a rising
droplet’s interface is within D/2 from the top of the domain, the droplet is simultaneously
removed and reinjected randomly at the bottom of the domain at the height of D. An
alternative procedure would be to impose a stationary and homogeneous flux of droplets,
which may be more realistic and closer to laboratory experiments. Indeed, in a real flow,
there can be many bubbles and the number of bubbles is statistically constant. However,
it is infeasible to obtain this number numerically by brute force. Moreover, by imposing a
constant flux, the time scale of injection becomes an additional control parameter, which
we want to avoid in order to keep our problem simple. In short, our reinjection procedure
is a precise choice by simulation design which mimics the real system without introducing
an additional parameter. However, the trade-off for maintaining a constant droplet volume
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fraction and constant number of Lagrangian markers is that the rate at which the droplets
are injected fluctuates in our simulations.

During the reinjection of the droplets, the new (spherical) droplets are different from the
removed (deformed) droplets. So, strictly speaking, this approach is not conserving and the
horizontal walls can be interpreted as not adiabatic (although this is numerically imposed,
see § 2). Nevertheless, additional analyses of the average magnitudes of heat flux in the
vertical direction in the middle of the cell (not included in this paper) indicate that the
values are considerably smaller by at most O(10−1) of the horizontal laminar flux, �/Lz.
Therefore, heat transport is more important and predominant in the horizontal z-direction
as compared to the vertical x-direction, as will be discussed later in § 4.

The initial transient statistics at the start of the simulations are rapidly washed away after
two to three droplet flow-through cycles, Ts/〈td〉 where 〈td〉 is the time-averaged droplet
rise time. The reason for this is because of the multiple droplet removal and reinjection
routines. Therefore, before recording statistics, we conservatively discarded a minimum
of five droplet flow-through cycles, which correspond to discarding the first 50 to 150
sampling intervals depending on Ra (defined by Ts/(Lz/U�), where U� ≡ (gβΔLz)

1/2

is the free-fall velocity). Thereafter, at least 20 droplet rise intervals are recorded for
each simulation. The resulting averaged droplet spatial distributions in our simulations
are uniform, as shown in figure 3(b). In total, approximately 2 M central processing unit
(CPU) hours were consumed.

As introduced earlier, we refrain from simulating droplet coalescence and splitting since
these phenomena are extremely challenging tasks from both a physical and numerical point
of view. Instead, we use 2562 Lagrangian markers (equivalent to 5120 triangulated faces)
to represent each discretised droplet interface. This approach is computationally efficient
and scalable since it eliminates the need to stitch or regenerate meshes but is, however, an
inherent limitation of the present IBM-interaction potential approach.

Collision events (such as when two droplets get close to each other) are exceedingly
rare even from estimates of our α = 2 × 10−2 cases. The reasons are because the droplets
are randomly injected into the flow without any overlap, rise almost vertically, and are
not strongly swept by the background large-scale circulation unlike other flow set-ups
with a strong mean shear (e.g. Spandan et al. 2018b). Nevertheless, we still employed
the collision detection algorithm of Spandan et al. (2018a) in our numerics and the elastic
potential collision model by Spandan et al. (2018b). Briefly, when two or more Lagrangian
markers from different droplets reside in the same Eulerian cell at any time step, the elastic
potential repulsive force is applied to all Lagrangian markers in the Eulerian cell. This
force is proportional to the square of the inverse distance between the marker and the
centre of the Eulerian cell.

Upon reinjection, the initial interfacial temperature of the droplet, θ k
init, is equated to

the averaged temperature of the immersed fluid, according to θ k
init = N−1

f

∑Nf

k=1 θ k, where
θ k is the fluid temperature value interpolated on the barycentre of each triangulated face
using MLS and Nf is the total number of triangulated faces forming the discretised droplet
interface; θ k

init is subsequently forced using IBM to the Eulerian grid. A small initial droplet
vertical velocity ∼O(10−2)U� is also prescribed.

For the droplet boundary conditions, we assume that the droplets have negligible
thermal inertia and are surfactant-laden. The first assumption implies a small droplet
Biot number, defined by Bi ≡ ldh/kd (where ld is the characteristic droplet length
scale, h is the convective heat transfer coefficient and kd is the thermal conductivity
of the droplet interface) so that the internal droplet temperature can be approximated
by a uniform temperature in accordance with the lumped-capacitance model (Wang,
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Sierakowski & Prosperetti 2017). Our reasoning for the small droplet Biot number value
is as follows: by substituting the length scale ld ≡ D/6 (ratio of sphere volume to sphere
surface area) and the heat transfer coefficient h ≡ Nudkf /D, we obtain Bi = Nudkf /(6kd).
Here, Nud is the droplet Nusselt number and kf is the thermal conductivity of the fluid.
Next, assuming small Péclet values and neglecting phase change, we approximate Nud ∼
O(1) (cf. Oresta et al. 2009). Finally, we assume kd > kf , and so Bi < 1. The temperature
boundary condition at the droplet interface is then a homogeneous time-dependent
Dirichlet boundary condition (the thermal model is discussed in § 2.4). The second
assumption implies that the droplet boundary conditions are no-slip and impermeable
for velocity. Differences could be expected for free-slip boundaries corresponding to
clean interfaces: free-slip boundaries prevent viscous boundary layers from forming and
therefore would have negligible contributions to local viscous dissipation. However, since
clean bubbles present a unique set of challenges to achieve in laboratory environments,
we assume, for the sake of simplicity, the extreme scenario where the bubble
interfaces are saturated with surfactants. Indeed, for physical systems with surface-active
impurities, droplet interfacial dynamics may be closely approximated by a no-slip
interface (Duineveld 1995; Jenny, Dušek & Bouchet 2004). These simplified boundary
conditions also have the added benefit that they can be handled easily from a numerical
point-of-view, and hence, are computationally efficient given the size of the flow
problem.

Owing to deformation, individual droplet volumes can vary slightly throughout the
simulation, but fluctuate about a constant reference volume – this is the underlying
approach of the interaction potential (IP) model (described in § 2.3). To quantify the
droplet deformability, we define the Weber number, We ≡ ρref U2

�D/σ , which yields the
ratio of inertia to capillary forces, where σ is the surface tension. In our simulation
strategy, σ is not prescribed explicitly. Rather, an additional tuning step is performed to
obtain a set of IP model parameters such that We ≈ 3 × 10−2. The tuning step consists
of the following: a set of model parameters is first estimated from existing simulations,
for instance, from Spandan et al. (2018b). Then, with the selected model parameters, we
performed controlled test simulations of one droplet interacting with simple flows for
which reference analytical and computational data are available, specifically, a droplet
in shear flow (e.g. Maffettone & Minale 1998) and a droplet in cross-flow (e.g. Loth
2008; Schwarz, Kempe & Fröhlich 2016). Finally, in accordance with the tuning criteria
described in Spandan et al. (2017), σ is reverse-engineered by matching the droplet
deformation dynamics to the reference results in Maffettone & Minale (1998) and Schwarz
et al. (2016). It is emphasised that in order to simplify existing continuum models, this
tuning step is a necessary and felicitous step in the implementation of our numerical
model. We have also chosen to simulate a constant We value. The reason for this is
because, for our selected parameters, the background buoyancy driven flow is stronger than
droplet-induced agitations (discussed later in § 6). Therefore, we expect deformability to
play a weaker role than other governing parameters for the droplets, for instance ρ̂, D/Lz
or α. After extensive precursor simulations and checks, we decided to simulate droplets at
half the density of the fluid, i.e. ρ̂ ≡ ρd/ρref = 0.5, which is within the numerical stability
limit for explicit IBM time integration schemes (Schwarz, Kempe & Fröhlich 2015). The
value of ρ̂ is kept constant throughout our simulations. Another reason why the explicit
formulation is typically favoured over implicit (i.e. strongly coupled) approaches for the
fluid–structure interaction is also because of its computationally inexpensive nature. The
detailed explanation of the methodology is, however, beyond the scope of this paper. For
an in-depth discussion of the formulation, we refer readers to the paper of Spandan et al.
(2017).
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FIGURE 2. (a) Numerical set-up for code validation consisting of a mixed convection flow over
a rigid heated sphere. Here, U∞ and θ∞ denote the laminar free stream velocity and temperature,
respectively. In addition, θsph denotes sphere temperature, which is greater than θ∞. Also shown
is a typical temperature field for Resph = 100, Risph = 0.2 and Pr = 0.72, where red regions
represent the normalised temperature value of one and yellow regions represent zero. Only a
subset of the domain is shown. (b) Plot of Nusph and CD versus increasing ratio of sphere diameter
to local grid size, D/Δx . Percentages shown are relative to lower D/Δx values.

2.2. Code validation
The IBM code used in this study has been previously validated for various particle-flow
configurations (e.g. de Tullio & Pascazio 2016; Spandan et al. 2018a; Chong et al. 2020).
Given that the present study is a more complex flow system involving more parameters,
here, we provide details of additional validation tests for a mixed convection problem.
Specifically, our test set-up is a laminar flow over a rigid sphere which is held at a constant
temperature (θsph) and is hotter than the free stream temperature (θ∞), see figure 2(a).
Here, the gravity vector opposes the free stream velocity and the resulting buoyancy flux
is ‘assisting’ the flow (Kotouč, Bouchet & Dušek 2009; Musong & Feng 2014). The flow is
periodic in y- and z-directions and an outflow, radiation boundary condition is prescribed
at the outlet for velocities and temperature. The sphere is positioned in the middle of the
domain.

For this test set-up, the governing parameters are the sphere Reynolds number (Resph ≡
U∞D/ν), sphere Richardson number (Risph ≡ gβ(θsph − θ∞)D/U2

∞) and Pr. The system
responses are the sphere Nusselt number, Ñusph, and the drag coefficient, C̃D, defined as

Ñusph ≡ F̃θ/
[
π(θsph − θ∞)D

]
and C̃D ≡ F̃x/

[
(1/2)ρ∞U2

∞π(D/2)2] , (2.8a,b)

where F̃θ = − ∮
∂V ∇θ · n dA and F̃x = ∮

∂V δi1(τ · n) dA. Equation (2.8a,b) can be directly
computed by numerical integration of the heat fluxes and stresses over the volume of the
sphere. However, the numerical integration involves extending a probe normal to each
discretised surface and performing additional MLS interpolation of velocities, pressure
and temperature at the tip of the probe. Correspondingly, the number of calculations
increases dramatically with increasingly finer resolutions (which are required for the
following test cases), rendering the test simulations infeasible. The probe extension
approach is also unnecessary since here we are dealing with a stationary, non-deforming
mesh. Therefore, instead of (2.8a,b), we employ a more straightforward approach by
directly integrating the immersed boundary thermal and hydrodynamic forcing terms over
the NE Eulerian grid points associated with the Lagrangians, i.e.

Nusph ≡ Fθ/
[
π(θsph − θ∞)D

]
and CD ≡ Fx/

[
(1/2)ρ∞U2

∞π(D/2)2] , (2.9a,b)
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CD Nusph

Resph Risph Pr Present MF14 KB09 WL86 Present MF14 KB09 WL86

60 0.2 0.72 1.73 — — 2.18 6.07 5.98 — 6.02
60 4.0 0.72 4.51 — — 5.20 7.38 7.20 — 7.18
100 0.2 0.72 1.33 — 1.3a 1.73 7.50 7.37 7.2 7.51
100 0.3 0.72 1.40 — 1.4 — 7.60 — 7.5 —
100 0.3 7.0 1.33 — 1.2 — 15.23 — 14.6 —

CD

Resph Risph Pr Present LC17 WZ11 KK01

100 0.0 — 1.12 1.08 1.13 1.09

TABLE 2. Lift coefficients CD and sphere Nusselt numbers Nusph at various Resph, Risph and Pr.
Also provided are results from MF14 – Musong & Feng (2014); KB09 – Kotouč et al. (2009);
WL86 – Wong et al. (1986); LC17 – Liska & Colonius (2017); WZ11 – Wang & Zhang (2011);
and KK01 – Kim et al. (2001).

aInterpolated from data.

where Fθ ≡ −κ−1 ∑NE,tot
k=1 f k

θ ΔVk and Fx ≡ −ρ∞
∑NE,tot

k=1 f k
x ΔVk (Breugem 2012; Musong

& Feng 2014; Wang et al. 2019). Here, ΔVk is the forcing volume associated with each
Eulerian point and is equal to the Eulerian cell volume. Hereinafter, we report Nusph and
CD values computed according to (2.9a,b).

First, we test the convergence for this set-up. For this test, the ratio of sphere diameter to
local grid size (D/Δx) is varied from 16 to 80 and we fix Resph = 60, Pr = 0.72, Risph =
4.0 and the domain size (Lx × Ly × Lz = 8D × 4D × 4D). As discussed in § 2.1, the ratio
D/Δx is a crucial parameter in IBM since a sufficiently small grid size is necessary to
properly resolve the thermal and viscous boundary layers around the sphere (Wang et al.
2019). Figure 2(b) shows the trend of Nusph and CD versus D/Δx . Also shown in the figure
are the percentage of change relative to lower D/Δx values. From the figure, Nusph and
CD converges to within 0.3 % and 4.2 %, respectively, for D/Δx � 48. In this particular
test case CD appears to be more sensitive, however, as D/Δx is increased, the percentage
change reduces to below 0.5 %. For our simulations for droplets in VC, D/Δx of 40 and
higher are achieved in near-wall regions where the grid spacings are finer. Therefore, we
conclude that the resolutions used in the VC flow with droplets are sufficiently resolved
and a reasonable compromise in order to keep our simulations tractable.

Next, we validate our simulations with results from the literature. For these tests, we
employed a larger domain where Lx × Ly × Lz = 10D × 5D × 5D, in accordance with the
domain sensitivity studies in Musong & Feng (2014). We vary Resph (=60, 100), Risph
(=0.2, 0.3, 4.0) and Pr (=0.72, 7.0). For this test, a more judicious numerical setting is
warranted and, therefore, we used larger D/Δx values, where D/Δx ≈ 50 for Resph = 60
and D/Δx ≈ 80 for Resph = 100. The results are summarised in table 2.

From the table, our results for CD generally agree with results from the literature,
especially for the Resph = 100 cases. We note large differences for our CD values and
the values of Wong, Lee & Chen (1986). Therefore, as an added assurance, we repeated
the test case of the flow over a sphere at Resph = 100 without the active temperature
field (i.e. Risph = 0) and find that our results remain in good agreement to within 3.7 %
when compared with simulations of Liska & Colonius (2017), Wang & Zhang (2011) and
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Kim, Kim & Choi (2001). For Nusph, we find that our overall results are also in good
agreement with the literature to within ≈4 % maximum. The consistency of our results
indicate that our IBM achieves reasonable accuracy provided the grid is fine enough to
resolve the boundary layers. However, since this approach inherently comes with a high
computational cost, we choose to balance our IBM resolution strategy with the resolution
necessary to resolve the background VC flow, as rationalised in § 2.1.

2.3. Description of the Lagrangian governing equations
Following the definition of IBM for deformable interfaces/fluid–structure interaction, the
droplet interface is represented by a network of Lagrangian nodes evolved by the IP
model (de Tullio & Pascazio 2016; Spandan et al. 2017). The equation of motion for each
Lagrangian node, l, moving with velocity ul is

dul

dt
= F h + F g + F i. (2.10)

In (2.10), the terms are made dimensionless with the unit length Lz and free-fall velocity
U�. The forces contributing to the right-hand side of (2.10) are the hydrodynamic loads
F h, buoyancy F g and internal forces F i, where

F h = Lz

ρ̂VlU2
�

∫
S
τ · n dS and F g ≡

(
1 − 1

ρ̂

)
Lz

U2
�

g. (2.11a,b)

In (2.11a), Vl is the volume of the node, but lacks a physical definition because the
definition of the thickness of a liquid–liquid interface is not straightforward. To overcome
this, following Spandan et al. (2017), we treat Vl as a free parameter and fix Vl = 1.

Now, F h can be computed from direct integration of the viscous and pressure stresses
from the flow, whereas F g is prescribed by varying Ra and Rad (the definition for Rad is
described in § 2.5). The internal forces F i, on the other hand, come from modelling the
droplet deformation characteristics using the IP model. The idea behind the IP model is
to employ a spring network of nodes with tunable model parameters in order to represent
the discretised droplet surface. On this point, a word of caution is warranted: because this
is a model based on elastic structures, the IP model is an approximation of the actual
interfacial dynamics arising from surface tension phenomena. The reason why the model
is viable is because it is a phenomenological model, i.e. exact interfacial dynamics and the
IP model both rely on the fundamental principle of minimum potential energy. However,
the limitation of the model is that it cannot handle extreme deformations such as droplet
breakup phenomenon because (i) the determination of the model parameters for large We
is non-trivial, and (ii) the Lagrangian resolutions become terminally high.

A brief description of the IP model is as follows: F i represents the surface forces acting
on the nodes of the discretised droplet surface. Under external hydrodynamic loads, the
network of nodes deform and stores potential energy into the system. The potential energy
is subsequently converted to surface forces by differentiating the potentials with respect
to the displacements of each node. Details of the individual potentials of the IP model are
outlined in § 2.3 of Spandan et al. (2017).

2.4. Model for thermally coupled droplets
For the lumped-capacitance model, two simplifying assumptions are made: (i) the droplets
do not generate heat, and (ii) the internal temperature fields (and therefore interfacial
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temperature) of the droplets are uniform. Based on these assumptions, the interfacial
droplet temperature is updated at every time step according to

dθd

dt
= − κ

Vd

∮
Sd

∇θ · n dSd, (2.12)

where θd is the mean interfacial droplet temperature, Vd is the volume of the droplet,
Sd is the droplet surface area and n is the outwardly directed unit normal. The droplet
surface temperature is initialised as the mean surface temperature at its injected location,
according to the initialisation step described earlier in § 2.1. After injection, the droplets
rise and deform with respect to their original state (a sphere with diameter D), but do
not significantly change in volume. Our model is therefore simpler than other numerical
models with thermal coupling, for instance, studies that consider droplet growth at the
boiling limit (e.g. Oresta et al. 2009; Lakkaraju et al. 2011) or models that rely on droplets
with a constant geometry (e.g. Wang et al. 2017).

The specific heat capacity ratio of the droplets to liquid phase (cp,d/cp,f ) is set equal to
2, so that the heat capacity ratios of the droplets to liquid phase (cd/cf ) are approximately
equal to α. The assumption is based on the following: the total heat capacity of a phase
is fixed by the specific heat, density and volume of the phase. Taking the ratio of heat
capacities, we obtain cd/cf = (cp,d/cp,f )ρ̂α/(1 − α) ≈ (cp,d/cp,f )ρ̂α for small α values,
where cp is the specific heat capacity. Finally, with cp,d/cp,f = 2, which is equal to ρ̂−1 in
our set-up, cd/cf ≈ α. The heat capacity ratio therefore only becomes important at large α.

2.5. Derivation of the droplet Rayleigh number
In addition to the control parameters defined in (2.4a,b), we introduce the droplet Rayleigh
number, Rad, to quantify the droplet driving. It is defined as

Rad ≡ αgL3
z

ρ̂νκ
, (2.13)

which is conveniently derived from scaling arguments of the governing equations outlined
in § 2.3.

We focus on the second term F g in (2.11b). Since (2.11b) represents the contribution
from an isolated droplet and we are interested in defining a parameter for collective droplet
effects, it would be reasonable to include the volume fraction parameter, α. Therefore, for
0 < ρ̂ < 1, we define

Fg
α ∼ αgLz

ρ̂U2
�

=:
Rad

Ra
, (2.14)

which quantifies the relative dominance of droplet driving to thermal driving. It is
important to keep in mind that in deriving (2.14), we did not consider other parameters
(such as droplet size, heat capacity ratio and deformability) which would play a role
towards the final flow dynamics (Serizawa, Kataoka & Michiyoshi 1975; Shen et al. 2006;
Kitagawa & Murai 2013; Verschoof et al. 2016). In this study, we propose that (2.14)
is informative when used as an engineering estimate to quantify similar flow problems.
However, extensions to other flow configurations would require practical fine tuning based
on systematic data, which are currently lacking.

Other dimensionless parameters similar to Rad/Ra have also been proposed for different
flow configurations, but these require a priori knowledge of the dispersed phase dynamics
and/or flow statistics. For example, Climent & Magnaudet (1999) proposed the Rayleigh
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FIGURE 3. (a) Joint probability density function of droplet deformations characterised by Γ
versus the droplet rise Reynolds number, Red, averaged over all cases. Outermost contour level
is 0.03 and the contours are spaced 0.06 apart (reproduced in the colourbar for emphasis). Inset
plots of panel (a) show representative two-dimensional droplet shapes for two Red values. Also
shown are the directions of the droplet rise velocity Ud and gravity g. (b) Normalised droplet
concentration profiles for α = 5 × 10−3 (blue) and 2 × 10−2 (red) as a function of horizontal
component z, averaged across all Ra. The associated colour-shaded regions show ±1σ variation
about the averaged concentration value at the corresponding z location.

number expression, RaCM ≡ ρgαH3/(νUb) (H is the height of the liquid layer and Ub is
the relative rise velocity of the bubble), to quantify bubble-induced convection. Based
on the notion of pseudo-turbulence (Lance & Bataille 1991), which is defined as the
fluctuating energy induced by the passage of bubbles under non-turbulent conditions, van
Wijngaarden (1998) proposed the so-called bubblance parameter b ≡ (1/2)U2

bα/u2
0 (u0 is

the vertical velocity fluctuations of background turbulence). Since Rad/Ra is a natural
control parameter for VC with light droplets, we therefore use this ratio as input for
our simulations. Note that Rad is constant for a given α and therefore Rad/Ra reduces
with increasing Ra (this is equivalent to an increase in Froude number with increasing
Ra). To make the simulations of the fluid–structure interaction tractable, we also run the
simulations at g/200. The resulting Rad/Ra is 5 × 10−4–5 × 10−5 for α = 5 × 10−3 and
2 × 10−3–2 × 10−4 for α = 2 × 10−2.

3. Droplet influence on flow statistics and profiles

In this section, we analyse the results for 0 � α � 2 × 10−2, starting with a discussion
of the droplets statistics.

3.1. Distribution of droplet aspect ratio versus bubble Reynolds number
From our simulations, the maximum droplet Reynolds number is Red ≈ 220 and its
time-averaged value is, 〈Red〉 ≈ 100. As the droplets rise, they undergo deformation from
the interfacial hydrodynamic loads. In figure 3, we characterise the deformation of the
droplets in our simulations using the aspect ratio, Γ , of the horizontal to vertical axes
(most often identical to the ratio of major to minor axes), which are determined by
fitting two-dimensional Fourier descriptors (Duineveld 1995; Lunde & Perkins 1998)
to the projected droplet outlines in the xy- and xz-plane. The joint probability density
distribution in figure 3 shows that the droplets undergo moderate deformation between
Γ ≈ 1 to Γ ≈ 1.3, agreeing with the relatively small We values. Values of Γ < 1 are
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FIGURE 4. Mean profiles as a function of horizontal component z: (a–c) vertical velocity
〈u〉xy/U�; (d–f ) temperature (〈θ〉xy − θref )/�. (a, d) α = 0; (b, e) α = 5 × 10−3; and (c, f )
α = 2 × 10−2. For α = 0, only the left half of the profiles are shown since the profiles are
antisymmetric about the vertical centreline. Dashed grey curves represent mechanical coupling
only. Solid red curves represent mechanical and thermal coupling. Darker curves represent
higher Ra.

caused by small deformations in the droplet shapes after the reinjection step at the lower
boundary, where the droplets are stirred by the cold fluid front. Visual inspections of
the instantaneous shapes (insets of figure 3) show that the spherical droplet loses its
fore-and-aft symmetry, with the front of the droplet becoming flatter than the back. Due to
the relatively moderate Red values, we do not observe droplet path instabilities throughout
our simulations. In figure 3(b), we show that the droplets concentration profile is uniformly
distributed for each respective α value and averaged over all Ra cases.

3.2. Profiles of mean vertical velocity and temperature
Now, we turn our focus to the flow statistics. To establish a baseline, we first analyse the
influence of the droplets on the mean flow profiles of VC.

Figure 4 shows the mean vertical velocity and temperature profiles plotted versus the
horizontal component z (note that all length scales have been made dimensionless with
Lz). Without droplets, the mean profiles are anti-symmetric about the channel centreline
(figure 4a,d). The cell centre is stably stratified (figure 6d) with d〈θ〉xy/dz|z=0.5 = 0
and 〈u〉xy|z=0.5 = 0. Therefore, unlike the doubly periodic VC set-up (Ng et al. 2015,
2017), there is no persistent mean shear in the bulk of the flow. For α > 0 and
for both coupling cases, the mean vertical velocity profiles are asymmetric with a
much stronger downward velocity magnitude near the cooler walls (figure 4b,c). This
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FIGURE 5. Visualisations of (a) vertical velocity, and (b) temperature field for Ra = 0.1 × 109

and α = 5 × 10−3. The streamlines depict the cellular-like large-scale circulation and the
distortions from the passage of droplets. In panel (b), the upstream and downstream regions
are indicated at the hotter (red) and cooler (blue) walls, respectively.

symmetry-breaking phenomenon can be more clearly observed in figure 5, where the
y- and time-averaged vertical velocity and temperature fields for Ra = 0.1 × 109 and
α = 5 × 10−3 are visualised. In figure 5(a), the downwards flowing (colder) fluid extends
almost the entire vertical extent x as compared with the upwards flowing (hotter) fluid.
The difference between the maxima and minima of 〈u〉xy is largest for the smallest Ra,
indicating that the droplet forcing is strongest.

The mean temperature profiles (figure 4e, f ) also exhibit asymmetries. For α = 5 × 10−3

and at the lowest Ra, the temperature profiles for both coupling cases are relatively constant
and do not exhibit any undershoot, which is observed for α = 0 in figure 4(d) at z ≈
0.04. However, at higher Ra, the profiles now bear some resemblance to the cases when
α = 0, corroborating the notion that thermal driving increasingly dominates. Here, we
note that although 〈θ〉xy > θref in the bulk, the globally averaged temperature field 〈θ〉
is statistically stationary within 0.5 % for all cases. In the bulk region (0.2 � z � 0.8),
we obtain d〈θ〉xy/dz|bulk ≈ 0. Based on these results, the influence of the light droplets is
seemingly most pronounced at the vertical boundaries as compared to the bulk.

3.3. Profiles of mean horizontal velocity and temperature
Figure 6 shows the mean horizontal velocity and temperature profiles plotted versus the
vertical component x . When α = 0, the velocity profiles are antisymmetric (figure 6a)
and the temperature profiles are constant for all Ra (figure 6d). When α > 0, the
antisymmetries are destroyed: for α = 5 × 10−3, the horizontal velocities are larger at the
top wall (figure 6b), whereas for α = 2 × 10−2, the horizontal velocities are larger at the
bottom wall (figure 6c). The source for the asymmetry can be traced to the passage of
droplets entering the bottom or leaving the top of the domain: at the lower boundary,
the droplets which have near-zero velocity block the horizontal flow causing the fluid to
accelerate around the droplets. At the upper boundary, the droplets exit the domain at
terminal velocity, and the entrained fluid impinges on the upper wall. Both mechanisms
trigger intermittent intrusions of hotter and colder fluid at the upstream corners of the
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FIGURE 6. Same as figure 4, but now for the mean profiles as a function of the vertical
component x : (a–c) horizontal velocity 〈w〉yz/U�; (d–f ) temperature (〈θ〉yz − θref )/�. For
α = 0, only the velocity profiles between 0 � x � 1.2 are shown since the profiles are
antisymmetric about the horizontal centreline. Colour legends are the same as figure 4.

thermal boundary layers at the vertical walls. Since the blockage factor is higher for the
α = 2 × 10−2 cases, the magnitude of the mean horizontal velocities are larger at x � 0.3
as compared to the α = 5 × 10−3 cases.

For the temperature profiles, we note an overall weakening of the stable stratification at
higher α (figures 6e and 6f ), with the bulk mean temperatures 〈θ〉yz → θref . The relatively
uniform value of 〈θ〉yz for the most part of x indicates strong mixing of the thermal field
with increasing α.

3.4. Root-mean-square profiles of vertical velocity and temperature
The root mean square (r.m.s.) of the fluctuating quantities are plotted in figure 7 for all
cases as a function of horizontal component z. Here, we define (·)′

rms ≡ (〈u′〉2
xy)

1/2. When
α = 0 (figure 7a,d), both u′

rms and θ ′
rms exhibit near-wall peaks and are symmetrical about

the channel centreline.
When α > 0, the bulk velocity fluctuations u′

bulk,rms > 0 as a direct result of droplet
induced liquid fluctuations. Interestingly, u′

bulk,rms at lower Ra values are much larger than
at higher Ra, which highlights the greater influence of droplet forcing on the flow at
lower Ra. A rough estimate of the amplitude of the droplet-induced liquid agitations
is as follows: for the lowest Ra, computing the ratios of max[u′

rms/U�] between α > 0
and α = 0 gives relative perturbation magnitudes of ≈ 3 and 6 times, for α = 5 × 10−3
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FIGURE 7. Same as figure 4, but now for the r.m.s. statistics as a function of the horizontal
component z: (a–c) 10u′

rms/U�; (d–f ) θ ′
rms/�. For α = 0, only the left half of the profiles are

shown since they are antisymmetric about the vertical centreline. Colour legends are the same as
figure 4.

and 2 × 10−2, respectively. The ratios are smaller at higher Ra because the background
VC flow increasingly dominates the droplet-induced liquid agitations. The u′

rms profiles
also exhibit slight asymmetry with values tending to be larger closer to the colder wall
as compared to the hotter wall. This asymmetry is consistent with the notion of a more
intermittent colder downwards flow caused by the disruption of the large-scale circulation
by the droplet passage, as discussed in § 3.2.

For θ ′
rms, the magnitudes in the bulk for α > 0 (figure 7e, f ) tend to be lower than for the

case when α = 0 (figure 7d), where θ ′
rms,bulk ≈ 0.2. With thermal coupling, the θ ′

rms profiles
are typically slightly larger than without thermal coupling and counteracts the mechanical
agitation by the droplets. This effect can be explained by the thermal exchange of the
droplet and the surrounding liquid which induces local thermal fluctuations. Therefore,
both the mechanical agitation at larger α and the thermal coupling of the droplets
contribute to the bulk mixing of the thermal field.

3.5. Scaling of Nusselt and Reynolds numbers versus Rayleigh number
In figure 8, we present the scaling of the Nu and Re versus Ra. Here, we employ
the wind-based Reynolds number, Re ≡ 〈u〉xy,maxLz/ν as a measure of the large-scale
circulation.

When α = 0.0 (solid circles, figure 8), we find that Nu ∼ Ra0.25±0.003 and Re ∼
Ra0.50±0.002 which are in agreement with the Nu ∼ Ra1/4 and Re ∼ Ra1/2 analytical
predictions for laminar boundary layer-dominated VC (Shishkina 2016). For VC with
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FIGURE 8. (a) Compensated Nu versus Ra, and (b) compensated Re versus Ra. Inset of panel
(a): ratio of Nu|α>0 to Nu|α=0. Solid black symbols are DNS data for α = 0. Upwards-pointing
blue triangles are for α = 5 × 10−3 cases and downwards-pointing red triangles are for
α = 2 × 10−2. Open triangles denote mechanical coupling only and filled triangles denote both
mechanical and thermal coupling. The Nu versus Ra, and Re versus Ra scalings for α = 0, are
consistent with analytical predictions for VC driven by laminar boundary layers, i.e. Nu ∼ Ra1/4

and Re ∼ Ra1/2 at constant Pr (Shishkina 2016).

droplets (triangles), the Nu values appear to be larger at higher Ra values; however, a
big variation about their mean persists across the range of Ra simulated. Given this
uncertainty, it is therefore unclear whether a power law exists in the present parameter
space and we dispense with any attempts to fit effective power laws. Further judicious
studies at larger separations of Ra values would be prudent and could provide more
information. On the other hand, the Re trends are clearly less steep than the Ra1/2 scaling
with Re values that are much larger at lower Ra and decrease in magnitude with increasing
Ra. When comparing the coupling cases, the effective scaling for Nu and Re is largely
unaffected. However, by including thermal coupling, the temperature field is distributed
more efficiently, and so the magnitude of the heat transport is increased. Albeit small,
this increase is an interesting result because our small Biot number assumption implies a
weaker influence of thermal coupling in our flow.

As a direct comparison for Nu, the ratio Nu/Nuα=0 is shown in the inset of figure 8(a) and
the values range from 0.95 to 1.1. Some caution is warranted here when interpreting the
ratios. Because of the rather large variations of NuRa−1/4 as shown in the figure, we cannot
conclusively claim that there exists a decrease in Nu at low Ra. However, we can link the
variations of the ratios to the different manner in which the droplets locally influence the
wall heat fluxes and wall shear stresses. The local influences are quantified and discussed
in § 4 and in § 5.

Now, we focus on the Re trends. For α > 0, the Re values tend to be larger than for the
α = 0 case and this is consistent with the response of the VC flow due to the passage of the
droplets across the top and bottom boundary layers. As the droplets cross the horizontal
boundary layers, the large-scale circulation of the background VC flow is continuously
disrupted, triggering horizontal intrusions of warmer fluid at the top wall and cooler fluid
at the bottom wall (peaks in mean horizontal velocities in figures 6b and 6c), similar to
the intrusions observed in transient VC in a square cavity (Patterson & Imberger 1980;
Armfield & Patterson 1991). For α = 5 × 10−3, at the higher Ra values, the Re values tend
to approach the Re values for α = 0. This incipient trend suggests that the droplet driving
is no longer dominant at this part of the parameter space as compared to the α = 2 × 10−2

case.
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FIGURE 9. Profiles of Nuloc plotted as a function of the vertical component x at the hot wall
(a–c), and the cold wall (d–f ). Colour legends are the same as figure 4.

4. Droplet influence on local Nusselt number

In this section, we link the Nu versus Ra variations discussed in § 3.5 to the changes
in the local Nusselt number evaluated at the hot and cold walls. We define the local
Nusselt number as Nuloc ≡ fw,locLz/(Δκ) = [∂〈θ〉y(x)/∂z]|w/(�/Lz), which is the local
dimensionless temperature gradient evaluated at z = 0 and Lz. The trends are shown in
figure 9 as function of x .

From figure 9, Nuloc are larger in the upstream of the vertical boundary layers, that is
x � 1.2 for figure 9(a–c) and x � 1.2 for figure 9(d–f ). Here, the larger values of Nuloc
simply reflect the thinner thermal boundary layers developing from the corners of the
domain. For α = 0, Nuloc monotonically decreases as the boundary layer develops and
is consistent across the Ra range. However, the trends vary considerably for α > 0. For
example, relative to the α = 0 cases, (i) Nuloc,h becomes lower for x � 1.2, and (ii) for
α = 2 × 10−2, both Nuloc,h and Nuloc,c are roughly constant for 0.6 � x � 1.8. Since these
changes directly reflect the thermal boundary layer thicknesses, we can conclude that the
droplets not only influence the bulk statistics as shown in § 3, but would also influence the
local thermal boundary layers.

To emphasise the changes in Nuloc, we plot the ratio of Nuloc and Nuloc,0 in figure 10.
(Nuloc,0 is Nuloc computed for the α = 0 cases). The corresponding wall areas for Nuloc are
also shown in the insets, with reduced-Nuloc values denoted by left-pointing open triangles,
and increased-Nuloc values denoted by right-pointing solid triangles. For α = 5 × 10−3, the
decreased Nuloc,h can be clearly seen for all Ra and x � 1.2 (figure 10a,e). This decreasing
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FIGURE 10. Ratio of Nuloc to Nuloc,0, which is the case for α = 0, plotted as a function of the
vertical component x . The corresponding wall areas of the ratios versus Ra are shown in the
inset: wall areas with reduced Nuloc are denoted by left-pointing open triangles, and increased
Nuloc by right-pointing solid triangles. Darker curves represent higher Ra.

behaviour can also be observed for α = 2 × 10−2, although the corresponding wall area
with decreased Nuloc,h is smaller for the mechanically coupled case (see figure 10c and
the inset plot). The decreased Nuloc,h for the α = 5 × 10−3 case overwhelms the increased
Nuloc,c for x � 1.2, with the lowest Ra cases being most strongly influenced, as previously
shown in figure 8. In contrast, Nuloc,c is significantly increased for α = 2 × 10−2 and x �
1.2 by roughly a factor of 1.5 times (figure 10d,h). Based on the much stronger droplet
driving for α = 2 × 10−2, Nu|α=2×10−2 is increased by approximately 5 % for the lowest Ra
relative to Nu|α=5×10−3 .

For the different distributions of Nuloc for α > 0 in figures 9 and 10, we note that the
profiles represent local quantities and are non-monotonic at both walls with increasing Ra.
The spatial distributions therefore cannot be trivially determined a priori. What can be
discerned from the current results is that the droplets influence the bulk flow (as seen in
the mean and r.m.s. statistics in figures 4 to 7), the near-wall flow and the large-scale
circulation of VC. Different mechanisms in these regions compete and the prevailing
mechanism(s) would presumably determine the heat transport of the set-up.

5. Droplet influence on local skin-friction coefficient

Unlike Rayleigh–Bénard convection, the thermal boundary layers in VC are sheared by
a mean wind with a constant direction that is predetermined by the boundaries (Ng et al.
2015). Therefore, to quantify the influence of the droplets on wind shearing, we plot the
local skin-friction coefficient Cf ,loc versus x in figure 11. Here, Cf ,loc ≡ 2τw(x)/U2

�, where
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FIGURE 11. Similar to figure 9, but now for the local skin-friction coefficient Cf ,loc. Colour
legends are the same as figure 4.

τw(x) ≡ √
μ∂〈u〉y(x)/∂z|w is the wall shear stress. Similar to the idea of figure 10, the

relative changes in the local skin-friction coefficients are plotted in figure 12.
For α = 0, Cf ,loc is largest at wall heights that are close to the upstream of the developing

boundary layer. However, when α > 0, Cf ,loc is roughly constant for the most part of x
at low Ra. Two points can be made from the distributions of Cf ,loc. First, the roughly
uniform distribution of Cf ,loc at low Ra for α > 0 imply that the droplet driving dominates
the mean wind of VC and, on a mean sense, homogenises the viscous boundary layer
particularly at the hot wall. Second, the distributions of Cf ,loc are not symmetric at the
hot and cold walls (for example, max[Cf ,loc,c] > max[Cf ,loc,h]) as compared to the α = 0
case (figures 10a and 10d). One possible explanation of this asymmetry can be made by
observing the rising direction of the droplets: at the cold wall, the droplets oppose the
downwards flow whereas at the hot wall, the droplets aid the upwards flow. Coupled with
the asymmetry of the mean horizontal velocity profiles in figure 6, the resulting viscous
boundary layer becomes thinner at the cold wall, and a larger Cf ,loc results. However, this
conjecture may not hold at higher Ra cases because the viscous boundary layers eventually
become much thinner and closer to the walls. As a result, at sufficiently high Ra, the
influence of droplets presumably diminishes with increasing distance from the edge of the
viscous boundary layers, eventually yielding to the dynamics of thermal driving.

When compared with Cf ,loc,0 (figure 12), we find larger values of Cf ,loc in concomitant
regions with larger values of Nuloc in figure 10. Interestingly, whilst Nuloc is relatively
insensitive to Ra (see figure 10), the wall-height distributions of Cf ,loc exhibit a strong
non-monotonic behaviour which depends on Ra, α and whether the cold or hot wall
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FIGURE 12. Similar to figure 10, but now for the local skin-friction coefficient Cf ,loc. The
corresponding wall areas of the ratios versus Ra are shown in the inset: wall areas with reduced
Cf ,loc are denoted by left-pointing open triangles, and increased Cf ,loc by right-pointing solid
triangles. Colour legends are the same as figure 10.

is considered. Therefore, it appears that Cf ,loc is more sensitive to the droplets induced
agitation as compared to Nuloc.

6. Light droplets versus bubbles – a comparison to experiments by Gvozdić et al.
(2018)

In this section, we discuss several aspects of the physical parameters in our simulations,
which distinguish our findings from the laboratory results of bubbly VC by Gvozdić et al.
(2018).

A crucial difference between our investigation and the experiments is that ρ̂ = 0.5 in
our simulations (corresponding to light droplets) whereas ρ̂ ≈ 10−3 in their experiments
(corresponding to air bubbles in water). Clearly, the large differences in the density ratios
play a role and this is reflected in our simulations. For example, the mean temperature in
the bulk region of our simulations have approximately zero gradient (figure 4), whereas the
mean temperature in the bulk region of the experiments have a finite gradient (see figure
9(a) of their paper), indicating a much stronger mixing of the thermal field by the bubbles
as compared to light droplets. Furthermore, the values of Nu for VC with light droplets
is within 10 % of the Nu values without droplets (figure 8), whereas in the laboratory
experiments of Gvozdić et al. (2018), Nu can be larger by up to 20 times with bubbles than
without and remain Ra-independent for their investigated parameter range. Therefore, we
conclude that the background VC flow remains relatively dominant even with influence
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of light droplets, and this is reflected in the non-monotonic distributions of the local heat
transport and skin-friction coefficients shown in figures 10 and 12.

The strength of the bubble-induced agitation versus droplet-inducted agitation can also
be quantified a posteriori using the bubblance parameter

b ≡ U2
bα/u2

0 (6.1)

(cf. Lance & Bataille 1991; van Wijngaarden 1998; Rensen, Luther & Lohse 2005;
Alméras et al. 2017), which defines the ratio of energy produced by a bubble swarm,
i.e. U2

bα, and the energy of the background turbulence without bubbles, i.e. u2
0. Note that

a prefactor of one is chosen for (6.1), which is different to previous definitions which
employ a prefactor of 1/2 (based on the added mass coefficient, cf. Rensen et al. (2005));
however, the present discussions are still valid. We define Ub as the mean bubble or droplet
rise velocity and u0 as the maximum of the mean vertical velocity of the single phase flow
at the half-height of the domain. Next, we estimate b for our DNS and for the experiments
by Gvozdić et al. (2018).

Since we have the full information from our DNS, the calculation of b is straightforward.
For the laboratory experiments, u0 was not recorded and so, invoking dynamic similarity,
we estimate the values using our DNS results at matched Ra. Here, Ub is assumed to be
0.34 m s−1 for the laboratory experiments. The values of b are plotted in figure 13(a).
From the figure, we find that O(10−3) � b � O(10−1) for our DNS whereas O(101) �
b � O(103) for the experiments. The much smaller magnitude of b for our DNS clearly
indicates that light droplets produce much lower kinetic energy compared to bubbles. Also,
b decreases with increasing Ra and implies that the kinetic energy of the background flow
will eventually dominate the (constant) injection of kinetic energy by the dispersed phase.
Based on the same idea, we compare the ratio of Rad/Ra for our DNS and the experiments
in figure 13(b). From the figure, we observe a similar scale separation and decreasing
trend with increasing Ra: the values are O(10−5) � Rad/Ra � O(10−3) for our DNS and
O(103) � Rad/Ra � O(105) for the experiments, confirming that the bubble driving is
indeed a stronger driving mechanism than light droplets.

It is useful for applications such as in chemical mixing, to have an estimate of the
parameter space for b or Rad/Ra where the driving by background turbulence eventually
dominates bubble driving. For the laboratory experiments with bubbly VC, Gvozdić
et al. (2018) estimated this parameter space by defining a critical Rayleigh number,
Rac, as follows: first, an effective power law trend of Nu ∼ Ra0.33 is obtained from the
single phase experiments. Then, observing that the Nu trends are insensitive to Ra for
5 × 10−3 � α � 5 × 10−2 (cf. figure 12 of Gvozdić et al. (2018)), the Nu ∼ Ra0.33 and
constant Nu trends are extrapolated to higher Ra values. The intersection of these curves
is defined as Rac, where 7 × 1010 � Rac(α) � 2 × 1012 for the α values investigated. The
range of Rac values is marked in figure 13(c).

We can now directly extrapolate the trends of b and Rad/Ra to the Rac values. From
least square fits, the effective power laws are b ∼ Ra−1 and Rad/Ra ∼ Ra−1. Therefore,
the extrapolated values are b ∼ Ra−1

c and Rad/Ra ∼ Ra−1
c , visually marked by the blue

patches in figure 13. For illustration purposes, only the α = 5 × 10−3 and 5 × 10−2 are
drawn and an allowance of Rac ± 10 % was employed to compute the extrapolation. The
corresponding values are (b, Rad/Ra)|α=5×10−3 ≈ (0.2, 60) and (b, Rad/Ra)|α=5×10−2 ≈
(0.06, 18). These values suggest that the VC flow will dominate bubble-induced
liquid agitation at b � O(10−1) and Rad/Ra � O(100). We note that our dataset for
α = 2 × 10−2 coincide with this regime for b|α=5×10−2 (lower horizontal blue line
in figure 13a), however, since the boundary layer dynamics are still dominant for
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FIGURE 13. Plots of (a) bubblance parameter, b, versus Ra, and (b) Rad/Ra versus Ra. The
range of Rac(α) values from the experiments of Gvozdić et al. (2018) are marked in (c). Present
DNS results are solid triangles for α = 5 × 10−3 and open triangles for 2 × 10−2. Experimental
values (circles, red to purple fill denoting increasing α) are estimated from the physical properties
reported in Gvozdić et al. (2018). In panel (a), only a subset of the experimental values are
estimated by assuming values of u0 at matched Ra to our DNS results. The intersect of (c) and
the dashed grey lines, i.e. b ∼ Ra−1

c and Rad/Ra ∼ Ra−1
c , are approximations of b and Rad/Ra

for the lowest and highest α from laboratory experiments.

our configuration, it suggests that ρ̂ is an additionally important parameter when
characterising bubbly turbulence. Interestingly, for bubbles rising in grid-generated
turbulence (or incident turbulence), Alméras et al. (2017) determined a slightly larger
value for b (≈0.7), where bubble-induced agitation appears to dominate. The mechanism
was related to an increase in development length of the secondary bubble wake, which
significantly enhances liquid velocity fluctuations. Indeed, the values of b from our DNS
are smaller which is consistent with the notion that the background flow remains dominant
for our parameter space considered.

7. Conclusions and outlook

In this study, we simulated the VC flow with dispersed light droplets between Ra =
1.3 × 108 and 1.3 × 109 and Pr value of 7. The liquid phase is simulated using DNS
whereas the dispersed phase is simulated using an IBM with the interaction potential
method for deformable interfaces. Our approach extends the IBM of Spandan et al.
(2017) and Spandan et al. (2018a), where now the dispersed phase is fully coupled both
mechanically and thermally to the flow. In addition, two datasets are simulated with and
without thermal coupling to investigate its influence on the heat transport. Although Nu is
slightly larger when the droplets are thermally coupled, we found that the VC flow with
light droplets exhibits a non-monotonic change in heat transport with increasing Ra and
largely retains the laminar-like VC scaling. We reason that a significant enhancement of
heat transport depends crucially on a sufficiently strong droplet driving, which we show
can be characterised by the relative strength of Rad to Ra and the bubblance parameter, b.

When light droplets are introduced, the mean velocity and temperature profiles are
highly skewed with the lowest Ra being most sensitive (figures 4–7). However, this
sensitivity is masked by the Nu versus Ra trend, where we observe a non-monotonic
behaviour with increasing Ra (figure 8a). This suggests the presence of competing
mechanisms in the flow that contribute to the net heat transport. In contrast, the decreasing
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Re versus Ra trends are commensurate with the higher sensitivity at lower Ra, i.e.
mechanical stirring is strongest at lowest Ra and higher α (figure 8b).

Based on analyses of the near-wall regions, we found that regions with higher values
of local heat fluxes, Nuloc, correspond to concomitant regions with higher values of
skin-friction coefficient, Cf ,loc, which is consistent with the notion that the local wind
has influence over the local heat transport (figures 9 and 11). In turn, the strength of the
local wind is related to whether the direction of the rising droplets aids or opposes the flow
(figure 12). However, the trends of Nuloc and Cf ,loc remain spatially non-monotonic and is
sensitive to α for the simulation parameters considered in this study.

The Nu versus Ra trend in figure 8 is different from recent experimental results by
Gvozdić et al. (2018) for bubbly flow. Whilst Nu exhibits some Ra-dependency for our
simulations with light droplets, Gvozdić et al. (2018) reported that Nu is largely insensitive
to Ra for various volume fractions of droplets. The key distinction between our DNS and
the experiments by Gvozdić et al. (2018) becomes readily apparent when we quantify
the bubblance parameter b and the droplet driving parameter Rad/Ra (cf. § 6). Both b
and Rad/Ra have a large separation in scales between the laboratory experiments and
our DNS. More specifically, at b � O(10−1) and Rad/Ra � O(100), we anticipate that
the dynamics of the dispersed phase-induced liquid agitations become overwhelmed by
the dynamics of the background VC flow. For light droplets, both b and Rad/Ra are
significantly lower. Therefore the local heat fluxes and skin friction coefficients exhibit
non-monotonic behaviour, which reflects the dominance of the background VC flow.

Our results collectively indicate a non-monotonic heat transport behaviour for light
droplets. Locally, the near-wall trends of heat fluxes and wall-shear stresses suggest the
presence of competing mechanisms that, in concert, govern heat transport. One question
that arises naturally here is: Can monotonicity be eventually obtained by increasing b
and Rad/Ra for fixed Ra? The answer to this question may provide some clues about
disentangling the competing heat transport mechanisms in multiphase VC and warrants
judicious numerical studies at larger parameter spaces.
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