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Double-Slit Experiments

10.1 Introduction

In this chapter we show how the quantized detector network (QDN) formal-

ism describes the double-slit (DS) experiment. This is arguably the simplest

experiment that demonstrates quantum affects such as wave–particle duality and

quantum interference. It continues to be the focus of much debate and experiment

(Mardari, 2005), because theoretical modeling of what is going on reflects current

understanding of quantum physics and hence physical reality. We will apply QDN

to two variants: the original DS experiment and the monitored DS experiment,

where an attempt is made to determine the imagined path of the particle.

The DS experiment is widely acknowledged by physicists to be of importance

to the understanding of quantum mechanics (QM). So much so that in 2002,

the single electron version, first performed by Merli, Missiroli, and Pozzi (Merli

et al., 1976), was voted by readers of Physics World to be “the most beautiful

experiment in physics” (Rosa, 2012).

The DS experiment can be discussed in terms of three stages, shown in

Figure 10.1. By the end of the preparation stage, Σ0, a monochromatic beam of

light or particles has been prepared by a source P , such as a laser. The beam

emerges from point O and then passes through an information void V1 to the

first stage, Σ1, which consists of a wall or barrier W . This wall has two openings

denoted A and B that allow parts of the beam to pass through into another

information void V2 and onto the second and final stage Σ2, which consists of a

detecting screen S.

The screen S is in general some material that can absorb and record particle

impacts. In reality, any screen will consist of a finite number of signal detectors,

such as photosensitive molecules, but the typical QM modeling is done as if

there were a continuum of sites on the screen, such as C, that could register

particles.
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Figure 10.1. The DS experiment. C is a typical detector site in the detecting
screen S.

10.2 Run Protocol

In addition to the above geometrical architecture, there are some important

protocol features that need to be clarified.

Runs

Any DS experiment will consist of a large, possibly enormous, number of runs,

or repetitions of a basic protocol.

Statistics

The conclusions of the experiment are based on a statistical analysis of the data

averaged over all valid runs.

Preparation Stage

Each run consists of the observer establishing the start of that run, indicated by

stage Σ0 in Figure 10.1. This means that the observer will have reliable contextual

information that some previously agreed-on procedure has been carried out at

device P . If anything occurs to prevent confidence in that information, then that

run is discarded.

Outcome Stage

At the end of each run, corresponding to stage Σ2 in Figure 10.1, the observer

looks at every accessible point/detector on the screen S and records whether

each detector has a signal or not. The data from each run are entirely classical

at this point, being in the form of a vast number of bits of yes/no values, each

value coming from a given detector on the screen S.

Information Void

It is a critical feature of any quantum experiment, apart from the quantum

Zeno-type experiments discussed in Chapter 15, that between stages Σ0 and
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Σ2, no attempt is made by the observer to extract any information from either

information void V1 or V2, or at stage Σ1.

Reset

At the end of each run, the detectors in screen S are reset to their ground states,

ready for the next run, which takes place as if no other run had ever occurred.

10.3 Baseball in the Dark

It is significant that in the above description of protocol, Section 10.2, no reference

is made to particles, beams, interactions, waves, or any such classical mechanics

(CM) imagery. What has been described is only what the observer actually does

in the laboratory, not what theorists imagine they are doing. Indeed, we not

pushing this point too far to remind the reader that even the above “objective”

account is contextual, being human-centric. From any other species’ point of

view, nothing of importance would be going on in the laboratory. A dog, for

example, would be more concerned where the observer kept their sandwiches. Of

course, when we discuss such experiments in practice, it is most convenient to

objectify procedures in familiar terms, so we will usually talk about preparing

a beam of particles at P and allowing that beam to pass through a double slit.

We may even be caught out referring to photons impacting on a screen. But all

of that is to be read as a convenience, not as a statement of belief that there are

objective things known as photons.

When discussing quantum processes, we should be wary of invoking undue

mental imagery. In this respect, a helpful analogy is to imagine the DS experiment

as “baseball played in the dark.” Suppose we were asked to describe a game

of baseball or cricket played not in broad daylight but at night in pitch black

conditions and with no sound. Now the game would look very different from what

it would look like during the day. The pitcher or bowler would be the analogue

of the preparation device P ; the batter or batsman would be the analogue of one

of the openings, A or B, in the wall W ; and the fielders would be the detectors

in the screen S. P would have some contextual information that they should

throw the ball in a certain direction. Suppose they did that. If the ball reached

the batter, it would be struck in some random direction. The odds of any of

the fielders catching that ball at night (the analogue of a quantum experiment)

would be quite different from the odds during daytime (the analogue of a classical

experiment), because in daylight, fielders would have constant visual information

as to the current position of the ball. At night, they would be faced with a real

information void.

The above description of baseball in the dark is a classically based attempt to

convey some of the attributes of observation; it cannot adequately account for

all the nonclassical attributes of quantum processes. Any experimentalist who

has done real DS experiments would possibly find the description of protocol
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in Section 10.2 simplistic and perhaps misleading. What we have described is a

highly idealized version of rather complex procedures that involve a great deal of

beam calibration, noise suppression, timing protocols, shielding, detector physics,

and complex electronics. Indeed, major experiments such as the search for the

Higgs particle at the Large Hadron Collider take data during a small fraction

of the duration of the experiment, the rest of the time being spent in planning,

funding, construction, and calibration of the apparatus. It is a common feature

of experimental physics doctorates that constructing the apparatus takes two or

more years in preparation, and then there is a frantic race to take enough data

to justify submitting a thesis.

Perhaps the best way to think of these issues is to accept that theory does not

describe reality directly but deals with equivalence classes of processes (Kraus,

1983). For example, what we mean by a “double-slit experiment” is a theoretical

model of the equivalence class of activities in the laboratory that each has the

essential features outlined in Section 10.2, disregarding many contexts such as

whether the observer is male or female, wears a hat or not, and so on.

What is truly remarkable is that when we overlook these issues in much in the

same way as friction is overlooked in Newtonian mechanics, then there emerges

from the overall complexity of any experiment some simple theoretical rules as

to what is going on. That is really how QM was discovered. Moreover, these

rules have great applicability and in the case of QM, work particularly well and

far better than CM in experiments such as the DS experiment. QDN should be

seen in this light: it will give the essential architecture of an experiment but

not a detailed description of the “friction” encountered in quantum experiments,

unless that is called for.

10.4 Observed Phenomena

The DS experiment reveals a number of phenomena that continue to puzzle

physicists, because those phenomena cannot be fully explained according to the

principles and ideology of CM.

Line-of-Sight Violation

With reference to Figure 10.1, suppose opening B is blocked off but otherwise the

experiment runs as described above. According to CM, particles passing through

opening A should pass more or less undisturbed onto position D on the screen

S. Of course, the opening at A would deflect some of the particles, since the

wall W consists of atoms, so it is to be expected that at the edges of opening

A, forces will act on any beam particles passing nearby. However, the fraction of

all the particles passing through either opening that comes close to the edges of

the slits is expected to be relatively small, so we expect to find a relatively large

distribution of particles around position D on the screen S with relatively few

to either side.
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What is observed is quite different. There is indeed a broad peak found centered

on D, but it extends further over the screen than expected from naive CM

expectations. Let us call the probability profile of this broad peak PA(z), where

z is the position coordinate of points along the screen as shown in Figure 10.1.

If now instead of B we blocked off opening A, then we would get a similar broad

distribution PB(z), this time centered on E, on the line of sight from O to B.

Interference

What is astonishing is that if now we ran the experiment with both A and B open,

then we would not find a simple distribution PA(z) + PB(z) as expected from

CM principles. Instead, we would find a distribution PA(z) + PB(z) + IAB(z),

where IAB is known as an interference term. It is this interference term that

causes all the fuss.

Self-interference

It was originally believed that a theoretical particle–wave conflict could be

avoided if the explanation of the interference term IAB was that there were

interactions of the particles coming from opening A that were somehow

interacting with particles coming from opening B, thereby disrupting the basic

addition of PA to PB on the detecting screen.

But the mystery was only deepened when DS experiments were done such that

the rate of particles falling on the screen was extremely low (Taylor, 1909). So

low in fact that there would be one (or even fewer than one)1 on average landing

on the screen S per run. It was found that the interference term occurred in the

statistical analysis when a large number of runs was performed, even when only

one particle could possibly have passed through at a time. The point is that the

aforementioned picture of clouds of particles interfering with each other cannot

be valid here when only one particle passes through at a time. The paradox is

that it is then hard if not impossible to understand why the interference term

should occur in the analysis of many separate, uncorrelated runs. When QM

is interpreted in terms of particle–waves interfering with each other, the low-

intensity interference pattern is generally referred to as self-interference, a term

commonly attributed to Dirac in his famous book on QM (Dirac, 1958).

Not all theorists subscribe to this view (Mardari, 2005). From the QDN per-

spective, the term self-interference is a dangerous one to take seriously, as it

invokes a confusing picture of a classical particle that behaves unlike a classical

particle. We do not have to believe in particles: the only things that we can be

sure of are signals in detectors.

1 This is deep. An average of fewer than one particle per run would mean, of course, that
during some runs, no particles were recorded as having landed on the screen. An average of
fewer than one particle per run vindicates the view that what matters is what the observer
does, not what we think they do. Observers push buttons and look at screens. They do not
know for sure what is happening beyond that description.
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Path Indeterminacy

The interference term IAB requires both openings A and B to be present. If any

attempt is made to block off one or another opening, then IAB disappears. Now

according to CM, every time a detector registers a signal at S, that is evidence

for a particle having traveled from source P to that detector. According to CM

principles, that particle had to have traveled along a continuous path from O

through either A or B. If true, it should be possible to establish which of the two

openings it was. But any attempt to do this appears to destroy IAB .

It is as if the observer has two mutually exclusive choices: either have no

knowledge about which path was taken, and then PA, PB , and the interference

term occur, or know which path was taken, such as through A, but then the inter-

ference term and PB disappear and only PA is observed. In QM, the principle

that there is this exclusive choice is generally referred to as complementarity .

It may be possible to trade off information, with the observer having only

a probability estimate for each of these alternatives. In that case, the overall

distribution on the screen would depend on that probability estimate in some

way. However, predicting that distribution would undoubtedly require the most

careful analysis of context. Experiments along such lines have been attempted,

such as that of Afshar (Afshar, 2005). The results of such experiments remain

controversial (Kastner, 2005).

Wave–Particle Duality

We shall see in the next section that physicists can get a good theoretical handle

on the experiment by applying the particle–wave concept inherent to Schrödinger

wave mechanics. The DS experiment touches on particle-like attributes because

the detectors in the screen S respond in a discrete yes/no way characteristic of

particle impacts, while on the other hand the distribution PA+PB+IAB is char-

acteristic of wave dynamical processes. The mystery only arises when theorists

suppose that there are objects with particle and wave properties simultaneously

and fail to recognize empirical context as a critical factor in the experiment. In

actuality, each aspect (particle or wave) is significant within its own particular

empirical context, and there are no real paradoxes in the laboratory. The so-

called wave–particle paradox occurs only because of the way humans generally

choose to interpret their experiments.

10.5 A Wave-Mechanics Description

In this section we discuss the DS scenario using standard non-relativistic QM

for a wave–particle of nonzero mass m propagating in three spatial dimensions.

The standard theory assumes that apart from the production process in the

source P , the interaction with the wall W , and the screen S, the quantum state

representing the dynamics propagates in the information void regions V1 and V2

according to the Schrödinger–Dirac equation
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i�
d

dt
|Ψ, t〉 = Ĥ|Ψ, t〉, (10.1)

where Ĥ is the free particle Hamiltonian given by

Ĥ =
p̂ · p̂
2m

. (10.2)

Relative to a standard improperly normalized particle position basis

{|x〉,x ∈ E3}, the state vector |Ψ, t〉 is given by

|Ψ, t〉 =
∫

d3xΨ(x, t)|x〉. (10.3)

The wave-function part Ψ(x, t) of the solution to Eq. (10.1) is readily found by

standard methods to be given by

Ψ(x, t) =

∫
d3yF (x, t;y, t0)Ψ(y, t0), t > t0, (10.4)

where the propagator F (x, t;y, t0) ≡ 〈x|e−iĤ(t−t0)/�|y〉 is given by (Feynman

and Hibbs, 1965)

F (x, t;y, t0) =

[
−im

2π�(t− t0)

]3/2
exp

{
im(x− y)2

2�(t− t0)

}
, t > t0. (10.5)

This propagator will be valid for events (x, t) and (y, t0) in the same information

void region. We shall consider what happens in region V1 and then in region V2.

In the following, we take standard Cartesian coordinates x ≡ (x, y, z) with

origin at O in Figure 10.1, x-axis along the beam direction, y-axis transverse

to the beam, and z-axis in the direction from B to A. For simplicity, we shall

suppress any transverse effects and assume that openings A and B are almost

point-like, with coordinates xA = (d, 0, a) and yB = (d, 0,−a), respectively,

where d is the distance of the wall W from the opening O and a is positive.

We shall consider what happens at a point C on the detecting screen S, with

coordinates xC = (d+D, 0, c), where D is the distance of the screen S from the

wall W .

For the rest of this section we use the notation x1 ≡ (x1, t1), y2 ≡ (y2, t2),

and so on.

Region V1

We imagine that at the first stage Σ0, a normalized pulse is emitted from O,

characterized by wave function Φ(x0). At a given event with coordinates x1 on

the wall W , the wave function Ψ(x1) after propagation through V1 is given by

Ψ(x1) =

∫
d3x0F (x1;x0)Φ(x0), t1 > t0. (10.6)

Conservation of probability requires that∫
d3x1|Ψ(x1)|2 =

∫
d3x0|Φ(x0)|2, (10.7)
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which is satisfied by virtue of the relation∫
d3x1F

∗(x1; y0)F (x1;x0) = δ3(x0 − y0). (10.8)

Region V2

Equation (10.6) gives the wave function impacting on the wall W on the side

facing the first information void V1. We need an expression for the wave function

on the other side of W that acts as an initial wave function propagating into

information void V2 and hitting the screen S. Stage Σ1 can be thought of in this

respect as a preparation stage.

To this end we introduce shape functions GA(x1) and GB(x1) that characterize

the openings A and B. Feynman and Hibbs (1965) discuss this calculation where

a Gaussian shape function is assumed. The prepared wave function on the V2

side of the wall is then given by
{
GA(x1) +GB(x1)

}
Ψ(x1).

Propagation through V2 follows the same pattern as through V1. The final

stage wave function Ψ(x1) for an event on S at stage Σ2 is given by

Ψ(x2) =

∫
d3x1F (x2;x1)

{
GA(x1) +GB(x1)

}
Ψ(x1). (10.9)

What matters here is the squared modulus |Ψ(x2)|2, which according to the

Born interpretation (Born, 1926) is the probability density relevant to outcome

detection on the screen S. From (10.9) we find

|Ψ(x2)|2 = PA(x2) + PB(x2) + IAB(x2), (10.10)

where

PA(x2) =

∫
d3x1d

3y1F (x2;x1)F
∗(x2; y1)G

A(x1)G
∗A(y1)Ψ(x1)Ψ

∗(y1),

PB(x2) =

∫
d3x1d

3y1F (x2;x1)F
∗(x2; y1)G

B(x1)G
∗B(y1)Ψ(x1)Ψ

∗(y1),

IAB(x2) =

∫
d3x1d

3y1F (x2;x1)F
∗(x2; y1)

{
GA(x1)G

∗B(y1)+

GB(x1)G
∗A(y1)

}
Ψ(x1)Ψ

∗(y1).

(10.11)

In these integrals, we may use (10.6) to work out the outcome probabilities

from a knowledge of the detectors in the screen S and the characteristics of

the preparation device P ; that is, we should be able to specify the initial wave

function Φ(x0) reasonably well.

Blocking off opening B corresponds to setting GB to zero, and then we see

from (10.11) that the interference term and PB vanish. A similar remark applies

the blocking off of opening A.

10.6 The QDN Account of the Double-Slit Experiment

We are now in position to describe the DS experiment via QDN. Applying

our bitification process, we introduce qubits at all those sites where significant

https://doi.org/10.1017/9781009401432.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.011


10.6 The QDN Account of the Double-Slit Experiment 139

B S

A

P 10

11

12
22
32
42
52

K2

21

S0 S1 S2

Figure 10.2. The DS experiment.

information could in principle be extracted. This excludes the information void

regions V1 and V2, and all parts of the wall W apart from the two openings A

and B. The QDN architecture is given by Figure 10.2. We model the detecting

screen as a (possibly vast) number K of detectors and now discuss each run,

stage by stage.

Stage Σ0

The initial normalized labstate Ψ0 prepared by apparatus P by stage Σ0 is

denoted in QDN by

Ψ0 = 10, (10.12)

where 10 is the signal state element of the one-qubit quantum computational

basis representation (CBR) {00,10}. Essentially, Ψ0 carries the information that

the run should proceed, analogous to the proposition “go for burn,” validated by

Mission Control prior to moon rocket engine ignition, after all safety checks had

been completed (Apollo Program Office, 1969). We shall refer to such a one-qubit

register as a preparation switch.

Note that we are ignoring the internal spin state of the electromagnetic radi-

ation, as polarization is not a factor in this version of the experiment. However,

such effects can be included easily if required.

Stage Σ1

The QDN description of Ψ1, the labstate at stage Σ1, has a dual role. On

the one hand it represents what the observer could find (statistically) if they

looked at either or both openings A and B at that stage. Actually, doing this

would be part of the complex calibration processes involved in setting up the

experiment in the first place. On the other hand, Ψ1 should be regarded as the

initial labstate for propagation to the next stage, Σ2, landing on the screen S.

If this latter alternative is chosen, then the observer should make no attempt to

extract information from Ψ1.

The rules of QM lead us to assert that

Ψ1 = U1,0Ψ0 = (α1Â1
1 + α2Â2

1)01, (10.13)
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where α1 and α2 are complex numbers satisfying the normalization condition

|α1|2 + |α2|2 = 1.

Here U2,1 is a semi-unitary operator taking normalized labstates from Q0 to

Q1 ≡ Q1
1Q

2
1. We shall comment on the nature of this operator presently. At

this point, we note that signality is preserved in the transition from stage Σ0

to stage Σ1, since the initial labstate Ψ0 ≡ Â1
000 has signality one, and by

inspection of (10.13), Ψ1 also has signality one. We rule out (by hand) terms

proportional to the signality-zero state, 01, or to the signality-two state Â1
1Â

2
101,

as these represent dynamics different from the one that we wish to explore here.

When charged particles such as electrons are involved in the DS experiment,

charge conservation rules out changes of signality. For bosons such as photons,

it is quite possible to encounter signality nonconservation, such as in the case

of parametric down-conversion (Burnham and Weinberg, 1970; Klyshko et al.,

1970).

Stage Σ2

The transition from stage Σ1 to stage Σ2 is handled as follows. We assert that

there is a semi-unitary operator U2,1 such that for each term Âa
101, a = 1, 2, on

the right-hand side of equation (10.13),

U2,1Â
a
101 =

K∑
j=1

U j,a
2,1 Â

j
202, a = 1, 2, (10.14)

assuming there are K detector sites on the detecting screen S. This process

preserves signality. We shall comment on the nature of U2,1 presently. Conserva-

tion of probability requires the complex coefficients
{
U j,a
2,1

}
to satisfy the semi-

unitarity rule

K∑
j=1

U j,b∗
2,1 U j,a

2,1 = δab, (10.15)

where U j,b∗
2,1 is the complex conjugate of U j,b

2,1. We note that Eq. (10.15) is the

QDN analogue of Eq. (10.8).

The linearity rules of QM now give the relationship between the initial labstate

Ψ0 and the final labstate Ψ2 to be

Ψ2 = U2,1U1,0Ψ0 =
2∑

a=1

K∑
j=1

αaU j,a
2,1 Â

j
202. (10.16)

It can be readily checked, using the normalization condition and the above semi-

unitarity rules that Ψ2Ψ2 = 1.

We can now readily calculate all outcome probabilities, by choosing any of

the 3N maximal or partial questions. For example, the conditional probability

Pr(k2|Ψ0) that the kth detector at stage Σ2 would be in its signal state is given

by Pr(k2|Ψ0) = Ψ2P̂
k
2Ψ2, which readily evaluates to the value
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Pr(k2|Ψ0) =

2∑
a,b=1

αa∗αbUk,a∗
2,1 Uk,b

2,1 , k = 1, 2, . . . ,K. (10.17)

Exercise 10.1 Prove (10.17) and show that total probability is conserved,

that is,

K∑
k=1

Pr(k2|Ψ0) = 1. (10.18)

10.7 Contextual Subspaces

Suppose Un+1,n is the semi-unitary evolution operator from quantum register

Qn at stage Σn to quantum register Qn+1 at stage Σn+1. Suppose further that

we have a complete specification of the action of Un+1,n, in the form of the rules

for CBR element evolution given by

Un+1,nin =

2rn+1−1∑
j=0

U j,i
n+1,njn+1, rn+1 = rank Qn+1. (10.19)

Then using completeness, we find the dyadic representation

Un+1,n =

2rn−1∑
i=0

2rn+1−1∑
j=0

jn+1U
j,i
n+1,ni

n. (10.20)

Then we have the rule

Un+1,nUn+1,n = In, (10.21)

where Un+1,n is the retraction of Un+1,n and In is the identity operator over Qn.

At this point, we are confronted with what appears to be a serious problem;

we do not have all the information that allows us to construct the full evolution

operator U2,1 in the DS experiment. The number of elements in the initial

preferred basis B1 for Q1 is four, but of these, only two have signality one,

that is, Â1
101 and Â2

101. The only specific information we have is given by the

relations (10.14) for those two elements of the preferred basis.

Fortunately, this problem is easily circumvented by the observation that for a

DS experiment, an observer will not in general be interested in the complete quan-

tum registers Qn and Qn+1 but only in the subspaces spanned by the signality-

one elements of their respective preferred bases. This is really the meaning of the

term self-interference.

This leads us to define the notion of contextual basis and contextual subspace.

Definition 10.2 In a given experiment, a contextual basis Bc
n is a subset of

the preferred basis Bn for the quantum register Qn at stage Σn, the elements

of Bc
n being dictated by the context of the experiment.
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Definition 10.3 A contextual subspace is a subspace Qc
n of a quantum

register Qn, the preferred basis for Qc
n being a given contextual subset Bc

n of

the preferred basis Bn for Qn

In the case of the DS experiment, the contextual bases Bc
1, B

c
2 are given by all

the respective signality-one states, so we have

Bc
1 ≡

{
Â1

101, Â
2
101

}
, Bc

2 ≡
{
Âi

202 : i = 1, 2, . . . ,K
}
. (10.22)

These define the contextual subspacesQc
1 andQc

2. From (10.14), we can construct

the contextual evolution operator Uc
2,1 and its retraction Uc

2,1. These are given

in the CBR by

Uc
2,1 ≡

2∑
a=1

K∑
j=1

U j,a
2,12

j−1
2 2a−1

1 , Uc
2,1 ≡

2∑
a=1

K∑
j=1

U j,a∗
2,1 2a−1

2 2j−1
1 (10.23)

and satisfy the required relation Uc
2,1U

c
2,1 = Ic1, where I

c
1 is the stage-Σ1 contextual

identity

Ic1 = 1111 + 2121. (10.24)

Remark 10.4 The real world of experience and the world of the theorist’s

imagination are each far too complex to understand fully. Experiments

attempt to limit the complexity of the former by focussing on a limited

number of detectors. Contextual subspaces implement that strategy as closely

as possible, limiting the amount of complexity that the theorist needs to face.

Usually it will be clear by context when we are dealing with contextual sub-

spaces, so we shall usually drop the superscript c in our notation.

10.8 The Sillitto–Wykes Variant

The DS experiment was identified by Feynman, Leighton, and Sands (FLS) as the

fundamental experiment to understand. They wrote that “it contains the only

mystery” (Feynman et al., 1966). From the beginning of QM, experimentalists

sought to probe this mystery deeper, such as greatly reducing the light intensity

(Taylor, 1909) in the case of electromagnetic waves. Technology finally made

possible experiments where one electron came through the device at a time (Merli

et al., 1976).

Another variant was performed by Sillitto and Wykes, who arranged for the

two openings, A and B, to be opened and closed so that only one was open

at a time (Sillitto and Wykes, 1972). Nevertheless, an interference pattern was

observed. This seems at first sight impossible to understand if we think in terms

of particles.
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Figure 10.3. The QDN explanation of the Sillitto-Wykes experiment result
is that stage Σ1 need not coincide with a hyperplane of simultaneity in the
laboratory, or indeed, in any other frame of reference.

We can readily explain the result of the Sillitto–Wykes experiment in QDN

by pointing out that time is handled in QDN in terms of stages. In Figure 10.2,

we note that the openings A, B are associated with stage Σ1, not a specific

laboratory time. We have stressed previously that stages are analogues of space-

like hypersurfaces in conventional relativity, but with an important proviso:

shielding can play a role. In the case of the Sillitto–Wykes experiment, a more

appropriate diagram is Figure 10.3. In that representation, stage Σ1 is not

necessarily physically space-like everywhere. What matters is that the optical

paths (in the case of photons) or trajectory channels (in the case of electrons)

from P through openings A and B are such that wave trains from the two slits

subsequently “intersect and interfere” at the screen S. Whether A and B are

open “at the same labtime” turns out to be irrelevant. Indeed, that is as it

should be, because it is not possible anyway to determine when any “particle”

passes through either hole without destroying the interference pattern on S.

10.9 The Monitored Double-Slit Experiment

A fundamental question raised by the DS experiment concerns the particle inter-

pretation of quanta. Speaking classically, if a particle such as an electron is

released from source P and lands on screen S, then “it stands to reason” that

that particle must have passed through either opening A or opening B. That is,

after all, what is meant by a “particle.”

But this is just an appeal to intuition. We have emphasized that our interpre-

tation of QM is that it is really a theory of entitlement : QM tells us what we

are entitled to say in a given context, and no more and no less. Therefore, if we

have not monitored through which slit an electron has gone, we are not entitled

to say it had to have gone through one opening for sure. We do not even have to
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think of that as having happened in any way; physicists are not in the business

of believing in unverified propositions.

It is that lack of entitlement that really upsets people, because it destroys the

comfortable belief that real things are going on, even when we are not observing

them. Physicists, being people, felt compelled to find out whether the path of

electron could be determined when an interference pattern on screen S was found.

The monitored DS experiment was devised in order to investigate this issue.

The Feynman–Leighton–Sands Discussion

We shall first discuss the treatment given by FLS in Feynman et al. (1966). The

apparatus is given in Figure 10.4.

The apparatus is the same as for the original DS experiment except for three

items. L is a source of light and DA and DB are photon detectors. The idea is

that if an electron passes through opening A, then there is a possibility that it

will interact with light from the source L, causing a signal in DA. A signal in

DA may therefore be an indicator that the electron has passed through opening

A and not B. A similar remark applies if the electron passes through opening B.

The analysis goes as follows. First, consider the case when the light source is

absent. If opening B is closed off and an electron passes through opening A and

lands on the screen at C, then the amplitude is φ1. Conversely, if opening A is

closed off and an electron passes through opening B and lands on C, then the

amplitude is φ2. If A and B are both open, then the amplitude at C is φ1 + φ2.

This is just the QM description of the original DS experiment.

When the light source L is present and both slits are open, then the situation

needs some careful analysis. Suppose an electron has been detected at C and

V V

A

B

W
SD

L

B

DA

C
z

P

Figure 10.4. The monitored DS experiment.
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a photon detected at DA. Then two alternative paths contribute to the overall

amplitude A(C|P ).

Path A

The electron passes through slit A and interacts with the light, with an amplitude

at C written as aφ1, where a is a factor representing the electron–electromagnetic

field interaction.

Path B

The electron passes through slit B and interacts with the light, with an amplitude

at C written as bφ2, where b is a factor representing the electron–electromagnetic

field interaction.

The coefficients a and b are expected to be different, from the geometry

of the situation. The overall amplitude at C, according to Feynman’s sum of

paths prescription, is therefore the sum of the two contributions, and so given

by A(C,DA|P ) = aφ1 + bφ2. Assuming suitable normalization, the probability

Pr(C,DA|P ) for an electron to land on C and a photon to be registered at DA,

conditional on the electron being fired from P , is therefore given by

Pr(C,DA|P ) = |A(C,DA|P )|2 = |aφ1 + bφ2|2. (10.25)

If, on the other hand, an electron has been detected at C and a photon

detected at DB , then a similar argument (using symmetry) gives Pr(C,DB |P ) =

|aφ2 + bφ1|2.
The probability Pr(C,DA or DB |P ) of an electron landing at C and a photon

being detected at either DA or DB is the sum of the two probabilities, not the

squared modulus of the sum of the two amplitudes (a point stressed by FLS),

and is therefore given by

Pr(C,DA or DB |P ) = |aφ1 + bφ2|2 + |aφ2 + bφ1|2, (10.26)

which is Eq. (3.10) in Feynman et al. (1966).

The QDN Discussion

The relevant QDN version of Figure 10.4 is Figure 10.5. In the latter figure,

we have two extra nodes, labeled A2 and B2, added to stage Σ2 detectors in

the screen S. These new nodes represent the detectors DA and DB shown in

Figure 10.4.

The QDN analysis in this case goes by the three stages discussed in the original

scenario. Nothing is different by stage Σ1, so Eq. (10.13) is still valid. However,

the jump to stage Σ2 has to treated more carefully. We deal with each opening

separately.

In the following, a = 1 corresponds to opening A and a = 2 corresponds to

opening B. We expect the following dynamics, which is more general than that

considered in Feynman et al. (1966):
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Figure 10.5. The QDN stage diagram for the monitored DS experiment.
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The four terms on the right-hand side represent the following alternatives:

(a) U j,a is the signality-one amplitude that an electron has passed through

opening a and has landed on the screen at site j and no signal is detected in

either DA or DB .

(b) V j,a is the signality-two amplitude that an electron has passed through

opening a and has landed on the screen at site j and a signal is detected in

DA and not in DB .

(c) W j,a is the signality-two amplitude that an electron has passed through

opening a and has landed on the screen at site j and a signal is detected in

DB and not in DA.

(d) Xj,a is the signality-three amplitude that an electron has passed through

opening a and has landed on the screen at site j and a signal is detected in

DA and a signal is detected in DB . This possibility is not considered in the

calculation of FLS.

The labstate Ψ2 is given by

Ψ2 =

2∑
a=1

K∑
j=1

αa(U j,aÂ
j
2 + V j,aÂ

j
2Â

A
2 +W j,aÂ

j
2Â

B
2 +Xj,aÂ

j
2Â

A
2 Â

B
2 )02. (10.28)

From this we can readily determine all the various probabilities of interest by

asking the appropriate questions. For example, if we ask for the probability

that the electron has landed on the kth detector site, and there is a signal in

DA, and there is no signal in DB , we need to calculate the expectation value

Ψ2P̂
k
2 P̂

A
2 P

B
2 Ψ2. To evaluate this, we first note that the signal algebra gives

P̂k
2 P̂

A
2 P

B
2 Ψ2 =

2∑
a=1

αaV k,aÂk
2Â

A
2 02, (10.29)
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and then we readily find

Ψ2P̂
k
2 P̂

A
2 P

B
2 Ψ2 =

∣∣∣∣∣
2∑

a=1

αaV k,a|2 =

∣∣∣∣∣α1V k,1 + α2V k,2|2. (10.30)

Similarly, the probability Ψ2P̂
k
2P

A
2 P̂

B
2 Ψ2, that the electron landed on the kth

screen site and there was no signal in DA and there was a signal in DB , is

given by

Ψ2P̂
k
2P

A
2 P̂

B
2 Ψ2 = |α1W k,1 + α2W k,2|2. (10.31)

We recover the FLS result in their notation if we use symmetry, setting α1 = α2

and

V k,1 = aφ1, V k,2 = bφ2, W k,1 = aφ2, W k,2 = bφ1. (10.32)

The QDN calculation allows greater flexibility in the architecture of the exper-

iment than that assumed in the FLS calculation, but the price is that more

assumptions have to be made about the various amplitudes.
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