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Spatial infinity

This chapter discusses the properties of the conformal Einstein field equations

and the behaviour of their solutions in a suitable neighbourhood of spatial infin-

ity. This analysis is key in any attempt to extend the semiglobal existence results

for Minkowski-like spacetimes of Chapter 16 to a truly global problem where

initial data is prescribed on a Cauchy hypersurface. An interesting feature of the

semiglobal existence Theorem 16.1 is that the location of the intersection of the

initial hyperboloid with null infinity does not play any role in the formulation

of the result. This observation suggests that the essential difficulty in formulating

a Cauchy problem is concentrated in an arbitrary (spacetime) neighbourhood of

spatial infinity. The subject of this chapter can be regarded, in some sense, as

a natural extension of the study of static spacetimes in Chapter 19 to dynamic

spacetimes – a considerable amount of the discussion of the present chapter

is devoted to understanding why this is indeed the case. A further objective

of this chapter is to understand the close relation between the behaviour of the

gravitational field at spatial infinity and the so-called peeling behaviour discussed

in Chapter 10. The main technical tool in this chapter is the construction of

the so-called cylinder at spatial infinity – a conformal representation of spatial

infinity allowing the formulation of a regular initial value problem by means

of which it is possible to relate properties of the initial data on a Cauchy

hypersurface with the behaviour of the gravitational field at null infinity.

Despite recent developments in the understanding of the behaviour of solutions

to the Einstein field equations in a neighbourhood of spatial infinity, several key

issues still remain open.

20.1 Cauchy data for the conformal field equations

near spatial infinity

To begin to understand the difficulties behind the formulation of a standard

initial value problem for a Minkowski-like spacetime, it is convenient to look at

the behaviour of Cauchy data for the conformal equations near spatial infinity.
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528 Spatial infinity

20.1.1 General set up

In what follows, initial data sets (S̃, h̃, K̃) which are asymptotically Euclidean

and regular in the sense of Definition 11.2 will be considered. As the discussion

in this chapter will be mainly concerned with the behaviour of the data in

a neighbourhood of spatial infinity, it will be assumed, without any loss of

generality, that the manifold S̃ has only one asymptotic end. The basic aspects

of the analysis of spatial infinity are already present in time-symmetric initial

data sets. Thus, attention is restricted to this type of configuration. Finally, it

will be assumed, unless otherwise explicitly stated, that the conformal metric h

is analytic in a suitable neighbourhood of the point at infinity i. This assumption

allows the simplification of a number of arguments and calculations and allows

one to analyse the solutions to the Einstein field equations under optimal

regularity assumptions of the initial data – it is, however, non-essential.

Remark. Static initial data sets satisfy the assumptions described in the

previous paragraph.

In Chapter 11 it has been seen that the conformal factor Ω linking a particular

choice of conformal metric h with the physical metric h̃ admits, in a suitable

neighbourhood U of i and in terms of normal coordinates x = (xα) centred at i,

the decomposition

Ω =
|x|2

(U + |x|W )2
, |x|2 = δαβx

αxβ , (20.1)

where U/|x|2 is the Green function of the Yamabe operator and describes the

local geometry around i, while W contains global information; see the discussion

in Section 11.6.4. In particular, one has that U = 1 + O(|x|2) is analytic if h

is analytic and, moreover, W (i) = m/2 where m denotes the Arnowitt-Deser-

Misner (ADM) mass of the initial data set.

There is a certain amount of freedom in the choice of the conformal scaling

of the metric h. For the purposes of the present discussion, it is convenient to

consider the scaling introduced in Section 11.6.2 for which

hαβ = −δαβ +O(|x|3), (20.2)

so that the curvature tensor of h satisfies, in this gauge, rαβγδ(i) = 0. This gauge

construction is supplemented by an h-normal frame {ei} centred at i; that is,

one has

hij ≡ h(ei, ej) = −δij , Dγ̇ei = 0,

where γ̇ denotes the tangent vector to any geodesic passing through i; compare

the discussion in Section 18.4.1. Consistent with Equation (20.2), the frame

coefficients in ei = ei
α∂α satisfy

ei
α = δi

α +O(|x|3).
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20.1 Cauchy data for the conformal field equations near spatial infinity 529

Moreover, the associated connection coefficients are of the form

γi
j
k = O(|x|2),

and one has that

rij = O(|x|),

where rij ≡ rαβei
αej

β are the components of the Ricci tensor of h with respect

to the frame {ei}.

20.1.2 The rescaled Weyl and Schouten tensors on U

For time-symmetric initial data, the components of the electric part of the

rescaled Weyl tensor, dij , and the Schouten tensor, Lij , with respect to the

frame {ei} are given on U , respectively, by

dij =
1

Ω2

(
D{iDj}Ω+ Ωsij

)
, Lij = − 1

Ω
D{iDj}Ω+

1

12
rhij ;

see Section 11.4.3. The spinorial version of the above expressions is readily found

to be given by

φABCD =
1

Ω2

(
D(ABDCD)Ω+ ΩsABCD

)
, (20.3a)

LABCD = − 1

Ω
D(ABDCD)Ω+

1

12
rhABCD. (20.3b)

The first of the above equations implies an expression for the Cotton spinor

bABCD; see Equation (19.19). Rewriting Equation (20.3a) in the form

Ω2φABCD = D(ABDCD)Ω+ ΩsABCD,

taking the spinorial curl of the latter, commuting covariant derivatives in the

term with the triple derivatives of Ω and recalling that the Cotton spinor is

given by bABCD = D(A
QsBCD)Q, one concludes that

bABCD = 2D(A
QΩφBCD)Q +ΩD(A

QφBCD)Q. (20.4)

Behaviour close to infinity

As in the case of hyperboloidal data discussed in Section 11.7, the expressions

(20.3a) and (20.3b) are formally singular whenever Ω = 0. Accordingly, the

discussion of the behaviour of dij and Lij close to i requires some care.

In view of the decomposition (20.1) it is convenient to define the massless

part of the conformal factor as Ὼ ≡ |x|2/U2. By construction one has

Ὼ(i) = 0, DiῺ(i) = 0, DiDjῺ(i) = −2δij , (20.5)
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530 Spatial infinity

so that one obtains the expansion

Ὼ = δαβx
αxβ +O(|x|3).

In particular, it is observed that D{iDj}Ὼ = O(|x|3).
One can define a massive part of the conformal factor as Ω̌ ≡ Ω − Ὼ.

Rewriting Equation (20.1) as

Ω = Ὼ

(
1 +

|x|W
U

)−2

,

and using that

Di|x| =
xi

r
+O(|x|2), DiDj |x| =

1

|x|3 (|x|
2δij − xixj) +O(|x|),

where xi ≡ δi
βδαβx

α, one concludes, taking into account the boundary

conditions (20.5), that

D{iDj}Ω = −
3mx{ixj}

|x| +O(|x|2).

Finally, observing that, in the present gauge, sij = O(|x|) and r = O(|x|), one
finds

dij = −
3mx{ixj}

|x|5 +O(|x|−2), Lij =
3mx{ixj}

|x|3 +O(|x|0).

Accordingly, one concludes that both dij and Lij are singular at i with

dij = O(|x|−3), Lij = O(|x|−1), as |x| → 0.

The analysis of the consequences of this singular behaviour and how to deal with

it will be the central subject of the remainder of this chapter.

Remark. Even if the massive part of the conformal factor vanishes, one still

has a potential source of singularities in the fields dij and Lij . This can be seen

from computing the massless part of the electric part of the Weyl tensor

given by

d̀ij ≡ 1

Ὼ2
(D{iDj}Ὼ + Ὼsij)

=
1

|x|4
(
U2D{iDj}|x|2 − 4UD{i|x|2Dj}U

− 2|x|2UD{iDj}U + 6|x|2D{iUDj}U + |x|2U2sij
)
. (20.6)

A similar expression holds for L̀ij – the massless part of the Schouten tensor. In

the next section, it will be seen that under suitable assumptions on the metric

h, both d̀ij and L̀ij extend to analytic fields in a neighbourhood of i.
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20.2 Massless and purely radiative spacetimes

Intuition on the behaviour of solutions to the conformal Einstein field equations

in a neighbourhood of spatial infinity can be obtained from the analysis of

massless initial data sets , that is, data sets for which Ω = Ὼ. In view of the

mass positivity theorem – see Schoen and Yau (1979) – the idea of considering

initial data sets which are massless might at first seem strange. The rigidity part

of this theorem implies that if the ADM mass m of an initial data set vanishes,

then one has, in fact, initial data for the Minkowski spacetime or the initial data

set is singular somewhere. Since the present chapter is mainly focused on an

analysis local to i (i.e. in a suitably small neighbourhood of i) the presence of

singularities in the interior of the 3-manifold S can be disregarded.

20.2.1 Geometric setting

Given a massless initial data set for the conformal Einstein field equations in a

neighbourhood U of the point at infinity i, the conformal evolution equations

determine a (future and past) development (M, g,Ξ) which is contained in

D(U) = D+(U) ∪ D−(U). Following the notation of Chapter 14, let I+(i) and

I−(i) denote the timelike future and timelike past of i in (M, g) and by N +
i and

N −
i the null cones generated by the null geodesics passing through i. From the

boundary conditions (20.5) satisfied by Ὼ it follows that the spacetime conformal

factor Ξ has a non-degenerate critical point at i which, for simplicity, is assumed

to be the only critical point of Ξ. The locus of points for which Ξ = 0 coincides

with N +
i ∪ N −

i ; see the discussion in Section 16.3.

As observed in Friedrich (1988), the development (M, g,Ξ) of the conformal

field equations can be regarded from a dual perspective:

(i) On the set Mc
i ≡ M \

(
I+(i) ∪ N +

i ∪ I−(i) ∪ N −
i

)
, corresponding to the

exterior of the null cones, the metric g̃ ≡ Ξ−2g is a solution to the Einstein

field equations with vanishing mass for which i represents spatial infinity i0.

(ii) On I+(i) the metric g̃ represents a solution to the Einstein field equations

for which the point i represents past timelike infinity i− and the set I − ≡
N +

i \ {i} past null infinity. For suitably smooth initial data, the solution

thus obtained has a regular past timelike infinity and provides an example

of purely radiative spacetimes; see the discussion in Section 18.4.

A schematic depiction of the above geometric setting can be found in

Figure 20.1.

20.2.2 A regularity condition at spatial infinity

Not all initial data sets lead to developments (M, g,Ξ) such that I+(i) admits

a regular past timelike infinity – as given in point (ii) of the previous section.

The purpose of this section is to identify the initial data sets with this property.
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532 Spatial infinity

Figure 20.1 Schematic depiction of the geometric set up for massless space-
times as described in the main text. The set Mc

i ≡ M\
(
I+(i)∪N +

i ∪I−(i)∪
N −

i

)
contains a solution to the vacuum Einstein field equations with vanishing

mass for which i represents spatial infinity i0, while on I+(i) one obtains a
purely radiative solution where N +

i represents past null infinity I − and i
corresponds to past timelike infinity i−.

The arguments of this section are always carried out in a suitable neighbourhood

of the vertex i.

As already discussed, direct inspection of expression (20.6) shows that

although Ὼ = |x|2/U2 is a real analytic function in a suitable neighbourhood

U of i fixed by the equation

2ῺΔhῺ = 3DiῺDiῺ− 1

2
Ὼ2r[h]

and the boundary conditions (20.5), in general, the corresponding fields d̀ij and

L̀ij will not have the same degree of smoothness.

To identify conditions on h ensuring that the fields d̀ij and L̀ij are also

analytic, it is convenient to consider a complex analytic extension of U
similar to the one discussed in Section 19.4. To this end, one allows the normal

coordinates x = (xα) in U to take values in a neighbourhood UC of the origin of

C3 so that the original neighbourhood U is a real three-dimensional analytic

submanifold of UC. Accordingly, the fields Γ ≡ |x|2, h, ei, Ὼ, sij and r[h]

are extended by analyticity into the complex domain and are regarded as

holomorphic fields over UC. Assuming that i = {p ∈ UC | xα(p) = 0} is the

only critical point of Ὼ in UC, the complex null cone generated by the complex

null geodesics through i is given by the two-dimensional complex submanifold

NC(i) ≡ {p ∈ UC | Γ(p) = 0}.

By construction, the set of points in UC where Ὼ vanishes coincides with NC(i).
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A first criterion ensuring the analyticity of φ̀ABCD – or, equivalently, d̀ij – is

given by the following:

Proposition 20.1 (analyticity of the massless part of the Weyl spinor:

first version) The analyticity of φ̀ABCD near i is equivalent to the requirement

D(P pQp
· · ·DP 1Q1)

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)
(i) = 0 (20.7)

for p = 0, 1, 2, . . ..

Remark. As will be seen in the following, this condition is, in fact, a condition

on the conformal class of h. The conformal constraint equations imply that L̀ij

is analytic if d̀ij is analytic.

Proof The proof of the lemma makes repeated use of a factorisation lemma for

holomorphic functions, which is discussed in the Appendix to this chapter; see

Lemma 19.2. The analyticity of h implies that the field φ̀ABCD on U extends

to a holomorphic field on UC \ NC(i) which satisfies

Ὼ2φ̀ABCD = D(ABDCD)Ὼ + ῺsABCD. (20.8)

Now, if φ̀ABCD is analytic at NC(i) one can take a derivative of the above

expression and evaluate on NC(i) to find that

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)∣∣
NC(i)

= 0. (20.9)

Conversely, given condition (20.9), one would like to verify that φ̀ABCD is

analytic at NC(i). Using the factorisation Lemma 19.2 in the Appendix to this

chapter, it follows that there is a holomorphic field fABCDEF such that, in a

neighbourhood of NC(i), one has

DEF

(
D(ABDCD)Ὼ + ῺsABCD

)
= ῺfABCDEF . (20.10)

Defining ZABCD ≡ D(ABDCD)Ὼ + ῺsABCD, the last equation can be written

as DEFZABCD = ῺfABCDEF . Moreover, transvecting Equation (20.10) with

DEF Ὼ one obtains

DEF ῺDEFZABCD

∣∣
NC(i)

= 0, (20.11)

which can be read as an ordinary differential equation for ZABCD along the

generators of NC(i). It follows that the field ZABCD is constant along the

generators, so that evaluating Equation (20.11) at the vertex one concludes that

D(ABDCD)Ὼ + ῺsABCD = 0 on NC(i).

Using again Lemma 19.2 again, one finds that there exists a further holomorphic

field fABCD such that

D(ABDCD)Ὼ + ῺsABCD = ῺfABCD in a neighbourhood of NC(i).
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Taking a derivative of this expression and comparing the result with Equa-

tion (20.10) it follows that(
DEF ῺfABCD

)∣∣
NC(i)

= 0.

One observes that DEF Ὼ �= 0 on UC \ {i}. It follows that there exists a

holomorphic function gABCD such that fABCD = ῺgABCD so that

Ὼ2gABCD = D(ABDCD)Ὼ + ῺsABCD.

Comparing the latter with Equation (20.8) one concludes that gABCD coincides

with φ̀ABCD on UC \ NC(i), and, thus, φ̀ABCD is analytic near i as required.

Having encoded the analyticity of φ̀ABCD in terms of the vanishing of a

spinorial field at NC(i), one makes use of Lemma 19.3 in the Appendix to this

chapter to express the latter condition as an equivalent series of conditions at

the vertex i.

An alternative way of imposing conditions on the metric h ensuring that

φ̀ABCD is analytic at i can be obtained using expression (20.4) for the Cotton

spinor. One has the following:

Proposition 20.2 (analyticity of the massless part of the Weyl spinor:

second version) A necessary condition on the metric h for φ̀ABCD to be

analytic in a neighbourhood of i is given by the sequence of conditions

D(P pQp
· · ·DP 1Q1

b̀ABCD)(i) = 0, p = 0, 1, 2, . . . (20.12)

Proof As in the proof of Proposition 20.1, one considers an arbitrary null

geodesic γ(s) ∈ NC(i), s ∈ C, such that γ(0) = i with tangent vector having

the spinorial counterpart κAκB with κA parallely propagated along γ(s). The

latter implies that

κADABῺ = 0. (20.13)

For Ω = Ὼ, relation (20.4) takes the form

b̀ABCD = 2D(A
QῺφ̀BCD)Q + ῺD(A

Qφ̀BCD)Q,

which can be extended to UC by analyticity. In particular, at NC(i), contracting

the previous expression four times with κA one obtains, in view of (20.13), that(
κAκBκCκD b̀ABCD

)∣∣
NC(i)

= 0.

Applying repeatedly κP κQDPQ one finds that(
κP pκQp · · ·κP 1κQ1κAκBκCκDDP pQp

· · ·DP 1Q1
b̀ABCD

)∣∣
NC(i)

= 0,

for p = 0, 1, 2, . . . Restricting the previous expression to i and recalling that κA

is arbitrary, one obtains (20.12).
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Remark. In Chapter 19 it has been shown that the Cotton spinor of the 3-

metric of a static solution satisfies a condition that is identical to (20.12); see

Proposition 19.1. The role it plays in ensuring the analyticity of the rescaled

Weyl tensor at i motivates the alternative name regularity condition. From

the analysis of Section 19.3 it follows that the expression (20.12) is conformally

invariant and, accordingly, is a condition on the conformal class [h].

In Friedrich (1998c) it has been proven that conditions (20.7) and (20.12) are,

in fact, equivalent. The following proposition rounds out nicely the discussion of

this section.

Proposition 20.3 (equivalence between the conditions ensuring ana-

lyticity of the Weyl spinor) Conditions (20.7) and (20.12) are equivalent.

Consequently, a necessary and sufficient condition on the conformal class [h] to

ensure that the fields φ̀ABCC and L̀ABCD extend analytically to i is given by

D(P pQp
· · ·DP 1Q1

b̀ABCD)(i) = 0, p = 0, 1, 2, . . .

The proof of the equivalence between (20.7) and (20.12) involves a lengthy

computation that goes beyond the scope of this section. Interested readers are

referred to Friedrich (1998c), theorem 4.2 and its proof, for full details.

20.2.3 Construction of massless data

In Friedrich (1988) it has been observed that asymptotically initial data sets can

be used as seeds for the construction of massless initial data sets.

Let (h�, sij , ζ, ς) denote an asymptotically Euclidean solution to the conformal

static Equations (19.17). The above fields are expressed in a conformal gauge for

which r[h�] = 0. Moreover, the conformal factor linking the conformal metric

h� with the physical metric h̃� via h� ≡ Ω2
�h̃� satisfies

Ω
−1/2
� = ζ−1/2 +

1

2
m (20.14)

with m the ADM mass of the static solution; compare Equation (19.8). One can

then look for conformal factors Ω solving the conformal Hamiltonian constraint

2ΩΔh�Ω = 3|D�Ω|2

– compare Equation (11.15a) – where D� and Δh� denote, respectively, the

Levi-Civita covariant derivative and Laplacian of the conformally static metric

h�. Making use of the ansatz Ω = Ω(ζ), observing that

DiΩ =
dΩ

dζ
Diζ, DiDjΩ =

d2Ω

dζ2
DiζDjζ +

dΩ

dζ
DiDjζ,

and taking into account the conformal static equations one arrives at the ordinary

differential equation
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2ζΩ
d2Ω

dζ2
+ 3Ω

dΩ

dζ
= 3ζ

(
dΩ

dζ

)2

.

The general solution to this equation is given by

Ω =
c1ζ

(1 + c2
√
ζ)2

, c1, c2 constants.

The subclass of analytic solutions is given by c2 = 0, so that – up to a constant

factor – one has

Ω = ζ. (20.15)

When c2 �= 0, that is, in the case of a non-analytic solution, one has a non-

vanishing mass. In hindsight, the solution (20.15) could have been guessed

directly from Equation (20.14) as ζ satisfies the boundary conditions (20.5);

compare also Equation (19.11). Summarising, one has:

Proposition 20.4 (massless initial data out of static data) Given a

solution to the conformal static equations (h�, sij , ζ, ς) in a neighbourhood U
of the point at infinity i, the metric

h̃ = ζ−2h�,

defined in a suitable punctured neighbourhood of i, satisfies the time-symmetric

Hamiltonian constraint r[h̃] = 0 and has vanishing mass. Moreover, the rescaled

Weyl and Schouten spinors obtained from Equations (20.3a) and (20.3b) by

setting Ω = ζ are analytic at i.

The above result can be generalised to obtain massless initial data for the

conformal Einstein-Maxwell field equations; see Simon (1992).

20.2.4 Evolution of massless data

Proposition 20.4 can be combined with the conformal evolution equations to

obtain a development admitting the dual interpretation discussed in Section

20.1.1. The simplest way of implementing the construction is to make use of the

extended conformal Einstein field equations expressed in terms of a conformal

Gaussian gauge; see Section 13.4.

Initial data for the congruence of conformal geodesics (x(τ), β̃(τ)) underlying

the conformal Gaussian gauge can be set by the conditions

τ = 0, ẋ ⊥ U , Θ� = ζ, Θ̇� = 0, d� ≡ Θ�β̃� = dζ, on U .

The conformal factor associated to the congruence of conformal geodesics – see

Proposition 5.1 – is then given by

Θ = ζ

(
1 +

ςτ2

2ζ

)
, ς ≡ 1

3
Δh�ζ.

https://doi.org/10.1017/9781009291347.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.025


20.2 Massless and purely radiative spacetimes 537

In the above expression ζ and ς are regarded as constant along a given conformal

geodesic. Now, one has that ς(i) = −2. Hence, by choosing U sufficiently small

so that ς < 0 in this neighbourhood, one can ensure that Θ has real roots at

τ = ±
√
2ζ/|ς|. Observe, in addition, that Θ = 0 at i.

The existence of a development for the massless data provided by Proposition

20.4 is given by the following result:

Theorem 20.1 (existence of purely radiative spacetimes) Let u� denote

initial data for the extended conformal Einstein field equations on a neighbour-

hood U of i constructed from a pair (h�, ζ) as given by Proposition 20.4. Then

there exists τ• > 0 ensuring the existence of a smooth solution u to the conformal

Einstein field equations on

Mτ• ≡ D+(U) ∩
(
[0, τ•)× U

)
,

such that the restriction of u to U coincides with u�. Define

Nτ• ≡ {p ∈ Mτ• |Θ(p) = 0},

and let g be the Lorentzian metric constructed from the solution u. For this

solution one has the following:

(i) On Mτ• \ (Nτ• ∪ (I+(i) ∩Mτ•)) the metric g̃ ≡ Θ−2g is a solution to the

vacuum Einstein field equations with vanishing mass for which Nτ• \ {i}
represents future null infinity I + and the point i corresponds to spatial

infinity i0.

(ii) On I+(i)∩Mτ• the Lorentzian metric g̃ is a purely radiative solution to the

Einstein field equations for which Nτ• \ {i} represents past null infinity and

the point i corresponds to past timelike infinity.

A schematic depiction of the spacetimes constructed via the above result is

given in Figure 20.1.

Proof The local existence of smooth solutions follows from the hyperbolic form

of the evolution equations given in Proposition 13.3 together with the local

existence for this type of evolution equations provided by Kato’s Theorem 12.2.

The existence of an actual solution to the full conformal Einstein field equations

follows from the form of the associated subsidiary system – see Proposition 13.4 –

while the existence of a solution to the Einstein field equations is obtained from

Proposition 8.3 whenever Θ �= 0. The interpretation of the solutions in the

regions where Θ > 0 and Θ < 0 follows from the discussion in Section 20.2.1.

Remark. Although the result is, from the conformal perspective, purely local,

from the physical point of view, it is nevertheless of a semi-global nature. It

follows from the smoothness of the solution u to the conformal Einstein field

equations provided by Theorem 20.1 on Nτ• \ {i} and, in particular, of the field
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φABCD, that the Weyl tensor of both of the spacetimes in (i) and (ii) satisfy

the Peeling behaviour ; see Theorem 10.4.

20.3 A regular initial value problem at spatial infinity

The purpose of this section is to discuss the formulation of a regular asymptotic

initial value problem for the conformal evolution equations for data with non-

vanishing mass.

Consider a suitable neighbourhood U of the point at infinity i of the point-

compactification (S,h,Ω) of an asymptotically Euclidean (time-symmetric)

Cauchy hypersurface of a vacuum spacetime (M̃, g̃). Let {ei} denote an

h-orthonormal frame and let {εAA} denote an associated spin frame. The key

idea behind the formulation of a regular asymptotic initial value problem is based

on the observation that a conformal rescaling of the form

Ω �→ Ω′ ≡ κ−1Ω (20.16)

induces a rescaling of the frame of the form

ei �→ e′i ≡ κei, εA
A �→ ε′A

A ≡ κ1/2εA
A.

Accordingly, the components of the rescaled Weyl spinor with respect to the spin

frame {εAA} rescale as

φABCD �→ φ′
ABCD ≡ κ3φABCD.

Now, if one considers the rescaling (20.16) with a function κ of the form

κ = |x|κ, with κ smooth such that κ(i) �= 0, (20.17)

one finds that φ′
ABCD = O(1). Thus, the components of the Weyl spinor with

respect to the new frame are bounded at i.

20.3.1 Rescaling of the initial data for the conformal field equations

The discussion of the previous paragraph suggests that the rescaling (20.16) with

κ given by (20.17) could be used to formulate a regular Cauchy problem on U .
Note, however, that while φ′

ABCD is bounded at i, there is no guarantee that

it will be smooth since |x| is not a smooth function of the normal coordinates

x = (xα). Thus, one needs to resort to polar coordinates similar to the ones

used in Section 19.2.1 to analyse the spacetime conformal extensions of static

spacetimes. Letting

ρ2 ≡ δαβx
αxβ , ρα ≡ xα

|x| ,

and using some coordinates θ = (θA) on S2 to parametrise the position vector

ρα, one has that the 3-metric h can be written as

h = −dρ⊗ dρ+ ρ2k, k ≡ hαβ∂Aρ
α∂Bρ

βdθA ⊗ dθB,
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with k|ρ=0 = −σ; compare Equation (19.24). It is natural to consider an h-

orthonormal frame {ei} with dual coframe {ωi} satisfying

ω3 = dρ, ρ2k = −ω1 ⊗ ω1 − ω2 ⊗ ω2.

The indexing of the basis vectors has been chosen so as to match that of the

spatial Infeld-van der Waerden symbols; see Equations (4.11a) and (4.11b).

From the above expressions it follows, writing ωi = ωi
αdx

α, that ω3
α = O(1),

ω1
α, ω

2
α = O(ρ), while for the frame coefficients in ei = ei

α∂α one has that

e3
α = O(1), e1

α, e2
α = O(ρ−1).

Consistent with the rescaling (20.16), let

e′i ≡ κei, ω′i ≡ κ−1ωi, (20.18)

and set e′i = e′i
α∂α and ωi = ω′i

αdx
α. It follows that if the function κ is chosen

as in Equation (20.17), then

e′3
α = O(ρ), e′1

α, e′2
α = O(1),

ω′3
α = O(ρ−1), ω′

1
α, ω′

2
α = O(1),

and, moreover, that

h′ ≡ κ−2h = − 1

ρ2
dρ⊗ dρ+ k. (20.19)

Thus, the coframe coefficients and, consequently, also the metric coefficients

are singular at ρ. This singular behaviour is, however, not an obstacle for the

construction of a regular initial value problem as these objects do not explicitly

appear as unknowns in the spinorial conformal Einstein field equations in either

their standard or their extended form. Introducing the coordinate r ≡ − log ρ so

that r → ∞ as ρ → 0 one obtains the line element

h′ = −dr ⊗ dr + k.

Hence, the locus of points for which ρ = 0 lies at infinity with respect to

the metric h but has finite circumference – and is, in fact, a metric 2-sphere.

Accordingly, the rescaling (20.19) resolves (blows up) the point at infinity into a

2-sphere which is described locally in terms of the coordinates θ = (θA).

In the remainder of this chapter, for the blow up of i to S2 it will be

understood the pair (
C(U), {e′i}

)
consisting of a 3-manifold C(U) with boundary ∂C(U) ≈ S2 such that C(U) \
∂C(U) can be identified with U \ {i} and where the frame {e′i} is given as in

Equation (20.18) with a choice of κ as in Equation (20.17). The set I0 ≡ ∂C(U)
will be called the sphere at infinity. Observe that the definition of a blow up

makes reference neither to the metric h′ nor to the coframe {ω′i} which are

singular as ρ → 0.
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The previous definition of the blow up of i has the purpose of simplifying the

discussion in the remainder of the chapter. A precise and rigorous discussion of

this construction requires the use of the language of fibre bundles. The interested

reader is referred to Friedrich (1998c, 2004) for a detailed account; see also Aceña

and Valiente Kroon (2011).

The rescaling of the conformal fields

The effects of the frame rescaling (20.18) on the connection coefficients can be

analysed by means of the usual transformation formulae for the connection.

One has

γ′
i
j
k = ω

′j
ke

′
i
iD′

ie
′
k
k

= ω
′j

ke
′
i
iDie

′
k
k − κ−1ω′j

ke
′
i
ie′k

lSil
mkDmκ

= κγi
j
k − (δk

jDiκ+ δi
jDkκ+ δikD

jκ);

compare a similar computation in Section 15.1.2. The spinorial version of the

above expression is given by

γ′
ABCD = κγABCD − 1

2
(εACDBDκ+ εBDDACκ).

To complete the discussion of the connection, one needs to consider the rescaling

of the covector f . From the transformation rules of solutions to the conformal

geodesics equations, Equation (5.40), it follows that f ′ = f+dκ. Thus, if f� = 0,

it follows that

f ′
i = Diκ, f ′

AB = DABκ.

Finally, it follows from the transformation rules of the components of the

Schouten tensor under the transition to a Weyl connection that

L̂ij = κ2Lij , Θ′
ABCD = κ2ΘABCD.

Comparing the above expressions with (20.3b), it follows that if κ is chosen as

in (20.17), then Θ′
ABCD = O(1).

A closer look at the frame

It is convenient to have a more detailed expression for the frame {ei} or,

alternatively, its frame spinorial index counterpart {eAB} – recall that eAB ≡
σi

ABei. Let {∂+, ∂−} denote a local basis of vectors on S2 with dual cobasis

{α+, α−} such that ∂− = ∂+ and, furthermore,

σ = 2(α+ ⊗α− +α− ⊗α+),

with σ denoting the standard metric of S2. The vectors can be expressed in terms

of the local coordinates θ = (θA), but the explicit correspondence will not be

required. The vectors {∂+, ∂−} originally defined on S2 can be extended to C(U)
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by Lie propagation along the radial direction given by ∂ρ; that is, one requires

that [∂ρ,∂±] = 0. Using the vector fields {∂ρ, ∂±} one can then locally write

eAB = eAB
3∂ρ + eAB

+∂+ + eAB
−∂−,

for suitable frame coefficients eAB
3 and eAB

±. These coefficients can be

expanded, in turn, in terms of the basic valence-2 symmetric spinors

xAB ≡
√
2ε(A

0εB)
1, yAB ≡ − 1√

2
εA

1εB
1, zAB ≡ 1√

2
εA

0εB
0,

satisfying

xABxAB = −1, xAByAB = 0, xABzAB = 0, (20.20a)

yAByAB = 0, yABzAB = −1

2
, zABzAB = 0. (20.20b)

Expressing the spinorial basis {εAA} in the form ε0
A = oA, ε1

A = ιA one finds

that the fields xAB, yAB and zAB are, up to a normalisation, the components

of the pairs o(AιB), oAoB and ιAιB with respect to the spin basis. Taking into

account the contractions (20.20a) and (20.20b) and the line element (20.19) one

finds the more detailed expression

eAB = xAB∂ρ + eAB
+∂+ + eAB

−∂−, e01
± = 0.

20.3.2 The cylinder at spatial infinity

After providing regular initial data for the conformal field equations in the

neighbourhood U of i, one can now specify in more detail the conformal Gaussian

system underlying the hyperbolic reduction of the conformal Einstein field

equations.

In what follows, the initial data for the congruence of conformal geodesics will

be fixed, so that for p ∈ U \ {i} one has:

x� ≡ x(0) = p, ẋ� ≡ ẋ(0) = e0 future directed and orthogonal to S̃,
Θ�g̃(ea, eb) = ηab, Θ� > 0,

〈β̃, ẋ〉� = 0.

For the above data one further lets

Θ� = κ−1Ω, β̃� = Ω−1dΩ in U \ {i}, (20.21)

where, in a slight abuse of notation, β̃� denotes the pull-back of β̃ to U \ {i}.
While β̃� is singular at i, d� ≡ Θ�β̃� is regular under the present assumptions.

Using Proposition 5.1 in Chapter 5 it follows that

Θ = κ−1Ω

(
1− κ2τ2

ω2

)
, da =

(
− 2κΩτ

ω2
, κ−1dΩ

)
, (20.22)
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where

ω ≡ 2Ω√
|dΩ|2

.

Now, as Ω = O(ρ2), it follows that ω = O(ρ) so that, together with the choice

(20.17) for κ one finds that κ/ω → 1. Moreover, both Θ and da can be seen to

have well-defined limits as ρ → 0. Accordingly, the conformal Gaussian gauge

can be extended to the set

I0 ≡ {p ∈ U | ρ(p) = 0} ≈ S2,

despite the fact that the second prescription in (20.21) is singular at the

above set.

Assume now that the congruence of conformal geodesics underlying the gauge

has no conjugate points on D(U). A point p ∈ D(U) is described by coordinates

(τ, x�) where x� denotes the normal coordinates of the intersection of the unique

conformal geodesic passing through p with U . Accordingly, a suitable region of

D(U) close to U can be thought of as a subset of R× U . In the following it will

be convenient to consider the sets

M(U) ≡
{
(τ, q) ∈ R× U

∣∣ − ω(q)

κ(q)
≤ τ ≤ ω(q)

κ(q)

}
, (20.23a)

I ≡
{
(τ, q) ∈ M(U) | q ∈ I0, |τ | < 1

}
, (20.23b)

I± ≡
{
(τ, q) ∈ M(U) | q ∈ I0, τ ± 1

}
, (20.23c)

I ± ≡
{
(τ, q) ∈ M(U)

∣∣ τ = ±ω(q)

κ(q)

}
. (20.23d)

If an existence result for solutions to the conformal evolution equations can be

obtained, then the set M(U) gives rise to an extension of the physical spacetime

manifold M̃ in a neighbourhood of spatial infinity, while I ± describe the two

components of null infinity. In this representation the point i0 is replaced by

an extended set I, the cylinder at spatial infinity, with both spatial and

temporal dimensions. The sets I± where “null infinity touches spatial infinity”

will be called, for reasons which will become clearer in the subsequent discussion,

the critical sets.

The set up discussed in the previous paragraphs is fixed up to a specific choice

of the function κ in (20.17). A convenient and simple choice of this function

consists in setting κ = ρ so that κ = 1 – this choice will be called the basic

representation . A schematic depiction of the sets in (20.23a)–(20.23d) of the

basic representation is given in Figure 20.2. An alternative choice consists of

setting κ = ω. In this case Θ vanishes at τ ± 1, and, accordingly, one calls

this construction the horizontal representation. A schematic depiction of

the sets in (20.23a)–(20.23d) of the horizontal representation is given in Figure

20.3.
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Figure 20.2 Schematic depiction of the basic representation of the set up of
the cylinder at spatial infinity. Left, a three-dimensional diagram; right, a two-
dimensional longitudinal section. See the main text for further details. Note
that the diagram to the right is not a conformal diagram but a graph of the
location of the conformal boundary in the conformal Gaussian coordinates.

Figure 20.3 Schematic depiction of the horizontal representation of the set
up of the cylinder at spatial infinity. Left, a three-dimensional diagram; right,
a two-dimensional longitudinal section. See the main text for further details.
Note that the diagram to the right is not a conformal diagram but a graph of
the location of the conformal boundary in the conformal Gaussian coordinates.

20.3.3 The cylinder at spatial infinity for the Minkowski and

Schwarzschild spacetimes

A good way of obtaining intuition about the properties of the conformal evolution

equations in a neighbourhood of I is to consider the case of initial data for the

Schwarzschild spacetime. The discussion in this section follows that of section 6

in Friedrich (1998c).
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Time-symmetric initial data for the Schwarzschild spacetime has been dis-

cussed in Section 11.6. It has been shown that the hypersurface S̃ characterised

by the condition t = 0 is conformally flat, so that setting ρ = 1/r̄, with r̄ the

Schwarzschild radial isotropic coordinate, one obtains the following conformal

metric and conformal factor:

h = −dρ⊗ dρ− ρ2σ, Ω =
ρ2(

1 + 1
2mρ

)2 . (20.24)

A comparison with the split (20.1) shows that, close to the point at infinity i

(i.e. for ρ close to 0), one has

U = 1, W =
m

2
.

The basic data (20.24) allow one to compute the data for the conformal

evolution equations. Following the discussion of Section 20.3.1 and setting κ = ρ

(i.e. using the standard representation) one finds that

eAB
0 = 0, eAB

1 = ρxAB, eAB
+ = zAB, eAB

− = yAB, (20.25a)

fAB = xAB, ξABCD = 0, χ(AB)CD = 0, (20.25b)

ΘABCD =
6mρ(

1 + 1
2mρ

)2 ε2ABCD, φABCD = −6mε2ABCD, (20.25c)

where ε2ABCD ≡ ε(A
0εB

0εC
1εD)

1. In addition, the functions associated to the

conformal Gaussian gauge can be computed to be

Θ =
ρ(

1 + 1
2mρ

)2
(
1− τ2(

1 + 1
2mρ

)2
)
, Θ̇ = − 2τρ(

1 + 1
2mρ

)4 ,
dAB =

2ρxAB(
1 + 1

2mρ
)3 .

The simple form of the initial data (20.25a)–(20.25c) suggests that the

discussion of the conformal evolution equations can be simplified by considering

a specific ansatz for the solutions. Some experimentation shows that a consistent

ansatz is given by

eAB
0 = e0xAB, eAB

1 = e1xAB, eAB
+ = e+zAB, eAB

− = e−yAB,

fAB = fxAB, ξABCD =
1√
2
ξ(εACxBD + εBDxAC),

χ(AB)CD = χ2ε
2
ABCD +

1

3
χhABCD,

ΘABCD = θ2ε
2
ABCD +

1

3
θhhABCD +

1√
2
θxεABxCD,

φABCD = φε2ABCD,
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where the components of the vector-valued unknown

u = (e0, e1, e+, e−, f, ξ, χ2, χ, θ2, θh, θx, φ)

are assumed to be real-valued functions of (τ, ρ). The ansatz allows one to reduce

the spinorial evolution equations to a system of scalar equations. A lengthy

computation renders

∂τe
0 =

1

3
(χ2 − χ)e0 − f, ∂τe

1 =
1

3
(χ2 − χ)e1,

∂τe
± = −1

6
(χ2 + 2χ)e±, ∂τ ξ = −1

6
(χ2 + 2χ)ξ − 1

2
χ2f − θx,

∂τf =
1

3
(χ2 − χ)f + θx, ∂τχ2 =

1

6
χ2
2 −

2

3
χ2χ− θ2 +Θφ,

∂τχ = −1

6
χ2
2 −

1

3
χ2 − θh, ∂τθ2 =

1

6
χ2θ2 −

1

3
(χ2θh + χθ2)− Θ̇φ,

∂τθh = −1

6
χ2θ2 −

1

3
χθh, ∂τθx =

1

3
(χ2 − χ)θx − 2ρ

3
(
1 + 1

2mρ
)3φ,

∂τφ = −1

2
(χ2 + 2χ)φ.

Initial data for these components can be obtained from a comparison of the

ansatz with Equations (20.25a)–(20.25c). One concludes that

e0 = 0, e1 = ρ, e+ = 1, e− = 1, f = 1, ξ = 0, χ2 = 0, χ = 0,

θ2 =
6mρ(

1 + 1
2mρ

)2 , θh = 0, θx = 0, φ = −6m.

The symmetry reduced system and associated initial data can be written in

a schematic form as

∂τu = F (u, τ, ρ;m), u(0, ρ;m) = u�(ρ;m), (20.26)

where F and u� are analytic functions of their arguments.

The m = 0 case

The particular case m = 0 – that is, the Minkowski spacetime – can be solved

explicitly with the only non-vanishing geometric fields given by

e0 = −τ, e1 = ρ, e± = 1, f = 1, (20.27)

while the fields associated to the conformal gauge are

Θ = ρ(1− τ2), dAB = 2ρxAB.

Consequently, this solution exists for all τ, ρ ∈ R. From the expressions in (20.27)

one finds that

ω ≡ τAA′ωAA′
=

√
2

(
dτ +

τ

ρ
dρ

)
, ωAB = −1

ρ
xABdρ− 2yABα+ − 2zABα−.
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Using the above covectors one can recover the metric associated to the

conformal representation of the Minkowski spacetime under consideration. From

Equation (4.14) one finds

g =
1

ρ2
(
ρ2dτ ⊗ dτ + τρ(dτ ⊗ dρ+ dρ⊗ dτ)− (1− τ2)dρ⊗ dρ− σ

)
.

Consistent with the discussion of the previous sections, this metric is singular at

ρ = 0. Now, as

f = fABωAB =
1

ρ
dρ

is a closed form, it follows that the Weyl connection ∇̂ associated to this

representation is, in fact, the Levi-Civita connection of the metric ρ2g. The

standard Minkowski metric can be recovered by setting x0 = τρ so that

g̃ = Θ−1g =
1(

ρ2 − (x0)2
)2 (dx0 ⊗ dx0 − dρ⊗ dρ− ρ2σ

)
,

=
1

(xλxλ)2
ημνdx

μ ⊗ dxν .

Performing the inversion xμ �→ −xμ/(xλx
λ) in the last line element one obtains

the standard Minkowski metric; compare the discussion in Section 6.2.2.

Null geodesics orthogonal to the spheres of constant ρ are given by

τ =
s

1± s
, ρ = ρ�(1± s), θ = (θA) = (θA� ), (20.28)

for constant ρ�, θ
A
� and s an affine parameter. A direct computation shows that

outgoing null geodesics intersecting future null infinity I + correspond to the

choice of the minus sign in Equations (20.28) – the intersection occurring at

s = 1
2 so that ρ = 1

2ρ�. These outgoing null geodesics do not intersect past

null infinity I − for a finite value of s. As ρ� → 0, the outgoing null geodesics

approach in a non-uniform manner the set I − ∪ I ∪ I+ ∪ I−. An analogous

discussion applies to the incoming null geodesics obtained from taking the plus

sign in (20.28). Accordingly, the cylinder at spatial infinity can be regarded as a

limit set of outgoing and incoming null geodesics ; see Figure 20.4.

The m �= 0 case

Now, returning to the casem �= 0, it follows from the Cauchy stability of ordinary

differential equations – see, for example, Hartman (1987) – that given τ• > 1

there exist m• > 0, ρ• > 0 such that the solution u(τ, ρ;m) is analytic in all

variables and exists for

|τ | ≤ τ•, ρ ≤ ρ•, |m| ≤ m•.

By choosing τ• sufficiently large and observing the properties of the

reference m = 0 solution, one can ensure that for each conformal geodesic with
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Figure 20.4 Schematic depiction of the null geodesics close to the cylinder at
spatial infinity for the Minkowski spacetime as discussed in the main text; see
the parametric equations in (20.28). The curves intersecting I + are outgoing
geodesics, while the ones intersecting I − are incoming. The cylinder I can
be seen as a limit set of the two classes of geodesics.

0 < ρ < ρ• there exists a τI < τ• such that Θ|±τI
= 0, dΘ|±τI

�= 0. To obtain

a statement that is valid for any value of m, it is observed that the symmetry-

reduced evolution equations and the associated data are invariant under the

rescaling

m �→ 1

�
m, ρ �→ �ρ, φ �→ 1

�
φ, e1 �→ �e1, Θ �→ �Θ,

for � > 0. Consequently, for any arbitrary m it is always possible to obtain a

solution to the symmetry-reduced system (20.26) reaching null infinity if ρ is

sufficiently small. Moreover, if ρ is sufficiently small, the underlying congruence

of conformal geodesics is free of conjugate points on M(U). Null geodesics in

the Schwarzschild spacetime behave more and more like null geodesics in the

Minkowski spacetime as ρ → 0. Numerically constructed solutions of the reduced

spherically symmetric evolution system for the Schwarzschild spacetime can be

found in Zenginoglu (2006, 2007).

20.3.4 Structural properties of the conformal evolution equations

near the cylinder at spatial infinity

Having briefly analysed the regular initial value problem at spatial infinity for

the Minkowski and the Schwarzschild spacetimes, one is now in the position of

making some general remarks about this type of initial value problem.

The cylinder at spatial infinity as a total characteristic

Following Proposition 13.3, the hyperbolic reduction of the extended conformal

Einstein field equations by means of a conformal Gaussian system leads to an

evolution system which can be written as
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∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (20.29a)(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ. (20.29b)

For convenience, it is assumed that Equation (20.29b) corresponds to the

boundary adapted Bianchi system; see Section 13.4.4. Despite the fact that the

cylinder I is, from the point of view of the metric g, a singular hypersurface, it

is regular from the point of view of Equations (20.29a) and (20.29b) and its data

(υ̂�,φ�); see Section 20.3.1.

Inspection of the explicit form of the conformal evolution equations reveals

that L(x) = 0 whenever the conformal factor Θ and the covector d vanish. It

follows that, on I, the conformal evolution equations decouple and one has

∂τ υ̂
[0] = Kυ̂[0] +Q(Γ̂

[0]
)υ̂[0], υ̂[0] ≡ υ̂|I , Γ̂

[0] ≡ Γ̂|I .

These transport equations can be integrated along the cylinder I from the

observation that, irrespective of the particular choice of κ, the restriction of

the initial data υ̂� to I0 coincides with the restriction of initial data for the

Minkowski spacetime as given in Section 20.3.3. Accordingly, the solution one

obtains must also coincide with the Minkowskian one – namely,

(e0AB)[0] = −τxAB, (e1AB)[0] = 0, (e+AB)[0] = yAB, (e−AB)[0] = zAB,

(ξABCD)[0] = 0, (χ(AB)CD)[0] = 0, (fAB)[0] = 0, (ΘABCD)[0] = 0.

Substituting the above values in the restriction to I of the partial differential

equation (PDE) (20.29b) one finds that the normal matrix A3 satisfies

A3|I = 0. (20.30)

Hence, on I the restriction of Equation (20.29b) acquires the simplified form

(
I+A0(e[0])

)
∂τφ

[0]+A+(e[0])∂+φ
[0]+A−(e[0])∂−φ

[0] = B(Γ̂
[0]
)φ[0] (20.31)

where φ[0] ≡ φ|I ; that is, one obtains an interior system. It follows that the

cylinder at spatial infinity I is a total characteristic of the conformal evolution

Equations (20.29a) and (20.29b) and the restriction to I of all the conformal

fields can be obtained from the restriction of the initial data to I0 by solving the

resulting system of transport equations. Thus, although at first sight it seems that

the construction of the cylinder at spatial infinity is introducing a set on which

boundary data must be prescribed, the structural properties of the equations

do not allow this: no boundary conditions can be prescribed on I; compare the

discussion in Section 12.4.

The solution to the interior equations for the Weyl tensor, Equation (20.31),

can be obtained by observing that the restriction of the initial data for the Weyl

tensor coincides with that of Schwarzschildean data so that the solution must be
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the Schwarzschild spacetime. From the symmetry-reduced conformal evolution

equations it follows that φABCD is constant along I. Accordingly, one finds that

(φABCD)[0] = −6mε2ABCD.

The conformal evolution system and the critical sets

The analysis of the transport equations on I provides valuable insights into the

hyperbolicity of the conformal evolution system (20.29a) and (20.29b). Observing

that (e0AB)[0] = −τxAB it follows that

(
I+A0(e)

)
|I =

⎛
⎜⎜⎜⎜⎝

1− τ 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 + τ

⎞
⎟⎟⎟⎟⎠ ;

compare Equation (13.61). Accordingly, the matrix A0 loses rank at the critical

sets I± and is no longer positive definite. Thus, the standard theory of hyperbolic

PDEs as discussed in Chapter 12 cannot be employed to make assertions about

the existence and uniqueness of solutions of the evolution system (20.29a) and

(20.29b) up to I±. This degeneracy of the conformal evolution system is the

essential source of difficulties in the analysis of the so-called problem of spatial

infinity and requires the development of tailor-made techniques in order for one

to be able to make assertions about the behaviour of its solutions.

Expansions in a neighbourhood of the cylinder at spatial infinity

On an intuitive level, one would expect the degeneracy of the conformal evolution

system at the critical sets I± to manifest itself through a loss of smoothness of

its solutions. The discussion of Section 20.3.3 shows that this potential loss of

regularity does not occur for all initial data. This observation hints that the

precise algebraic structure of the evolution equations plays a decisive role in the

nature of the solutions. In Friedrich (1998c) a procedure to analyse in detail

the properties of the solutions to the conformal evolution equations has been

put forward. Exploiting the total characteristic nature of the cylinder at spatial

infinity one can repeatedly differentiate the evolution Equations (20.29a) and

(20.29b) with respect to ∂ρ and then evaluate on I. In view of condition (20.30)

one obtains a hierarchy of transport equations for the fields

υ̂[p] ≡ ∂p
ρ υ̂|I , φ[p] ≡ ∂p

ρφ|I , p = 1, 2, 3, . . . ,

of the form

∂τ υ̂
[p] = Kυ̂[p] +Q(Γ̂

[0]
)υ̂[p] +Q(Γ̂

[p]
)υ̂[0]

+

p−1∑
j=1

(
p

j

)(
Q(Γ̂[j])υ̂[p−j] + L[j]φ[p−j]

)
+ L[p]φ[0],
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(
I+A0(e[0])

)
∂τφ

[p] +A+(e[0])∂+φ
[p] +A−(e[0])∂−φ

[p]

= B(Γ̂[0])φ[p] +

p∑
j=1

(
p

j

)(
B(Γ̂[j])φ[p−j] −A+(e[j])∂+φ

[p−j]

−A−(e[j])∂−φ
[p−j]

)
.

The above equations will be called the transport equations of order p. The

non-homogeneous terms depend on υ̂[j] and φ[j] for 0 ≤ j < p. Thus, if these

lower order solutions are known, the above pair of equations constitutes an

interior system for υ̂[p] and φ[p] on I. The principal part of these equations

is universal – in the sense that it is independent of the value of p. Initial data for

these transport equations can be obtained from repeated ρ-differentiation and

evaluation on I0 of the initial data υ̂�, φ� on U . The coefficients obtained from

this integration can, in turn, be collected in formal expansions of the form

υ̂ =

∞∑
p=0

1

p!
υ̂[p]ρp, φ̂ =

∞∑
p=0

1

p!
φ[p]ρp. (20.32)

At the time of writing, the analysis of the convergence of these formal expansions

and the way they relate to actual solutions to the conformal Einstein field

equations is an outstanding open aspect in the understanding of the problem of

spatial infinity. Some ideas on how this problem could be addressed can be found

in, for example, Friedrich (2003b) and Valiente Kroon (2009).

The structure of the hierarchy of transport equations for υ̂[p] and φ[p] makes

them amenable to a treatment by means of computer algebra methods. This

approach has been pursued in Valiente Kroon (2004a,b) where solutions up to

order p = 8 have been obtained. As is to be expected, the algebraic complexity

of the solutions increases as p increases, eventually making the evaluation of

further orders in the expansion no longer feasible due to computer limitations.

The solutions to the transport equations obtained in this manner provide a

valuable insight into the behaviour of the conformal field equations at spatial

infinity.

As first observed in Friedrich (1998c), quite remarkably, there is a non-trivial

relation between the regularity condition for the Cotton tensor, Equation (20.12),

and the smoothness of the solutions to the transport equations:

Theorem 20.2 (necessary conditions for the regularity of solutions

to the conformal field equations at the critical sets) Given a vacuum

time-symmetric initial data set with a conformal metric which is analytic in a

neighbourhood of infinity, the solution to the regular finite initial value problem

at spatial infinity is smooth through I± only if the regularity condition

D(EpF p
· · ·DE1F 1

bABCD)(i) = 0 (20.33)

holds for p = 0, 1, 2, . . . If this condition is violated at some order p′, the solutions

to the transport equations at order p′ will develop logarithmic singularities at I±.
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The analysis leading to the above result requires only the homogeneous part

of the transport equations.

A toy model: the spin-2 massless field

A way of gaining insight into the behaviour of the solutions to the conformal

evolution equations on the cylinder I is to consider an analogous discussion for

a test spin-2 massless field on the Minkowski spacetime. Accordingly,

let ζABCD denote the components of a totally symmetric rank-4 spinorial field

satisfying the equation

∇Q
A′ζABCQ = 0. (20.34)

The principal part of the evolution equations implied by (20.34) along the

cylinder I is identical to that of the Bianchi evolution equations. Several aspects

of this toy model have been considered in Valiente Kroon (2002), Friedrich

(2003b) and Beyer et al. (2012), and the following discussion is adapted from

various parts of these references.

The background Minkowski geometry has already been obtained in Section

20.3.3; see Equation (20.27). From these expressions, a computation shows that

the evolution equations implied by the spin-2 massless field equation can be

explicitly written as

(1− τ)∂τ ζ0 + ρ∂ρζ0 − ðζ1 − 2ζ0 = 0, (20.35a)

∂τ ζ1 −
1

2
(ðζ2 + ð̄ζ0)− ζ1 = 0, (20.35b)

∂τ ζ2 −
1

2
(ðζ3 + ð̄ζ1) = 0, (20.35c)

∂τ ζ3 −
1

2
(ðζ4 + ð̄ζ2) + ζ3 = 0, (20.35d)

(1 + τ)∂τ ζ4 − ρ∂ρζ4 − ð̄ζ3 + 2ζ4 = 0, (20.35e)

where ζ0 ≡ ζ0000, ζ1 ≡ ζ0001, . . ., and where for convenience of the subsequent

discussion, the connection coefficients associated to S2 (i.e. Γ00CD and Γ11CD)

have been absorbed in the differential operators ð and ð̄; see the Appendix to

Chapter 10. The subsequent analysis will also require the constraint equations

implied by Equation (20.34). These are given by

τ∂τ ζ1 − ρ∂ρζ1 −
1

2
(ðζ0 − ð̄ζ2) = 0, (20.36a)

τ∂τ ζ2 − ρ∂ρζ2 −
1

2
(ðζ1 − ð̄ζ2) = 0, (20.36b)

τ∂τ ζ3 − ρ∂ρζ3 −
1

2
(ðζ2 − ð̄ζ4) = 0. (20.36c)

Differentiating Equations (20.35a)–(20.35e) and (20.36a)–(20.36c) repeatedly

with respect to ∂ρ and evaluating at I one obtains the transport equations
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(1− τ)∂τ ζ
[p]
0 − ð̄ζ

[p]
1 + (p− 2)ζ

[p]
0 = 0, (20.37a)

∂τ ζ
[p]
1 − 1

2
(ðζ

[p]
0 + ð̄ζ

[p]
2 )− ζ

[p]
1 = 0, (20.37b)

∂τ ζ
[p]
2 − 1

2
(ðζ

[p]
1 + ð̄ζ

[p]
3 ) = 0, (20.37c)

∂τ ζ
[p]
3 − 1

2
(ðζ

[p]
2 + ð̄ζ

[p]
4 ) + ζ

[p]
3 = 0, (20.37d)

(1 + τ)∂τ ζ
[p]
4 − ðζ

[p]
3 − (p− 2)ζ

[p]
4 = 0, (20.37e)

and

τ∂τ ζ
[p]
1 − 1

2
(ðζ

[p]
4 + ð̄ζ

[p]
2 )− pζ

[p]
1 = 0, (20.38a)

τ∂τ ζ
[p]
2 − 1

2
(ðζ

[p]
3 − ð̄ζ

[p]
1 )− pζ

[p]
2 = 0, (20.38b)

τ∂τ ζ
[p]
3 − 1

2
(ðζ

[p]
2 − ð̄ζ

[p]
0 )− pζ

[p]
3 = 0. (20.38c)

The linearity of the above equations suggests eliminating the angular depen-

dence of the solutions through an expansion in terms of spin-weighted spherical

harmonics. Consistent with the spin weight of the various components of ζABCD

one considers the ansatz

ζ
[p]
k =

p∑
l=|k−2|

l∑
m=−l

zk,p;l,m(τ) k−2Ylm.

Observe, in particular, that the number of l-modes is bounded by the differenti-

ation order p. This ansatz can be shown to be the most general possible. Taking

into account the action of the operators ð and ð̄ on the spin-weighted spherical

harmonics, a calculation combining Equations (20.37a)–(20.37e) and (20.38a)–

(20.38c) shows that the coefficients zk,p;l,m(τ) satisfy the Jacobi ordinary

differential equation

(1− τ2)z̈k,p;l,m +
(
2(k− 2) + 2(p− 1)τ

)
żk,p;l,m +

(
l(l + 1)− p(p− 1)

)
zk,p;l,m = 0,

where ˙ denotes differentiation with respect to τ . The solutions to this equation

are well understood; see, for example, Szegö (1978). For |k − 2| ≤ l < p the

solutions are a linear combination of the polynomials

P
(−p−6+k,−p+k−2)
p−l−1 (τ),

(
1− τ

2

)p+k−2

P
(p+k−2,−p+k−2)
l−2 (τ),

where P
(α,β)
n (τ) denotes the Jacobi polynomial of degree n with integer

parameters (α, β) given by

P (α,β)
n (τ) ≡

n∑
s=0

(
n+ α

s

)(
n+ β

n− s

)(
τ − 1

2

)n−s(
τ + 1

2

)s

.
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The case l = p is the one of most interest as the general solution can be found

to be a linear combination of(
1− τ

2

)p+k−2(
1 + τ

2

)p+2−k

,(
1− τ

2

)p+k−2(
1 + τ

2

)p+2−k ∫ τ

0

ds

(1− s)p−1+k(1 + s)p+3−k
.

Using partial fractions one finds that the integral in the second solution can be

expressed as∫ τ

0

ds

(1− s)p−1+k(1 + s)p+3−k
= a• ln(1 + τ) +

ap+2−k

(1 + τ)p+2−k
+ · · ·+ a1

1 + τ

+ b• ln(1− τ) +
bp−2+k

(1− τ)p−2+k
+ · · ·+ b1

1− τ
+ b0,

where a•, b•, ap+2−k, . . . , a1, bp−2+k, . . . , b0 are some constants. Thus, gener-

ically, the solutions for the l = p modes will be non-smooth and develop

logarithmic singularities at the critical sets I± even in the case where the initial

data is as smooth as it can be. Direct inspection of the above expressions shows

that at τ = 1 the most singular component of ζABCD is ζ0, while at τ = −1 it

is ζ4.

The singular behaviour can be avoided if the initial data is fine tuned. Indeed,

a lengthy analysis renders the following (see Valiente Kroon (2002)):

Proposition 20.5 (regularity of solutions to the massless spin-2 field

equations at the critical sets) The solutions to the transport equations

implied on the cylinder at spatial infinity I of the Minkowski spacetime by the

spin-2 massless field Equation (20.34) extends analytically to the critical sets I±

if and only if the regularity condition

D(EpF p
· · ·DE1F 1

b̆ABCD)(i) = 0, p = 0, 1, 2, . . . ,

where

b̆ABCD ≡ 2DP (AΩζBCD)
P +ΩDP (AζBCD)

P

denotes the linearisation of the Cotton spinor around Minkowski data.

This result is the spin-2 field version of Theorem 20.2 for the full conformal

Einstein field equations.

20.3.5 The cylinder at spatial infinity and static solutions

The analysis of static solutions provides deeper insights into the behaviour of

the solutions to the transport equations on I. The discussion in Section 19.2.1

shows that static solutions admit a smooth conformal completion at null infinity.

Thus, it is natural to conjecture that they also extend smoothly through the
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critical sets I±. The analysis of the conformal evolutions for the Schwarzschild

spacetime provides further support to this idea – this evidence, however, must

be taken with care as the spherical symmetry of the spacetime gives rise to a

number of non-generic simplifications.

A lengthy computation which combines the ideas of Sections 19.2.1 and 20.3.3

yields the following satisfactory result:

Proposition 20.6 (regularity of static solutions at the critical sets) The

solutions to the transport equations at I for static data extend smoothly (and, in

fact, analytically) through the critical sets I±.

A proof of this result can be found in Friedrich (2004). A generalisation of the

analysis to the stationary case is given in Aceña and Valiente Kroon (2011).

20.4 Spatial infinity and peeling

At the time of writing, one of the outstanding challenges in the analysis of

the problem of spatial infinity is to obtain a satisfactory understanding of the

connection between the solutions to the transport equations on I and the peeling

(or lack thereof) of the Weyl tensor at I .

The key hypothesis in the peeling theorem, Theorem 10.4, is the smoothness

of the rescaled Weyl tensor on null infinity. Direct inspection allows one to relax

this assumption to a certain minimum regularity threshold. Now, it has been

seen in the previous section that generic solutions to the transport equations

on the cylinder I have logarithmic singularities at the critical sets I±. In view

of the hyperbolic character of the conformal evolution equations, it is to be

expected that this singular behaviour will spread along the conformal boundary,

thus destroying the smoothness of the rescaled Weyl tensor along the conformal

boundary. These singularities may lead to a restricted peeling behaviour ; see,

for example, Chruściel et al. (1995) and Valiente Kroon (1998, 1999a,b) for a

discussion of more general types of peeling. A detailed and rigorous treatment

of these ideas is not yet available; some heuristic discussions can be found in

Valiente Kroon (2002, 2003, 2005, 2007a).

The most promising avenue to obtain a link between the generic singular

behaviour at the critical sets and the peeling behaviour at null infinity consists

of computing the formal expansions (20.32) up to a certain order N . Letting υ̂

and φ denote the actual solutions (if any) to the conformal evolution equations

one defines the remainders

RN [υ̂] ≡ υ̂ −
N∑

p=0

1

p!
υ̂[p]ρp, RN [φ] ≡ φ−

N∑
p=0

1

p!
φ[p]ρp.

If the expansion order N is sufficiently high, it may be possible to use the

conformal evolution equations to obtain estimates on the remainders RN [υ̂]

and RN [φ]. The idea behind this approach is that the expansion terms should
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contain the most singular part of the solution, thus leaving a remainder which

is more regular and, accordingly, more amenable to an analytic treatment. This

strategy has been implemented with success for the model problems of the spin-

2 massless field in the Minkowski spacetime in Friedrich (2003b) and for the

spinorial Maxwell equations (i.e. the spin-1 massless field) on the Schwarzschild

spacetime in Valiente Kroon (2009).

20.5 Existence of asymptotically simple spacetimes

The regularity of static solutions at spatial infinity provides a procedure to

construct a wide class of asymptotically simple solutions to the Einstein field

equations from a Cauchy initial value problem: the so-called Cutler-Wald-

Chruściel-Delay construction ; see Cutler and Wald (1989); Chruściel and

Delay (2002) and Corvino (2007). The key idea behind this construction is to

consider time-symmetric initial data sets (S̃, h̃) for the Einstein field equations

which are exactly Schwarzschildean in a suitable exterior region Ẽ of the

asymptotic end but otherwise arbitrary in a compact region B in the interior.

The existence of such initial data sets is ensured by the exterior asymptotic

gluing construction ; see Theorems 11.3 and 11.4. Denote by (S,h) a suitable

point compactification of the data (S̃, h̃) and let E denote the neighbourhood of i

corresponding to the exterior region Ẽ . As a consequence of the causal properties

of general relativity, the development of (S̃, h̃) is such that D+(E) coincides with
a suitable spacetime neighbourhood of the spatial infinity of S. In a slight abuse

of terminology one can say that these data have compact support. Accordingly,

D+(S) will contain hyperboloidal hypersurfaces H which coincide with S \ E on

D+(S \ E). On H ∩ D+(E), the initial data for the conformal field equations

implied by the development on H will be Schwarzschildean hyperboloidal data –

and, thus, smooth at I ∩H. An important technical aspect of this construction is

to ensure that the gluing region does not drift away into the asymptotic region as

one considers a sequence of data tending to data for the Minkowski spacetime.

This is ensured by Theorem 11.4. Now, if the data on B are sufficiently close

to data for the Minkowski spacetime, one can apply the semi-global existence

Theorem 16.1 to the data on H to obtain a development D+(H) which is

asymptotically simple. As the Schwarzschild spacetime is asymptotically simple,

one concludes that D+(S) is asymptotically simple; see Figure 20.5. In view

of the time symmetry of the initial data, one, in fact, obtains a spacetime

where the two components of null infinity I − and I + are complete. While the

development D+(S) is static in D+(E), in general, radiation will be registered

on I + ∩ J+(S \ E) and I − ∩ J−(S \ E).
For further details on the construction described in the previous paragraph,

see Chruściel and Delay (2002).

Remark. The original version of the above construction was carried out for

solutions to the Einstein-Maxwell equations. Remarkably, it is possible to
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Figure 20.5 Schematic depiction of the Cutler-Wald-Chruściel-Delay con-
struction. The spacetime is asymptotically simple and coincides with the
Schwarzschild spacetime on D+(H). Generically, radiation is registered on
I + ∩ J+(S \ E).

construct initial data with compact support for the Einstein-Maxwell equations

without the need of a gluing construction; see Cutler and Wald (1989).

20.6 Obstructions to the smoothness of null infinity

The spacetimes obtained from the Cutler-Wald-Chruściel-Delay construction

are very special. Thus, it is natural to ask whether it is possible to construct

asymptotically simple spacetimes which do not have such a rigid behaviour in

a neighbourhood of spatial infinity. Insight into this question can be obtained

from the analysis of the transport equations on the cylinder at spatial infinity.

The systematic analysis of the transport equations on I has shown that two

different types of obstructions to the smoothness of null infinity arise

in the development of time-symmetric data (S̃, h̃) admitting a smooth point

compactification (S,h) at spatial infinity. These are briefly discussed in the

following.

Obstructions associated to the conformal class [h̃]

As already discussed, obstructions to the smoothness of null infinity associated

to the conformal class [h̃] can be removed by requiring that the Cotton tensor

of the conformal metric h satisfies the regularity condition (20.33).

Obstructions associated to the scaling of the conformal metric

To discuss the obstructions to the smoothness of null infinity associated to the

particular scaling of the conformal metric, suppose that the conformal metric h�
is a solution to the conformal static equations with associated conformal factor

Ω; see Chapter 19. Now, restricting the subsequent considerations to a suitable
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small neighbourhood U of i consider another conformal factor Ω′ satisfying the

boundary conditions of a point compactification and such that the metric h̃
′ ≡

Ω′−2h� satisfies the time-symmetric Hamiltonian constraint on Ũ ≡ U \{i}; that
is, r[h̃

′
] = 0. It follows that there exists ϑ ∈ C2(U)∩C∞(Ũ) such that Ω′ ≡ ϑΩ.

Now, assume that ϑ(i) = 1, dϑ(i) = 0 and Hessϑ(i) = 0 so that the metrics

h̃ and h̃
′
= ϑ−2h̃ have the same mass. As the conformal metric h� is static it

satisfies the regularity condition (20.33). Moreover, as h′ = ϑ2h� ∈ [h�] it also
satisfies the regularity condition. After a lengthy inductive argument one obtains

the following:

Theorem 20.3 (obstructions to the smoothness of null infinity associ-

ated to the scaling of the conformal metric) Given time-symmetric initial

data with an analytic conformal metric h, the solution to the regular finite

initial value problem at spatial infinity for the conformal Einstein field equations

is smooth through the critical sets I± (and, in particular, free of logarithmic

singularities) if and only if ϑ− 1 vanishes at i at all orders.

The proof of this result can be found in Valiente Kroon (2010, 2011). The

analysis leading to the above theorem assumed the analyticity of the metric

in U . However, the result also holds if one assumes smoothness. This result

provides strong indication that static initial data play a privileged role among

the class of time-symmetric data which extend smoothly through the critical

sets. A precise clarification of this role is one of the outstanding challenges in

the analysis. Despite the insights obtained so far, at the time of writing, it

cannot be excluded that there exist data which are not asymptotically static at

i and for which the solutions to the transport equations on I extend smoothly

through the critical sets. To address this point, it is necessary to identify the gap

between initial data satisfying the regularity condition (20.33) and static data.

The further conditions required to single out static data have been analysed in

Friedrich (2013). It has been found that a sufficient condition for the staticity

of the data satisfying condition (20.33) and the non-degeneracy requirement

associated to the hypothesis of Theorem 19.4 (concerning the uniqueness of

the conformal structure of a static solution) can be expressed in terms of a

covector with conformally invariant differential. The challenge is now to analyse

whether data violating this sufficient condition develop singularities at the

critical sets.

20.7 Further reading

Although it has long been recognised that, for spacetimes with a non-vanishing

mass, spatial infinity is a singular point of the conformal structure – see,

for example, Penrose (1963, 1965) – systematic attempts to understand the

behaviour of the geometry of spacetime in a neighbourhood of this point

in the light of the Einstein field equations took time to get started. Early
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analyses of the behaviour of the Einstein field equations in a neighbourhood

of a suitable representation of spatial infinity have been given in Schmidt (1981),

Beig and Schmidt (1982), Beig (1984) and Schmidt (1987). The approach to

the analysis of spatial infinity discussed in this chapter started in Friedrich

(1988). The construction of the cylinder at spatial infinity was presented in

Friedrich (1998c) which to date remains the most comprehensive reference in

the matter. A useful discussion which overlaps with the previous reference but

also expands in certain aspects not covered in the original work is given in

Friedrich (2004); this reference provides, in particular, a detailed discussion

of the construction of the cylinder at spatial infinity for static solutions. The

extension of the later analysis to stationary solutions has been carried out in

Aceña and Valiente Kroon (2011). A programme to analyse the solutions to

the transport equations on I was started in Friedrich and Kánnár (2000a);

see also Friedrich and Kánnár (2000b). Expansions to a sufficiently high order

to observe the first obstructions to the smoothness of null infinity have been

carried out in Valiente Kroon (2004a,b,c, 2005). General results concerning

these expansions showing the special role played by static solutions (in a time-

symmetric setting) are given in Valiente Kroon (2010, 2011). An account of

the state of the art concerning the problem of spatial infinity is provided in

Friedrich (2013) where the gap between data satisfying the regularity condition

on the Cotton tensor and static data is analysed in detail. A discussion of general

aspects of the behaviour of the massless spin-2 field in a neighbourhood of spatial

infinity of the Minkowski spacetime can be found in Valiente Kroon (2002); see

also Beyer et al. (2012). A method for the construction of estimates for the

massless spin-2 field which remain regular at the critical sets of the Minkowski

spacetime has been provided in Friedrich (2003b). These ideas have been

adapted to the case of the Maxwell equations on a Schwarzschild background in

Valiente Kroon (2007b, 2009).

Appendix: properties of functions on the complex null cone

The following result of complex analysis is used repeatedly in the main text of

this chapter.

Lemma 19.2 (factorisation lemma) Let f denote a holomorphic function

on a neighbourhood UC of the origin of C3, and let NC(0) denote the complex

null cone through the origin. If f |NC(0) = 0, then there exists a holomorphic

function g defined on a neighbourhood of the origin of C3 such that f = Γg

where Γ = |x|2.

The proof of this result can be found in Kodaira (1986). Recall that NC(0)

coincides with the locus of points in C3 for which Γ vanishes. One also has the

following:
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20.7 Further reading 559

Lemma 19.3 (characterisation of functions vanishing on the null cone)

A holomorphic spinorial field ζA···D in some neighbourhood UC of the origin in

C3 vanishes on NC(0) if and only if it satisfies the sequence of conditions

D(P pQp
· · ·DP 1Q1)

ζA···D(0) = 0, p = 0, 1, 2, . . . (20.39)

The proof of this result is based on the observation that the conditions (20.39)

can be used to construct a Taylor-like expansion of the field ζA···D of the form

ζA···D(γ(s)) =
∞∑
p=0

1

p!
spκP pκQp · · ·κP 1κQ1DP pQp

· · ·DP 1Q1
ζA···D(0)

along the generators γ(s) of NC(0) for s an affine parameter sufficiently close to 0.

As a consequence of the analyticity of the set up, the above expansion uniquely

determines the function ζA···D in a neighbourhood of 0 onNC(0). A more detailed

discussion of the proof can be found in Friedrich (2013), lemma 6.1.
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