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Abstract

Some nonlinear second order ordinary differential equations have solutions which can be represented
as sums of solutions of related equations. This paper classifies the equations for which this is possible
and derives the corresponding forms.

1980 Mathematics subject classification (Amer. Math. Soc.): 34 A 25.

Introduction

In a recent paper, Whitham (1984) showed that solutions of the equation

y" = 6B+(4-6A)y-6y2,

which describe standing wave solutions of the Korteweg-de Vries equation, could
be obtained in the form

00

y = Y, sech2(x - 2ma),
— oo

where y = sech2(jc — x0) is the "soliton" solution of the related equation

y" = 4y- 6y2.

Similar results, where standing wave solutions are constructed as infinite sums
of solitons, are reported by Zaitsev (1983), who also considers two dimensional
waves generated in this fashion.
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[2] Nonlinear differential equations 93

In this paper we consider the general problem of constructing solutions of
equations of the form y" = p(y), where p is a polynomial in y, as infinite sums
of solutions of simpler, related equations. This includes the standing wave
solutions by Zaitsev and Whitham, but also encompasses those real solutions
which have singularities. The analysis is performed in the complex plane, and
general results are derived with coefficients which are complex. The particular
results which lead to real solutions for equations with real variables are then
obtained by special choices of the parameters. The majority of the solutions
obtained in this fashion have two distinct expansions as infinite sums of solutions
of related equations, one using trigonometric functions and one involving hyper-
bolic functions. These represent the generalizations of the representations of
standing wave solutions as superpositions of wave trains and as superpositions of
solitons.

The most common of these expansions represents the solution not as a
superposition of identical forms but as an alternating infinite sum of two forms
both of which satisfy the same non-linear equation. Included in this category are
a family of finitely periodic solutions of modified Korteweg-de Vries equations.

Basic considerations

Suppose that y = f(z) is a meromorphic solution of a differential equation of
the form y" = p(y) for polynomial p of degree k.

If y has a pole of order n at z = a, then y" has a pole of order « + 2 and
p(y) has a pole of order kn at this point. Therefore, in order that y be a solution,
we must have n + 2 = kn for integer A:, n. The only solutions of this equation are
n = 2, k = 2 and n = 1, k = 3. Hence we are restricted to polynomials of
degrees 2 and 3, respectively. When k = 3, f(z) has only simple poles, and when
k = 2, f(z) has only poles of order 2.

Also, if / has a pole of order 2, then we have

(z-a) (z-a)
and

6̂  2 6A 12B
A* " ( z - a ) 4 (z -a) 3 "I ( z -a ) 2

Therefore, if y" = a2y
2 + Q\y + flo> then -̂  = ^/ a2 a n ( i ^ = 0, i.e. the prin-

cipal part of / at every pole has the form 6/a2(z - a)2.
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94 A. S.Jones [3]

A similar analysis of y" = a3y
3 + a2y

2 + axy + a0 shows, that at a simple
pole the principal part of y is ±A/(z - a), where A2 = 2/a3.

Functions with second order poles

In view of the preceding analyses, we take as our basic function having a
second order pole the function /(z) = A/(z - a)2, which satisfies the second
order equation / " = 6f2/A, where the right hand side is itself the simplest
possible quadratic polynomial.

If we now construct the new function $, where $(z; «) = £f ^ / ( z + nu), for
arbitrary complex « # 0, we see that $ is a periodic function with period «. The
function $ can be evaluated explicitly by using residue theory to give

_ . „ / wcot irf \ a - z
$ = -A Res -—- at f =U 2/

it " /
cosecr' — (? —

Direct computation shows that $ is a solution of the equation

A 2
u2

so that, by inversion, we can express periodic solutions of this equation as infinite
sums of solutions of the simpler equation which has only the leading term on the
right hand side.

The functions sech2(z - x0) considered by Whitham correspond to $ with
A = — 1, w = iri and a = \iri + x0, and the corresponding sum

sech2(z)= £ 1

-«> (z +(n+ \)iri)2

represents its normal partial fraction expansion.
Now if we choose a second complex period, independent of the first, we can

construct the function
00

F(z;u1,u2)= X) $(z + mco2; wx).
m= — oo

This doubly periodic function can be expressed in terms of the function p with
periods «!, <o2 by

F = A(p(z - a) + S2)
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[4 ] Nonlinear differential equations 95

where
00 / 00 , \

m= — oo \ n « —oo yfliO^ ~r fflCO^j J

(m,n)* (0,0)

" ' www.

Writing ITU2/U1 = a + ib, where b # 0, we have

cosec
V sin2 ma + sinh2 mb sinh2

so that the single series expression for S2 converges absolutely, and very rapidly
since cosech2(mft) < 10"10 for mb > 12 • 3.

Changing the order of summation gives

F(z; w2,W l) = .

where

differs from S2 due to the conditional convergence of the double sum.
The periods and the TJ, are connected by u>2r\l — o>iij2 ~ "•' when Re(w2//<o1)

> 0, so that S2 — S2* = 2iri/u1u2 in this case, and F(z; wl5 «2) = F{z; w2, ux)

xiji2. Since p satisfies the equation

where

c =
4

it follows that F(z; uv w2) is a solution of the equation

F" = ^F2 - 12S2F + ^(6S2
2 - 30S4)

A
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96 A. S.Jones [5]

which illustrates the structural relationship between this equation and that
satisfied by $.

The relationship between F(z; <o1; w2) and F(z; w2, w j implies that every
doubly periodic solution admits two complementary expansions

_ v-> .*./ \ v J*./ \ 2iriA
F= 2* * ( z + mu2,"ij = }-, ^\z + w w i ; u2) H •

— 00 —00 1 2

Functions with first order poles

A similar analysis holds for the case where the solution has simple poles.
In order to ensure convergence of the infinite sums it is necessary to take as the

fundamental solution the function

which satisfies the equation

s"(z) = A
8 { ' A2

Proceeding as before, we construct

— 00

2ff4 sintf
— cos(2irz/u) '

where 6 = w(a — fi)/u> and Z = z — | ( a + /?), and we see that 4> satisfies the
equation

* " ^ 3 + 6

The function sechf corresponds to a = — ft = mi/2, w = 2mi, A = — /.
The double sum G(z; w1; w2) = E^a, ^(2 + /n«2, "i) can also be represented

in terms of the Weierstrass function.
Writing H(Z) = G(z), where Z = z - \(a + /?), we see that H is an even

function of Z with simple poles at A = ± j(a - /?) = ±r, say.
Then H(Z) - H(0) is doubly periodic with poles at ±r and a double zero at

Z = 0. Hence, if p is the Weierstrass function with periods «! and w2, then

• i/(0) =
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16] Nonlinear differential equations 97

and from this we find that H (and hence G) satisfies the equation

A p'(r) A

>'(r) - Up(r)H(O) + j ^ | f f 2 ( O ) - - ^ # 3

If we set

then this equation reduces to y" = f(y - c).
The constant c has the value

2 » / „ . ™ , . ^ sin(2rV«i)
c =

f ( ) '

This series is also absolutely and rapidly convergent. As before,

1 cos(2r7r/w1) — cos(2m7rw2/w1)

f(r)

i cos(2r7r/w2) — cos(2w7r«1/«2)

differs from c, so that H(Z; <o1( <o2) — H(Z; u2, «x) = A(c* - c) = 2rAiTi/u1u1.

Real equations with real solutions

If we require functions which take real values when the independent variable is
real, the choice of a and of the periods u1 and «2 is severely restricted.

The Weierstrass function p(z — a) will be real for real z provided its poles are
symmetrically placed with respect to the line Im(z — a) = 0. This can occur in
two ways.

Firstly we have u1 real, w2 = iw^l + /A), so that the period parallelogram is
a rhombus. Equivalently, we can take the periods as u" = i\uv = 2w2 — wr

<o2' = u2, which gives a different representation of the double periodic function.
In order that p(t — a) be real for real t, it is now necessary to take a real or a

(real + period). Without loss of generality we take ax = — j wt when considering
the first form of p and a2 = |/Xwx when considering the second. The function p
is unchanged by this, since a2 — ax is a period, although the representations alter.
These choices of a make p an even function of t.

https://doi.org/10.1017/S144678870003398X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003398X


98 A. S.Jones [7]

The first case occurs when the period parallelogram is rhomboidal. In this case
jp has a simple representation in terms of the function en: p(u) = 1/(2 — 2cn(«))
— (1 + 4fe2)/12. Taking first « = alt a = — \oiY, we have

*(r,Wl)=^sec2(^)

and
' irt mm mwi\ \£ sec2

2 _„ \ w i

/ l+(-l)™cos(2w//«1)c»sh(»nrX)
sec

7rr
1- 4^

w
«i \ wi i (cosh(m77X)+(-l)mcos(27rr/Wl)) /

When we take w = w" = iXu^ a = jXu^, we obtain

and
,il irt mir .mir

sech (AST + I x + '^-
(2m~l)v

—a:—
In the first case,

(2m -
^—T + 2Dsech TT\ 2 £ cosech2(-mwX)

3 2

while in the second case we have

5 2 = " [ 3
2

Using the relationship between each of these sums and the complementary sum
S2*, we obtain

c S** =

so that
, x _ / ~ \ 4ITA
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18 ] Nonlinear differential equations 99

The other parameter S4 is independent of the choice of periods and reduces to

i \ l I I «?

1
U

The second case occurs when the period parallelogram is a rectangle with one
real period «j and one purely imaginary period <o2 = /\w1, say. Again we can
take ax = — ju1 or a2 = \u2, although in this case we obtain different func-
tions, since ax and a2 do not differ by a period.

With a = - !«j we have as before that

) 2

In this case <b(t, Wj) is also real and is

r2ir2A u2l irt IT \
= - r - r cosechz -r— + ^T •

X2u] \ ^ i 2X /

The double sum is

rW \ 1T2A ^ -,[ TTt . \
F2(t; Wi,w2)

 = —T L sec"1 — + m-n\i

_ w2A I 2mt_ y 1 + cos(27rf/<o1) cosh(2m?r\)
wi \ wi l (cos(27r;/Wl) + cosh(2m7r\))2

The complementary expansion is

ir2A ^ J

E
F2(t; « , ,« ,) = _E_

2ITA
= F2{t; <o1;w2) -

With a = ^w2, the function

c o s e c i
w2 \ w i 2

, / ITt

cosec2

\
is not real, but

https://doi.org/10.1017/S144678870003398X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003398X


100 A. S.Jones | 9 |

and we have

F3{t; w1,w2)= — 2, cosecz — + \m - - )Xm\

- 47rl4 y, 1 - c o s ^ f / t ^ ) cosh(2m -

"? l (cosh(2m-1)TTX - cos(2i7//Wl))2

and
~ / \ IT A r-> . ->/ irt17 ' ' > V, sech21

„/, x 2irA

For both these expansions,

4 = —A h + T E cosech2(m7r\) + 2 ^ cosech4(wW\) I

These three types of solution are connected by F1 = F2 + F3.

Aperiodic solutions

All the double sums represent real periodic functions, while the real function
(7r2yl/w2)sec2(7r//w1) is also periodic. The exceptional cases are the functions
sech2 and cosech2, which represent simple sums, and the basic function f(t) =
(J - a)~2.

These functions correspond to the separatrices in the phase plane trajectories of
the system dy/dt = v, where

-1 = a2y
2 + axy + a0.

When the equation a2y
2 + axy + ao = 0 has no real solutions, there are no

singular points in the phase plane, and, as will be shown later, all the solutions of
the equation y" = a2y

2 + axy + a0 can be expressed in terms of Fx(f; w1; «2).
The "periodicity" of these solutions corresponds to the finite time taken for the
trajectories to be traversed.

When the equation a2y
2 + aty + a0 = 0 has repeated roots, so that y" =

a2(y — c)2, we have, as well as the trajectories of the type Fv the degenerate
trajectory v2 = \a2(y — c)3 corresponding to y = c + 6(t — a)~2/a2, which
represents a limiting form of Fx as (uu u2) -* 00.
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FIGURE 1

Finally, when the equation has two distinct real roots, we obtain separatrices in
the form shown in Figure 1.

The closed loop corresponds to a solution of the form y = — sech2(a/), and the
semi-infinite branches correspond to a solution of the form y = cosech2(a/)- The
only solutions which are finite and periodic for all t have trajectories lying within
the closed loop. They represent solutions in the form F3(t; uv w2), of which the
expansion considered by Whitham is a special case.

Solutions of y" = a2y
2 + axy + a0

In order to express the solutions of this equation in terms of the expansions
which we have generated, we first scale y by y = Ay, where A = 6/a2.. This gives
y" = 6y2 + b{Y + b0, where b1 = alt b0 = aoa2/6. If we now put Y = F + c =
p(t - a) + (S2 + c) = p(t - a) + clt then Y" = 6(y - cx)

2 - 30S4, but
Y" = 6(Y + bjrif + b0 - bj/24, so that S4 = (b\ - 24bo)/12O =
(a2 — 4a0a2)/720. The equation a2y

2 + axy + a0 = 0 has no real solutions if
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a\ — 4a0a2 < 0 and has repeated real roots if a\ - 4a0a2 = 0. These conditions
correspond to the conditions S4 < 0 and S4 = 0, respectively.

However, the form for S4, namely

s* = ^71 ~k + T £ cosech2(wwX) + 2 £ cosech4(w7r\)I,
«i \ 4 3 J l l /

which corresponds to functions of the type F2, F3, is always positive (although
5 4 - » 0 a s w 1 - » o o , \ finite), so that, when SA < 0, we only have solutions of the
type Fl for which S4 < 0 when 1/1/3 < X < \/3\

When S4 = 0, we have, apart from the separatrix, solutions of the form F1 with
X = 1 / ]/3 and X = JJ, those with the smaller value of X lying to the left of the
separatrix and those with the larger value to the right. For these values of X, the
poles of Fx are arranged as equilateral triangles.

Finally, when S4 > 0, we obtain all three types of solution. The regions in
which the solutions occur are separated by the curves corresponding to y = sech2,
y = cosech2 and y = sec2 (see Figure 2), which represent the limiting forms of
the families asX->ooor«->oo, X« = constant.

X-M/V3

FIGURE 2a
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X=l/V3

FIGURE 2b

FIGURE 2C
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104 A. S.Jones [13]

Functions with simple poles

The functions g, T|/, G, which we have considered, satisfy equations of the form
y" = a3y

3 + a2y
2 + axy + aQ with a3 = 2/A2. Hence, if we are looking for real

solutions as functions of a real variable, there are two distinct cases depending on
whether a3 > 0 or a3 < 0.

These two cases are distinguished by the behaviour of their trajectories in the
phase plane. When a3 < 0, all the trajectories in the phase plane are closed, and
almost all the solutions are finitely periodic. On the other hand, when a3 > 0,
there are finitely periodic solutions only when the polynomial has three distinct
real roots, and then only a few of the solutions have this form.

The case a3 < 0

In order to reduce the number of parameters involved, we will assume that
A = —i, so that all the functions developed satisfy an equation with a3 = - 2 .

For our basis function we take g(t) = 2/?[(f - a)2 + ft2]'1 and develop from
it three families of solutions similar in structure to those developed for the
quadratic case. This involves (i) taking u1 real, «2 = J W I ( 1 + iX), a = \ux (or
equally wj = i\alt «f = w2, a = i«*); (ii) taking wx real, w2 = /
and (iii) taking «1 real, w2 = iXu^ a = | « 2 . From (i) we obtain

. / s 2TT smh(2wi8/«1)
™ ' lt ' «i cosh(2^/w1) + cos(2w//Wl)

. / *.B\=_2*_ sJn(2«j8/X«1)
V2V - i'P) Xti! easi J + <

and the double sums

„ , o^_ 2T £ sinh(2«/?/«1)
cosh(27rj8/w1) +(-l)mcos(2^/w1 + mit\i)

-nP/Xw^ +(-l)mcosh(277-r/Xw1

/\CO-i

Setting <0j = ^wv u>2 = fiw2, t = /?T, we see that

0v,vr; w1,w2;l),
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114] Nonlinear differential equations 105

so that /} represents a scale factor with respect to the family of solutions. While /?
can theoretically range from - oo to oo, there is no loss of generality in assuming
that 0 < /? < X«/2, since, except, for i//1( fi + mXu gives the same function
values as /? to within a constant, and replacing /? by - / ? merely changes the sign
of the function.

When P = X«x/2, G reduces to a constant, and we have the functional identity

^/l represents the limit of Gx as X -» oo. However, as X -» 0, we obtain a two
piece limiting function. If we take the limit with t unchanged, we obtain Gx -* ip2

as X -» 0, Xwj finite. However, if we first shift t by T = t - v>x/2, we obtain the
limit

Gi ~* ~ T7T 7 03!) — COSh(27TT/w1) '

which represents a closed loop in the right half plane.
Similarly, from (ii) we obtain

G2(t; W j , w 2 ; p)= — Z.

and

G2(t; « 2 , W l ; j8)

f^ cos(277j8/Xw1) - cosh(2wf/Xw1 +(2m - \)m/X)

In this case G2 ~* \p1 as X -* oo, but in order to obtain the other limit we need
first to set T = t - u>x/2 to obtain

_ 2-n sin(2wi8/Xw1)
" ~* ~ — r 77T — r as X -> 0, X« fuute,

W1) - cosh(27r//Xw1)

which represents the right hand branch of the Gx limit.
For the third case we obtain

C (f • / n = — V sinh(277-;8/X(j1)
A ' W l ' " 2 ' P j «! " , cosh(27rj8/«1) - cos(2»//«1 +

cos(277j8/Xw1) + cosh(2wr/Xw1 + 2mir/X)
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In this case G3 -> 0 as X -* oo, while G3 ^np2 as A -» 0, Xw finite, which
represents the left hand branch of the G1 limit. As with the quadratic case these
families are connected by G1 = G2 + G3.

Note also that when P/Xu1 = £, we have

^ [ 2mtt \
]

and

^ [ i t Imtt
+

so that the trajectories of one family are the images of the other. This case is also
significant for the family Gx, since when ^/Xu1 = \ the trajectories are symmet-
ric about both axes.

Solutions of y" = a3y
3 + a2y

2 + a1y + a0

In order to determine the regions in the phase plane to which these families of
solutions correspond, we first reduce the equation to a collection of standard
forms.

Firstly we scale the variable y by y = A-q, choosing A so that the leading
coefficient becomes — 2, and then we shift ijbyTj = z — cin order to eliminate
the second order term in the polynomial. This gives

2a3

27a \

where the ± corresponds to the choice of sign when determining A.
When a1 = af/3a3, the equation has the standard form

z" = - 2 z 3 + b0, where b0 = ±J^r1 a0 -
22za_

Otherwise we can scale z and r simultaneously by z = rF, t - t/r, where
r2 = \ax — a\/7>a3\, to reach the forms

Y" = -2Y3 ± Y+b0

depending on the sign of ax - al/3a3. The sign of b0 is not of consequence, since
replacing Y by - Y replaces bQ by -b0. However, the magnitude of b0 is relevant
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when the right hand side is — 273 + Y + b0, since the number of distinct real
roots of this polynomial is 3, 2 or 1, depending on whether b% is < , = , or
> 2/27.

Limiting forms

When studying the quadratic case, we saw that the regions corresponding to the
different famines of solutions were separated by the more basic solutions which
represented the limiting forms as one or both of the periods become infinite.

For the cubic case with a3 < 0, these forms are

(0 g(t) = ^ _

, . . . 2-n s\ah{2^/wl)(n)
cosh(2w)8/«1) + cos(2w//w1)

flsinh(jBfl)
~ cosh(j80) + cos(6t)

and

cos( fi<j>) + cosh(</>r) '

In the first case, if y = 20/(*2 + 02), then 7 " = -2y3 + 3y2/P, so that, upon
setting Y = y - 1/0, 202 = 3, we have Y" = -2Y3 + Y ± 2/3i/S\ Therefore
this solution represents the limiting form for the case bl = 2/27. Similarly, if

then we have

Y"= - 2 7 3 + 0 2 ( ! c o t h 2 ( ) 8 0 ) - l ) y + |»3coth(i8fl)(coth2(^) - 1).

Since \ coth2(j80) — 1 > \, this equation can only be reduced to the form
Y" = - 2 r 3 + Y + b0 by taking 02(f coth2()8fl) - 1) = 1, which gives
coth2(j80) = |(1 + B~2) for 0 < 6 < 2. Substituting in the constant term, we
obtain
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so that bg < 2/27 with equality when 8 = 0, i.e. when u1 -* oo.
In the same way, if

then we have

Y" = -2Y3 + <^ 2 ( | co t 2 (^ ) + l ) r + ^3cot2(/}<*>)(cot2(/?</>) + 1),

which reduces to Y" = - 2 7 3 + y + b0 when cot2(0<J>) = | ( ^~ 2 - 1), 0 < <f>2

^ 1, and

Again we have bg < 2/27, with equality when <j> = 0, i.e. when A^ -* oo.
Hence the three families of solutions co-exist only for the equation Y" =

-2Y3 + Y + 60when b\ < 2/27.
Given b0 with b\ < 2/27, we can solve these equations to obtain the ap-

propriate values of 0 and <f> for the separating curves. In the first case there is
essentially only one solution, since replacing 9 by — 6 does not alter the form of
y, but in the second case there are two essentially different values of /?, say /?0 and
/?1; which are connected by firf = /?0<f> + IT. These values give the two branches of
the separatrix which pass through the saddle point in the phase plane, and the
branches correspond to the distinct limiting behaviour of the families G2 and G3

relative to that of Gv

Graphs of these separating curves are shown in Figure 3 for the case b0 =
1/3/T, together with the regions to which the families correspond. When b0 = 0,
we have <f>2 = 1 and cot(/?<f>) = 0, which corresponds to the case fi/\w1 = | . This
is precisely the case, already noted, for which the families G2 and G3 are
symmetric about the saddle point, and it corresponds to the transition from the
regions, illustrated above, for b0 > 0 to the reflected picture which occurs for
b0 < 0. In this case the outer separators reduce to y = ±sechf, while the inner
separators) reduce to y = ± 1 / -J2, the singular points of the equation.

When bl = 2/27, all the separating curves reduce to the single curve corre-
sponding to Y = 2/?/(/2 + f}2) - l/fi, and the regions containing the families G2

and G3 vanish.
Finally, for bl > 2/27, there are no separating curves, and all the solutions

belong to the Gx family. This behaviour mimics that of the quadratic equation,
the cases b% < , = , and > 2/27 giving phase diagrams and familiar behaviour
similar to that for the cases S4 > , = , and < 0.
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FIGURE 3

The equations Z " = - 2 Z 3 + b0 and Y" = - 2 7 3 - Y + b0 only ever have
one real singular point in the phase plane, and their solutions all belong to the
family Gx for suitable values of the parameter. In particular, the solutions of
Z" = - 2 Z 3 can be represented in terms of the lemniscate sine si as Z =
a si (a(t — t0)). They correspond to the function Gx with A = 1 and /? = wx/4.

In summary, for the case a3 < 0, there are two basic soliton solutions

and

cos(/?<£) + cosh(<J>f)

= 4»sin(j
2 cosh(^) -

both of which satisfy the same equation. Infinite trains of the i/̂  solitons give
periodic solutions of the type G3, while trains of the \j/2 solitons give solutions of
the type G2. However, as we have seen, solutions of this type are comparatively
rare, and most solutions are formed as alternating trains of both types of solitons.
Graphs of typical examples of both solitons and the Gj solutions obtained by
superposition are given in Figure 4.
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FIGURE 4a

FIGURE 4b
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FIGURE 4C

FIGURE 4d
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FIGURE 4e

The case a, > 0

As with the case a3 < 0, we can develop three families of solutions starting in
this case with the basic function g(t) = 2)8/[(f - a)2 - f}2]. Setting 0 =
and <(> = 2ir/\uv we define these families as follows:

1; W l«2; P) =

-co COS(00)

sin(ftfl)

_~ cos(/J0)+(-: [Ot + mwXi)

sinh(^)

2m-n\i)

sinh()8<j>)

r ^ cosh(j8<J>) -
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sin;
_x cos(/?0) - cos(0?(2m -

-•£
sinh(/?<*>)

2mir/X) '

Once again we have Gx = G2 + G3, and for this case only G3 gives a finite
periodic function.

FIGURE 5

The phase plane trajectories of these families of solutions have similar be-
haviour to those for the earlier case. The families G2 and G3 occur only when the
cubic equation has three distinct real roots (see Figure 5), while members of the
family G1 occur as solutions for all forms of the right hand side. However, all
these solutions are even functions of /, so that the derivatives vanish when / = 0
(and when t = \wx); moreover, their trajectories are symmetric about the j'-axis.

This behaviour is associated with the alternation of the signs of the residues do
not vanish, it is necessary to take special forms of g(t) — (t — a)'1 — (f — b)'1
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together with appropriately chosen periods so that the poles on the real axis all
have the same residue. This can be achieved in two ways.

Firstly, we let g(t) = r1 - (t + 2if})~1, and choose Wj real, <o2 = 4//?. With
this choice, we have \p(t; «2) = 77-/2/Jcosech(fl-f/2/}), and the double sum is

G(t; Wj,^; 0) = {ir/ip) £ cosech(ir
— 00

Alternatively, \p(t; Wj) = (-n/u^cot^Trt^t + 2fii)/u>-J), and

av w / l«t

Notice that

dG = _ / j L f V c
<ft \2j8J f̂  si

as required. These solutions are odd functions of t, so that they satisfy equations
of the form

y" = 2y3 + axy.

Adapting Whitham's result for the corresponding solution in terms of sech t, we
find that

coshww,<|)

E—-2—z
i sinh mwrf

where </> = w/ 2 ^-

For the second form we take g(t) = t'1 - [t + w^l + i\)/2]~l with periods
a1 real and u2 — '^«i, which gives

f; «2) = <f>(coth(</>0 - t anh ( /+ ^ - ) ) , * = x ^ " ;
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and the double sums
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G(t; w2>
wi) = </> Z coth($f + mwj) - tanh </>U +1 m + T ) " I )

— (VI \ \ \ I I I

= 0 cot0/ + £ — — -
\ i sin2(0r) + si

cos2(0f) + sinh2(w - |)A7r/

The function i|/(f; <o2) satisfies the differential equation

which reduces to

2Y3 + <j>U - 6tanh2(^- - 4<J.3 tanh(( ^ - ) sech2( iri
2X

where Y = $ + ^>tanh(7r/2X). Since 4 - 6tanh2(w/2A) ranges from - 2 to 4, we
see that this equation encompasses all three standard forms associated with
a 3 > 0. Also i|/, ip' -* 0 as t -* ± oo, so that these ftunctions represent the
separatrices. Apart from the equation represented in standard form by Y" = 2Y3

+ Y, this second form provides all the solutions for which y' =£ 0. In the
exceptional case both families coexist, the separating curve being given by the
function y = 0cot(0r) (with 6 = 1/' ^2), which represents the limit of each
family as the imaginary period tends to infinity.

Conclusion

For differential equations of the form y" = p(y), where p is a polynomial of
degree 2 or 3 in y, almost all solutions can be represented as the superposition of
solutions of simpler equations. In a limited number of cases this is achieved by
superposing solutions of the same form, but more commonly the solution repre-
sents an alternation of two distinct forms which are themselves solutions of the
same equation.

These solutions correspond to elliptic functions whose period parallelogram is a
rhombus whose diagonals are parallel to the co-ordinate axes, as distinct from the
solutions previously considered, which correspond to elliptic functions with
rectangular period parallelograms.
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Most of these new families of solutions are of limited physical interest since
they have real periodic singularities, but included in this category are the bulk of
the finite periodic solutions for the cubic case when a3 < 0.
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