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1. Introduction. The convergence of least squares approximations for dual orthogonal
series in Hilbert space is established, thus providing a theorem applicable to practically all
dual orthogonal series (such as dual trigonometric series, dual Bessel series, etc.) that have
appeared in the literature. Our results establish for such dual series the existence of a sequence
of functions satisfying in the L2 norm the dual series relation, with an error tending to zero and,
in particular, rigorously justify the calculations in [2] which showed least squares to be a
practical approximation procedure for dual trigonometric equations. In fact, the desire to
provide a rigorous convergence theorem for [2] motivated this study.

Standard definitions and notation for Hilbert space are employed [1]. We denote by R
a real, separable, abstract Hilbert space. The subspaces P and Q are orthogonal complements,
while P and Q denote respectively the projection operators from R onto P and onto Q, We
recall that P+ Q is the identity operator. {#„: n = 1,2,...} denotes a complete orthonormal
sequence in R, while $ = {*!/„} is defined by ipn = anP(j>n + bnQ(j)n, where {an} and {bn} are
real, nonnegative sequences. In R the dual orthogonal series problem is this: Given {an},

00

(M> I'M a nd / G R , find a real sequence {jn} such tha t /= Y,h^n- The dual orthogonal
i

series approximation problem is this: With the above assumptions, find a sequence of vectors
Ulfi, •••,}") (N= 1,2,...) such that

limFN=l\m\\J:JN
ntn-f\\

2 = 0. (1)
JV->oo JY-»oo n = l

In this paper we study the approximation problem.

2. Convergence theorem. We proceed to

THEOREM 1. Let {bn} be a sequence of positive numbers. Let {an} be such that either (i)

a n > 0 (n = l,2,...), (2)

or (ii) there is a positive integer K such that

an = 0 (n = l , 2 , . . . , X ) and aa>0 (n = K + l.K + 2,...), (3)

D = | ( 0 m , D ^ ) : m , n = l , 2 , . . . , X | # O , (4)

where D is a KxK determinant.
Then there is a unique sequence of vectors (jiJ2> •• -JN) (N = 1,2,...), which minimize the

quadratic form FN and for which (I) is valid. These vectors are the unique solutions of the systems
of linear algebraic equations
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(5)

REMARK. The assumptions (3) and (4) are needed for certain dual orthogonal series
associated with problems involving a zero eigenvalue, e.g., potential problems with periodic
boundary conditions or Neumann conditions (cf. equations 11 A, 1 IB).

Proof. We prove the theorem assuming (3) and (4), the proof using (2) being a special
case. First we show that \J/ is complete, i.e. that, if

(/,*„) = 0 (n = l ,2, . . .) , (6)

then / = 0. Let £ denote summation over all positive integers n such that bn < 2an, and £
1 2

summation over all other positive integers. Assume that / satisfies (6). Using Parseval's
identity and a little manipulation, we obtain

2 = E(i-(fe>J)2(/.e«2+Z(i-K/fcn))
2(/,^n)

2.
1 2

If, for some n> K, one has (/, <£„) # 0, then
2 <Z(f,Qtn)

2+Y(f,P<l>n)
2 z\\Qf\\2 + \\Pf\\2 = ||/||2- (7)

K

Thus, without loss of generality, we can assume that / = £yn0n . This combined with (6)
n - 1

shows that

E ( 0 m , e ^ ) ; n = O (m = l ,2 , . . . ,X) . (8)
n= 1

Condition (4) implies that/ , = 0 (« = 1,2,...,K). Therefore \j/ is complete.
Next we show that ^ is finitely linearly independent, i.e. that the elements \]/lt il/2,...,\pn

are linearly independent, for any n. Let us assume that there is a vector k = (k1,k2,• • -,kL)
L

such that £ kn\\in = 0. We can assume that L ^ K without loss of generality. Separating
ii-i

the orthogonal components yields

t K an P4>n = 0 and £ kn bn Q<f>n = 0. (9)
n=t n=l

Let us define the L x L matrices S and T, where 5 is diagonal, by

Sm = anbn and Tmn = (Q4>m,(f>n)(ambn-anbm) {m,n = 1 ,2 , . . . , L ) . (10)

We multiply both sides of the first equation in (9) by bm and both sides of the second equation
by am and then form inner products with </>m. Upon adding both sides of the resulting equations
we obtain Tk = — Sk. One finds that (Tk,k) = 0 for the inner product in euclidean L-space,
since Tmn = - Tnm. Thus (Sk, k) = 0, so that kB = 0 if n > K. Returning to (9) and setting

jn = bnkn we again obtain (8). Thus k = 0, and i/' is linearly independent.
Since ^ is complete and linearly independent, it follows forthwith [3, p. 225] that equations

(5) have a unique solution which minimizes FN and for which (1) is valid. This ends the proof.
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3. Illustrative example. To illustrate the application of Theorem 1 to a specific problem
we consider the dual Legendre series

- l \ 1 / 2

n = 2

where Pn is a Legendre polynomial and geL2(—1,1). (This dual series arises upon seeking
the steady temperature in a sphere with part of the spherical surface subjected to a Neumann
condition and part to a Dirichlet condition.) Here L2(— 1,1) is the realization of R, while P
consists of all functions heL2( — 1,1) such that h = 0, almost everywhere, on c < x < 1. It
follows that Q consists of all heL2{—1,1) such that h — 0 almost everywhere on - 1 < x < c,
and that Ph = h for — 1 ̂  x < c and Ph = 0 for c < x ^ 1. Here g{x) is the realization of/,
and

fe^Y'^-ito- (12)
Finally, we have an = n-1 and bn = 1. We find that i) = (1 -c)/2 for K = 1, sb that (4) is
satisfied. Since {$„} as given by (12) is a complete orthonormal sequence in L2(— 1,1), the
dual Legendre equation (11 A, B) satisfies the hypothesis of Theorem 1.

4. Conclusion. Using the example above as a guide, one easily verifies that most dual
series equations in the literature satisfy the hypothesis of Theorem 1, as we have found in
reviewing some sixty papers on the subject. The least squares procedure is numerically
implemented in [2], where equation (3) corresponds to equation (5) here—the key equation for
computing. Theorem 1 implies nothing about the limit properties of the sequence (jiJ2> • • • JN)-
The relation of this to the approximation problem for variational procedures is discussed in
[3, Chapter 3, § 7] and the references therein. In a manuscript in preparation entitled " Dual
orthogonal series ", we show that, if ajbn tends to a positive limit as n -» oo, the sequence of
least squares approximations converges to a vector {j\Ji> • • •) with square summable compo-
nents. The proof is more elaborate than the straightforward analysis given here and does not
apply to the examples here, in [2], and, in general, to dual orthogonal series associated with
mixed boundary value problems in which one of the mixed conditions is a Dirichlet condition.
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