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Abstract
Based on the paraxial wave equation, this study extends the theory of small-scale self-focusing (SSSF) from coherent
beams to spatially partially coherent beams (PCBs) and derives a general theoretical equation that reveals the underlying
physics of the reduction in the B-integral of spatially PCBs. From the analysis of the simulations, the formula for the
modulational instability (MI) gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor
into the formula of the MI gain coefficient of the SSSF of coherent beams. This decrease can be equated to a drop in the
injected light intensity or an increase in the critical power. According to this formula, the reference value of the spatial
coherence of spatially PCBs is given, offering guidance to overcome the output power limitation of the high-power laser
driver due to SSSF.
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1. Introduction

High-power neodymium-glass laser drivers have become the
worldwide system of choice for laser fusion research[1,2].
They serve as a crucial platform for research in high-energy-
density physics[3], such as X-ray generation, laser plasma
physics[4] and laboratory astrophysics. Following propaga-
tion in a nonlinear medium, a high-power laser under-
goes whole-beam self-focusing (WBSF) and small-scale
self-focusing (SSSF) owing to third-order nonlinear polar-
ization; the latter is more destructive[5–7]. The Bespalov–
Talanov (B-T) theory provides an explanation for the SSSF of
coherent beams[8]. The well-known B-integral characterizes
the growth rate of small-scale modulation in high-power
Nd:glass lasers. In the 1970s, Campillo et al.[9] and Bliss
et al.[10] examined the B-T theory. The results of the exper-
iment demonstrated that SSSF affected the beam quality[11],
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induced catastrophic damage to the laser medium and optical
components and constrained the laser system output power.

Several methods for self-focusing suppression delay the
onset of SSSF and increase the output power. Common tech-
niques include using soft-edged apertures for apodization[12],
using broadband chirped pulses[13], divergent beams[14,15],
circularly polarized beams[16] and spatially partially coherent
beams (PCBs)[17], using spatial filters[18] and a medium
with negative nonlinear coefficients[19]. PCBs in the tem-
poral domain have been developed for laser drivers due to
their ability to reduce nonlinear effects, such as chirps, and
improve the uniformity of the optical field[20,21]. PCBs in
the spatial domain have proven to be efficient in suppress-
ing speckles caused by spatial coherence, such as optical
imaging, particle trapping and image transmission in the
linear regime[22–29]. In the nonlinear regime[30,31], WBSF
of spatially PCBs was studied by Hunt et al. in 1978[32].
We believe that reducing the spatial coherence of high-
power laser systems can suppress SSSF of spatially PCBs
and reduce the value of the B-integral. Determining the
relationship between spatial coherence and the growth rate
of SSSF is the goal of this study.
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There are numerous methods to spatially synthesize PCBs;
three are commonly used. The first method constructs an
optical field using the angular power spectrum[33,34]. The sec-
ond method uses the van Cittert–Zernike theorem to produce
arbitrary genuine PCBs of the Schell-model type by propa-
gating a completely incoherent field distribution generated
at a plane with a given intensity distribution[35–37]. The third
method exploits the mode superposition principle, which
includes coherent-mode representation, pseudo-mode rep-
resentation and random-mode representation (mainly refer-
ring to the complex screen (CS) and phase screen (PS)
methods). The CS method was developed because it can
provide spatially PCBs without analytical expressions[38].
Basu et al.[39] used the CS method to represent Gaussian
Schell-model beams in 2014. Wang et al.[40] expanded this
method in 2022 to simulate time-domain PCBs transmitted
in a nonlinear medium with an arbitrary correlation function,
and verified its correctness by comparing it with the pulse-
by-pulse method proposed by Lajunen et al. in 2010[41]. Yang
et al.[42] used this method in 2023 to simulate the nonlinear
transmission of Gaussian Schell-model beams. In this study,
we chose the CS method to synthesize spatially PCBs.

As the SSSF of PCBs has recently been a subject of
considerable interest, a theory of the SSSF of PCBs must
be developed. We derived a theoretical equation for the
SSSF of spatially PCBs to analyze their B-integral decrease
and demonstrated the findings through simulations of the
small-scale modulational instability (MI) gain coefficient
with different degrees of spatial coherence. The results
showed that the gain coefficient of the SSSF of spatially
PCBs decreases compared to that of coherent beams. We
extended the formula for the small-scale MI gain coefficient
of coherent beams to spatially PCBs using a decrease factor
that represents the effect of the spatial coherence of the
beams on the SSSF. The decrease factor is closely related to
the line shape and spatial coherence length of the correlation
function. This study may promote an emerging high-power
spatially partially coherent laser architecture to suppress the
SSSF due to the Kerr effect, and provide valuable guidance
for designing the seed source and assessing the load capacity.

2. Equation of small-scale self-focusing of spatially
partially coherent beams and the complex screen
method to synthesize spatially partially coherent beams

The analyzed spatially PCBs were quasi-monochromatic
with a temporal coherence length that was much larger
than the spatial coherence length. Here we focus on laser-
induced breakdown with nanosecond pulse duration in the
high peak power Nd:glass laser system. The response time of
the Nd:glass was significantly shorter than the pulse duration
and the coherence time, allowing the self-focusing to be
steady-state self-focusing.

The nonlinear wave equation in paraxial approximation[8]

has the following form:

∇2
⊥E +2jk

∂E
∂z

= −k2

(
n2|E|2

n0

)
E, (1)

where
∣∣∣ ∂2E

∂z2

∣∣∣ << k
∣∣ ∂E

∂z

∣∣; ∇2
⊥ is the transverse Laplacian; n0

denotes the linear refractive index; n2 is the nonlinear refrac-
tive index; k is the wave vector in the medium. Equation
(1) includes the diffraction term ∇2

⊥E and the nonlinear

term −k2
(

n2|E|2
n0

)
E. This equation serves as a foundation for

investigating the SSSF of spatially PCBs.
The modulated optical field E can be described by linear

superposition of a strong background field T (infinite plane
waves with arbitrary spatial coherence) with finite small-
scale perturbation fields[2]:

E = T (x,y,z = 0)

(
1+

∑
i

ui(z)ei (x,y)

)
, (2)

where ui(z)ei (x,y) << 1, ui(z) = a(z) + ib(z), and both T
and E satisfy Equation (1)[2]. Substituting Equation (2) into
Equation (1), we obtain Equation (3):

∇2
⊥e(x,y)×Tu(z)+2jkTe(x,y)u(z)z +2k2

(
n2|T|2

n0

)
×T ×Re(u(z)e(x,y)) = −2u(z)

(
Txe(x,y)x +Tye(x,y)y

)
,

(3)

where u(z)z = ∂u(z)
∂z , Tx = ∂T

∂x and Ty = ∂T
∂y . The left-hand

side of Equation (3) is consistent with the SSSF equation
of coherent theory. The right-hand side of Equation (3)
is the underlying physics that produces the difference in
SSSF between spatially PCBs and coherent beams, where
e(x,y)x, e(x,y)y and u(z) are all associated with the modu-

lation. Here, Tx and Ty are proportional to
√

G
(
vx,vy

)
, and

G
(
vx,vy

)
represents the power spectrum. When G

(
vx,vy

)→
δ
(
vx,vy

)
, Equation (3) is reduced to the equation for coherent

beams. Thus, the SSSF is related to the light intensity and to
the power spectrum (which indicates the spatial coherence of
the beams) of the optical field for spatially PCBs.

We then introduced the CS method to synthesize spatially
PCBs with different spatial coherence. The methodology is
presented as follows.

The cross-spectral density (CSD) function can be
expressed as follows:

W (r1,r2,z) =< T (r1,z)T∗ (r2,z) > . (4)

The brackets represent the time average over the response
time of the medium, r = x̂x + ŷy. If the statistical properties
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of spatially PCBs are of the Schell-model type, we obtain the
following:

W (r1,r2,z = 0) = Ec (r1)Ec
∗ (r2)μ(r1 − r2), (5)

where Ec (r) denotes the coherent part of the beam. Accord-
ing to the condition proposed by Gori et al.[43,44] for devising
a genuine correlation function of PCBs, μ can be expressed
as follows:

μ(r1 − r2) =
∫∫ √

G(v1)
√

G(v2)δ (v1 − v2)× e−jr1v1 e−jr2v2 dv1dv2,

(6)

where v = x̂vx + ŷvy, and δ (v1 − v2) is the Dirac function,
which can be expressed as follows:

δ (v1 − v2) =< R(v1)R(v2)
∗ >, (7)

where R(v) is a random complex function whose real and
imaginary parts are independent, with unit variances and
standard normal distributions. When R(v) is refreshed, a new
random optical field T is generated. Substituting Equations
(6) and (7) into Equation (5), the CSD function can be
rearranged as follows:

W (r1,r2,z = 0) ≈ 1
N

N∑
n=1

Tn (r1)T∗
n (r2), (8)

with the following:

T (r) = Ec (r)×ϕ (r), (9)

ϕ (r) =
∫∫ √

G(v)R(v)e−i2πrvdv. (10)

The CSD function can be described by Equation (8) to
obtain sufficient optical fields. Different T (x,y,z) can be
obtained by changing the spatial coherence lengths and line

shapes of the correlation function μ. Using the Fourier trans-
form, we can compute the corresponding power spectrum
G
(
vx,vy

)
based on the spatially partially coherent optical

fields T (x,y,z).

3. Simulations

As Equation (3) is unsolvable analytically, we used the split-
step Fourier method with the following parameters: n0 = 1.5,
n2 = 1.5 × 10−13 (esu), λ = 1.053 µm, I0 = 10 GW/cm2,
propagation distance L = 2 cm. The computational grid of
512 × 512 points corresponds to a physical size of 2 cm ×
2 cm. The number of CSs was set as 1.1 × 105 and the
spatial frequency f was accompanied by a small-scale mod-
ulation at z = 0 cm, where a0 = 0.01, b0 = 0 and e(x,y) =
cos (2π · f · x). The MI gain coefficient of the SSSF was
obtained by calculating the degree of modulation of the
intensity distribution through the transmission. The ampli-
tudes are satisfied as follows:

u(z)
u(0)

= egL + e−gL

2
. (11)

We simulated the impact on the MI gain coefficient g
by varying the spatial coherence lengths and line shapes
of the correlation function μ. Figure 1(a) demonstrates the
1D distributions of Gaussian correlation functions μGauss =
e
−
(

x2+y2

2σ2

)
, where σ is the spatial coherence length and the

Bessel correlation function μBessel = J1 (2πvr). We defined
the spatial coherence length σBessel as the value of the first
zero of the Bessel function. Figure 1(b) demonstrates the
corresponding power spectra, Ggauss and Gcircle, which satisfy
the following:

Ggauss (0,0) = Gcircle (0,0), (12)∫∫
Ggauss

(
vx,vy

)
dvxdvy =

∫∫
Gcircle

(
vx,vy

)
dvxdvy. (13)

Figure 1. The correlation functions μGauss and μBessel are shown in (a) with different σ . The corresponding power spectra Ggauss and Gcircle are shown in
(b). Here, σ = σGauss are 0.5 and 0.227 mm, respectively.
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Figure 2. Analytical gain curves (lines) corresponding to different input intensities: (a) simulation results of the MI gain coefficient g at different spatial
coherence lengths when μ = μGauss, I1 = 9.51 GW/cm2, I2 = 9.12 GW/cm2, I3 = 8.64 GW/cm2, I4 = 8.17 GW/cm2; (b) simulation results of the MI gain
coefficient g at different spatial coherence lengths when μ = μBessel, I′

1 = 9.67 GW/cm2, I′
2 = 9.41 GW/cm2, I′

3 = 9.12 GW/cm2, I′
4 = 8.93 GW/cm2.

Equations (12) and (13) indicate that both power spectra
exhibit the same maximum values and equal energy. Thus,
we use σGauss uniformly to refer to σ in the following.

We set f = 10, 15, 20, 25, 30, 35, 40, and 42 cm−1. In
Figure 2(a), μ = μGauss; in Figure 2(b), μ = μBessel, and
the simulations are displayed as data points, each point
representing a result of the MI gain coefficient g at the
modulation frequency. The simulation results for the MI
gain coefficient g of the coherent beams fit well with the
curves established using the analytical formula (solid line),
indicating the correctness of the simulation. For the PCBs,
the MI gain coefficients g are consistently lower than those
of the coherent beams, yet they exhibit a similar trend.
Thus, we postulate that this is comparable to a reduction
in the input intensity when injecting coherent beams. The
remaining lines in Figure 2 represent the analytical gain
curves of the MI gain coefficient g of coherent beams with
different injection intensities. As expected, the curves match
the data points perfectly at 10 GW/cm2 and other injection
intensities, verifying the accuracy of the prediction. Thus,
the formula for g in coherent theory is extended to the
following[45]:

g = |K|
2k

√
2π I0

Pcr
α −|K|2, (14)

where K = 2π · f ; Pcr = λ2c
32π2n2

is the critical power; α

represents the decrease factor, α = 1 for coherent beams and
α < 1 for spatially PCBs. Referring to Equation (14), we

deduce the fastest growing frequency Kmax =
√

πI0
Pcr

α and the

maximum gain coefficient gmax = πI0
2kPcr

α for PCBs. Equation
(14) illustrates that the suppression effect of spatially PCBs
for SSSF can be equated to a reduction in the injected light
intensity or an increase in the critical power of coherent
beams. Figure 3 compares the effect of the line shape and
the spatial coherence length of the correlation function on

Figure 3. Variations in α and B-integral with respect to different light
densities and correlation functions.

the decrease factor α and the B-integral for the same incident
light intensity; it also compares the effect of the incident
light intensity on the decrease factor α and the B-integral
with the same spatial coherence. Experience has shown that
the B-integral must be less than approximately 2 to avoid
unacceptable small-scale modulation growth[46]. Thus, we
set the B-integral of the coherent beams to 2 and B = gmaxL
without considering the gain of the medium. It is obvious
from Figure 3 that the α corresponding to the Gaussian
correlation function is smaller than that corresponding to
the Bessel correlation function. This is because the spatially
PCBs of the Gaussian correlation function have a wider
power spectrum range when energy is conserved, implying
that the larger the spatial divergence angle of the beams,
the more rapidly the B-integral decreases and the better
the suppression of SSSF. For the same spatial coherence
length, the B-integral decreases more when the incident light
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intensity is low, which means that to achieve the same SSSF
suppression effect, the spatial coherence of the beam is much
higher at a low light intensity than at a high light intensity.
For the same spatial coherence, α decreases nonlinearly with
incident intensities, which means the coupling between the
spatial coherence and the incident light intensity of spatially
PCBs. This conclusion is consistent with the physical nature
revealed by Equation (3). To characterize the reference value
of the spatial coherence of the beam, we used the ratio
β of the period of the fastest growing modulation to the
spatial coherence length. For example, with an incident
light intensity of 10 GW/cm2, the B-integral decreasing
rate began to accelerate significantly when β was greater
than 1.13, corresponding to a spatial coherence length of
0.26 mm. This result aligns consistently with diffraction by
apertures illuminated with spatially PCBs[47].

4. Conclusion

This study has extended the theory of SSSF from coherent
beams to spatially PCBs. The corresponding equation was
derived based on a paraxial nonlinear wave equation. This
equation indicated the underlying physics for the decrease
in the B-integral of spatially PCBs. Using the numerical
solutions of the equation, the formula for the MI gain
coefficient of spatially PCBs was obtained by introducing
a decrease factor into the formula for coherent beams. The
decrease factor determined the maximum gain factor and the
fastest growth frequency of the spatially PCBs; its influence
on SSSF can be equated to a reduction in the injected light
intensity or an increase in the critical power. Simulations
of the variations in the decrease factor and B-integral were
analyzed with respect to different spatial coherence lengths
and different input light intensities. The results showed that
the decrease factor was affected by the coupling of the
source spatial coherence and the injected light intensity of
the spatially PCBs, and the B-integral is proportional to the
decrease factor without considering the gain of the medium.
The reference value of the source spatial coherence in the
range with better B-integral suppression was characterized
according to the ratio of the period of the fastest growing
modulation to the spatial coherence length. The above find-
ings provide theoretical guidance for nonlinear transmission
in other types of media and have practical significance for
the development of the spatially PCB laser driver and the
assessment of its loading capacity.
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