K. Tahara Nagoya Math. J. Vol. 69 (1978), 1-7

THE FOURTH DIMENSION SUBGROUPS AND POLYNOMIAL MAPS, II

KEN-ICHI TAHARA

§1. Introduction

In our previous paper [3] we proved the following ([3, Theorem 16]):

THEOREM A. Let G be a 2-group of class 3. Let G_2 and G/G_2 be direct products of cyclic groups $\langle y_q \rangle$ of order α_q $(1 \leq q \leq m)$, and of cyclic groups $\langle h_i \rangle$ of order β_i $(1 \leq i \leq n)$ with $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$, respectively. Let x_i be representatives of h_i $(1 \leq i \leq n)$, and put $x_i^{\beta_i} = y_1^{\epsilon_i} y_2^{\epsilon_i} \cdots y_m^{\epsilon_m^{\ell_m}}$ $(1 \leq i \leq n)$, $[x_j, y_s] = y_1^{\epsilon_j^{\ell_i}} y_2^{\epsilon_j^{\ell_s}} \cdots y_m^{\epsilon_m^{\ell_m}}$ $(1 \leq j \leq n, 1 \leq s \leq m)$. Then a homomorphism $\psi: G_3 \to T$ can be extended to a polynomial map from G to T of degree ≤ 4 if and only if there exists an integral solution in the following linear equations of X_{iq} $(1 \leq i \leq n, 1 \leq q \leq m)$ with coefficients in T:

$$\sum_{1 \le q \le m} e_q^{js} \frac{X_{iq}}{(\beta_i, \alpha_q)} = 0 \qquad (1 \le i, j \le n, 1 \le s \le m)$$
(I)

$$2^{\delta_{ij}} \left[\sum_{1 \le q \le m} c_{iq} \frac{X_{jq}}{(\beta_j, \alpha_q)} - \left(\frac{\beta_i}{\beta_j} \right)_{1 \le q \le m} c_{jq} \left\{ \frac{X_{iq}}{(\beta_i, \alpha_q)} + \psi([x_i, y_q]) \right\} \right] = 0 \quad \text{(II)}$$
$$(1 \le i < j \le n) ,$$

where δ_{ij} is the Kronecker symbol for β_i : i.e. $\delta_{ij} = 1$ or 0 according to $\beta_i = \beta_j$ or $\beta_i > \beta_j$, respectively.

As corollaries we had

COROLLARY 1 ([3, Corollaries 18 and 21]). If $2 \leq n \leq 3$: i.e. the rank of G/G_2 is at most three, then $D_4(G) = G_4$.

In this paper we discuss the problem in the case $n \ge 4$. We find out some sufficient conditions for $D_4(G) = G_4$ in the general case $n \ge 4$, as the case such that the equations (I) and (II) in Theorem A have a

Received March 1, 1976.

KEN-ICHI TAHARA

normal solution.^{*)} We know only one counterexample to $D_4(G) = G_4$ due to Rips [2]. But we show that there exist infinitely many counterexamples to $D_4(G) = G_4$ in the case n = 4, containing Rips' one as the simplest case.

§ 2. General case $n \ge 4$

We determine some sufficient conditions for $D_4(G) = G_4$ in this general case $n \ge 4$, as the case such that the equations (I) and (II) in Theorem A have a normal solution.

COROLLARY 2. If $[x_i, x_j^{\beta_i}]^{2^{\delta_{ij}}} = 1$ for i < j with $1 \leq i \leq n-2$: e.g. $\beta_{n-2} \geq \alpha_r$ $(1 \leq r \leq m)$, then $D_4(G) = G_4$.

Proof. Assume that $[x_i, x_j^{\beta_i}]^{2^{\delta_i j}} = 1$ and hence $2^{\delta_i j} \psi([x_i, x_j^{\beta_i}]) = 0$ $(i < j, 1 \le i \le n-2)$ for any homomorphism $\psi: G_3 \to T$. Then it is easy to show by [3, Proposition 4] that $X_{iq} = 0$ $(1 \le i \le n-1, 1 \le q \le m), X_{nq} = -(\beta_n, \alpha_q)\psi([x_n, y_q])$ $(1 \le q \le m)$ is an integral solution of the equations (I) and (II) in Theorem A, since $2^{\delta_{n-1,n}}\psi([x_{n-1}, x_n^{\beta_{n-1}}]) = -2^{\delta_{n-1,n}}\psi([x_n, x_{n-1}^{\beta_{n-1}}])$. Now if $\beta_{n-2} \ge \alpha_r$ $(1 \le r \le m)$, then we have by [3, Proposition 4] for i < j with $1 \le i \le n-2$,

$$\begin{split} 2^{\delta i j} \psi([x_i, x_j^{\beta i})] &= 2^{\delta i j} \Big(\frac{\beta_i}{\beta_j}\Big) \sum_{1 \leq r \leq m} \left(\sum_{1 \leq q \leq m} c_{jq} e_r^{iq}\right) \psi(y_r) \\ &= 2^{\delta i j} \Big(\frac{\beta_i}{\beta_j}\Big) \sum_{1 \leq r \leq m} \left\{\beta_j d_r^{ij} - \left(\frac{\beta_j}{2}\right) \sum_{1 \leq q \leq m} d_q^{ij} e_r^{jq}\right\} \psi(y_r) \\ &= 2^{\delta i j} \beta_i \sum_{1 \leq q \leq m} d_r^{ij} \psi(y_r) \\ &= 0 \;. \end{split}$$

COROLLARY 3. Assume that $[x_i, x_j^{\beta_i}]^{2^{\delta_{ij}}} = 1$ for i < j with $1 \leq i \leq n$ -3: e.g. $\beta_{n-3} \geq \alpha_r$ $(1 \leq r \leq m)$. If any one of the following three conditions is satisfied, then $D_4(G) = G_4$:

- 1) $[x_{n-2}, x_{n-1}^{\beta_{n-2}}]^{2^{\delta_{n-2,n-1}}} = 1$
- 2) $[x_{n-2}, x_n^{\beta_{n-2}}]^{2^{\delta_{n-2},n}} = 1$
- 3) $[x_{n-1}, x_n^{\beta_{n-1}}]^{2^{\delta_{n-1}}, n} = 1$

Proof. Assume that $[x_i, x_j^{\beta_i}]^{2^{\delta_{ij}}} = 1$ and hence $2^{\delta_{ij}}\psi([x_i, x_j^{\beta_i}]) = 0$ $(i < j, 1 \le i \le n-3)$ for any homomorphism $\psi: G_3 \to T$. Then it is easy to show by [3, Proposition 4] that $X_{iq} = 0$ $(1 \le i \le n-1, 1 \le q \le m)$ and $x_{iq} = 0$ (1 $\le i \le n-1, 1 \le q \le m$) and $x_{iq} = 0$ (1 $\le i \le n-1, 1 \le q \le m$).

 $\mathbf{2}$

$$\begin{split} X_{nq} &= -(\beta_n, \alpha_q)\psi([x_n, y_q]) \ (1 \leq q \leq m) \ \text{is an integral solution of (I) and} \\ (\text{II}) \ \text{in the case 1). In the case 2)} \ X_{iq} &= 0 \ (1 \leq i \leq n-3, 1 \leq q \leq m), \\ X_{n-2q} &= -(\beta_{n-2}, \alpha_q)\psi([x_{n-2}, y_q]) \ (1 \leq q \leq m), \ X_{n-1q} = 0 \ (1 \leq q \leq m) \ \text{and} \\ X_{nq} &= -(\beta_n, \alpha_q)\psi([x_n, y_q]) \ (1 \leq q \leq m) \ \text{is their integral solution, and in} \\ \text{the case 3)} \ X_{iq} &= 0 \ (1 \leq i \leq n-3, 1 \leq q \leq m), \\ X_{n-2q} &= -(\beta_{n-2}, \alpha_q)\psi([x_{n-2}, y_q]) \ (1 \leq q \leq m), \ X_{n-2q} = -(\beta_{n-2}, \alpha_q)\psi([x_{n-2}, y_q]) \ (1 \leq q \leq m), \\ X_{nq} &= 0 \ (1 \leq q \leq m), \ X_{n-1q} = 0 \ (1 \leq q \leq m), \ X_{nq} = -(\beta_n, \alpha_q)\psi([x_n, y_q]) \ (1 \leq q \leq m) \ \text{is their integral solution. Now if } \\ \beta_{n-3} \geq \alpha_r \ (1 \leq r \leq m), \ \text{then we have} \\ \text{by [3, Proposition 4] for } i < j \ \text{with} \ 1 \leq i \leq n-3, \end{split}$$

$$[x_i, x_j^{\beta_i}]^{2^{\delta_{ij}}} = 1$$
. Q.E.D.

We may prove the following by a similar method of Corollary 6 below.

COROLLARY 4. Assume that $[x_i, x_j^{\beta_i}]^{2^{\delta_{ij}}} = 1$ for i < j with $1 \le i \le n-4$: e.g. $\beta_{n-4} \ge \alpha_r$ $(1 \le r \le m)$. If any one of the following seven conditions is satisfied, then $D_4(G) = G_4$.

- 1) $[x_{n-3}, x_{n-3}^{\beta_{n-3}}]^{2^{\delta_{n-3,n-2}}} = [x_{n-1}, x_n^{\beta_{n-1}}]^{2^{\delta_{n-1,n}}} = 1$
- 2) $[x_{n-3}, x_{n-1}^{\beta_{n-3}}]^{2^{\delta_{n-3,n-1}}} = [x_{n-2}, x_n^{\beta_{n-2}}]^{2^{\delta_{n-2,n}}} = 1$
- 3) $[x_{n-3}, x_n^{\beta_{n-3}}]^{2^{\delta_{n-3,n}}} = [x_{n-2}, x_{n-1}^{\beta_{n-2}}]^{2^{\delta_{n-2,n-1}}} = 1$
- 4) $[x_{n-3}, x_{n-2}^{\beta_{n-3}}]^{2\delta_{n-3,n-2}} = [x_{n-3}, x_{n-1}^{\beta_{n-3}}]^{2\delta_{n-3,n-1}} = [x_{n-2}, x_{n-1}^{\beta_{n-2}}]^{2\delta_{n-2,n-1}} = 1$
- 5) $[x_{n-3}, x_{n-2}^{\beta_{n-3}}]^{2\delta_{n-3,n-2}} = [x_{n-3}, x_{n-3}^{\beta_{n-3}}]^{2\delta_{n-3,n}} = [x_{n-2}, x_{n-2}^{\beta_{n-2}}]^{2\delta_{n-2,n}} = 1$
- 6) $[x_{n-3}, x_{n-1}^{\beta_{n-3}}]^{2^{\delta_{n-3,n-1}}} = [x_{n-3}, x_n^{\beta_{n-3}}]^{2^{\delta_{n-3,n}}} = [x_{n-1}, x_n^{\beta_{n-1}}]^{2^{\delta_{n-1,n}}} = 1$
- 7) $[x_{n-2}, x_{n-1}^{\beta_{n-2}}]^{2^{\delta_{n-2},n-1}} = [x_{n-2}, x_n^{\beta_{n-2}}]^{2^{\delta_{n-2},n}} = [x_{n-1}, x_n^{\beta_{n-1}}]^{2^{\delta_{n-1},n}} = 1$.

COROLLARY 5. Let $n = 2\ell$ or $2\ell + 1$. If $[x_i, x_j^{\beta_i}]^{2\delta_{ij}} = 1$ for $1 \leq i < j \leq \ell$ and $\ell + 1 \leq i < j \leq n$, then $D_4(G) = G_4$.

Proof. Let $\psi: G_3 \to T$ be any homomorphism. Then by [3, Proposition 4] we have that $X_{iq} = 0$ $(1 \leq i \leq \ell, 1 \leq q \leq m)$ and $X_{iq} = -(\beta_i, \alpha_q)$ $\psi([x_i, y_q]) (\ell + 1 \leq i \leq n, 1 \leq q \leq m)$ is an integral solution of (I) and (II) in Theorem A, since $2^{\delta_{ij}}\psi([x_i, x_j^{\beta_i}]) = -2^{\delta_{ij}}\psi([x_j, x_i^{\beta_i}])$ for $\ell + 1 \leq i \leq n$. Q.E.D.

§ 3. The case n = 4

In this case n = 4 we show the following:

COROLLARY 6. If any one of the following seven conditions is satisfied, then $D_4(G) = G_4$; 1) $[x_1, x_2^{\beta_1}]^{2^{\delta_{12}}} = [x_3, x_4^{\beta_3}]^{2^{\delta_{24}}} = 1$ 2) $[x_1, x_3^{\beta_1}]^{2^{\delta_{13}}} = [x_2, x_4^{\beta_3}]^{2^{\delta_{24}}} = 1$ 3) $[x_1, x_4^{\beta_1}]^{2^{\delta_{14}}} = [x_2, x_3^{\beta_2}]^{2^{\delta_{23}}} = 1$ 4) $[x_1, x_2^{\beta_1}]^{2^{\delta_{12}}} = [x_1, x_3^{\beta_1}]^{2^{\delta_{13}}} = [x_2, x_3^{\beta_2}]^{2^{\delta_{23}}} = 1$ 5) $[x_1, x_2^{\beta_1}]^{2^{\delta_{12}}} = [x_1, x_4^{\beta_1}]^{2^{\delta_{14}}} = [x_2, x_4^{\beta_2}]^{2^{\delta_{24}}} = 1$ 6) $[x_1, x_3^{\beta_1}]^{2^{\delta_{13}}} = [x_1, x_4^{\beta_1}]^{2^{\delta_{14}}} = [x_3, x_4^{\beta_3}]^{2^{\delta_{34}}} = 1$ 7) $[x_2, x_3^{\beta_2}]^{2^{\delta_{23}}} = [x_2, x_4^{\beta_2}]^{2^{\delta_{24}}} = [x_3, x_4^{\beta_3}]^{2^{\delta_{34}}} = 1$.

Proof. Assume that $[x_1, x_2^{\beta_1}]^{2^{\delta_{12}}} = [x_3, x_4^{\beta_3}]^{2^{\delta_{34}}} = 1$ and hence $2^{\delta_{12}}\psi([x_1, x_2^{\beta_1}]) = 2^{\delta_{34}}\psi([x_3, x_4^{\beta_3}]) = 0$ for any homomorphism $\psi: G_3 \to T$. Then $X_{iq} = -(\beta_i, \alpha_q)\psi([x_i, y_q])$ $(i = 1, 2; 1 \leq q \leq m)$, $X_{iq} = 0$ $(i = 3, 4; 1 \leq q \leq m)$ is an integral solution of (I) and (II). In the remainder cases we list an integral solution corresponding in each case:

Case	X_{1q}	X_{2q}	X_{3q}	X_{4q}
2)	*	0	*	0
3)	*	0	0	*
4)	0	0	0	*
5)	0	0	*	0
6)	0	*	0	0
7)	*	0	0	0

where * means $-(\beta_i, \alpha_q)\psi([x_i, y_q])$.

As a corollary of Corollary 6 we have

COROLLARY 7. We have $D_4(G) = G_4$ in each case of the following three:

- 1) $\beta_1 \geq \beta_2 = \beta_3 = \beta_4$
- 2) $\beta_1 = \beta_2 > \beta_3 = \beta_4$
- 3) $\beta_1 = \beta_2 = \beta_3 > \beta_4$.

Proof. Its proof is very similar in each case. For example we prove it in the case 2). We show that we may take $\psi([x_1, x_3^{\beta_1}]) = \psi([x_2, x_4^{\beta_2}]) = 0$ by a suitable base change of $\{h_1, h_2, h_3, h_4\}$. Let $\psi: G_3 \to T$ be any homomorphism. For $1 \leq i < j \leq 4$ put $\psi([x_i, x_j^{\beta_i}]) = A_{ij}/2^{r_{ij}}$ with $A_{ij} \in \mathbb{Z}$ and $(2, A_{ij}) = 1$. Put $h_1^* = h_1, h_2^* = h_1^{a_{21}}h_2, h_3^* = h_3^{a_{33}}h_4^{a_{34}}$ and $h_4^* = h_3^{a_{43}}h_4^{a_{44}}$ for an odd integer $a_{33}a_{44} - a_{34}a_{43}$, and put $x_i^* = \omega(h_i^*)$ $(1 \leq i \leq 4)$. Then we have

4

Q.E.D.

FOURTH DIMENSION SUBGROUPS

$$\begin{split} \psi([x_1^*, x_3^{*\beta_1}]) &= a_{33}\psi([x_1, x_3^{\beta_1}]) + a_{34}\psi([x_1, x_4^{\beta_1}]) \\ \psi([x_2^*, x_4^{*\beta_2}]) &= a_{21}\{a_{43}\psi([x_1, x_3^{\beta_1}]) + a_{44}\psi([x_1, x_4^{\beta_1}])\} \\ &+ a_{43}\psi([x_2, x_3^{\beta_2}]) + a_{44}\psi([x_2, x_4^{\beta_3}]) \;. \end{split}$$

Therefore if $\gamma_{13} < \gamma_{14}$ and $\gamma_{23} \ge \gamma_{24}$, or $\gamma_{13} = \gamma_{14}$ and $\gamma_{23} \ne \gamma_{24}$, or $\gamma_{13} > \gamma_{14}$ and $\gamma_{23} \le \gamma_{24}$, then we may choose $a_{21}, a_{33}, a_{34}, a_{43}$ and a_{44} such that $\psi([x_1^*, x_3^{*\beta_1}]) = \psi([x_2^*, x_4^{*\beta_2}]) = 0$, $a_{21} = 0$ and $a_{33}a_{44} - a_{34}a_{43}$ is odd. If $\gamma_{13} < \gamma_{14}$ and $\gamma_{14} \ge \gamma_{24}$, or $\gamma_{13} = \gamma_{14}$ and $\gamma_{14} \le \gamma_{24}$, or $\gamma_{13} < \gamma_{14}$ and $\gamma_{14} \le \gamma_{24}$, $\gamma_{14} = \gamma_{14}$ and $\gamma_{14} \le \gamma_{24}$, or $\gamma_{13} = \gamma_{14}$ and $\gamma_{14} \le \gamma_{24}$, or $\gamma_{13} < \gamma_{14}$ and $\gamma_{13} \ge \gamma_{23}$, then we may choose $a_{21}, a_{33}, a_{34}, a_{43}$ and a_{44} such that $\psi([x_1^*, x_3^{*\beta_1}]) = \psi([x_2^*, x_4^{*\beta_2}]) = 0$ and $a_{33}a_{44} - a_{34}a_{43}$ is odd. Thus we may suppose that a) $\gamma_{13} < \gamma_{14}, \gamma_{23} < \gamma_{24}$ and $\gamma_{14} < \gamma_{24}$: or b) $\gamma_{13} = \gamma_{14}, \gamma_{23} = \gamma_{24}$ and $\gamma_{14} < \gamma_{24}$: or c) $\gamma_{13} < \gamma_{14}, \gamma_{23} > \gamma_{24}$ and $\gamma_{13} < \gamma_{23}$. In the case a) put $h_1^* = h_1^{a_{11}}h_2^{a_{12}}, h_2^* = h_2, h_3^* = h_4$ and $h_4^* = h_3^{a_{43}}h_4^{a_{44}}$ for odd integers a_{11} and a_{43} . Then we have

$$\begin{split} \psi([x_1^*, x_3^{*\beta_1}]) &= -a_{11}\psi([x_1, x_4^{\beta_1}]) - a_{12}\psi([x_2, x_4^{\beta_2}]) \\ \psi([x_2^*, x_4^{*\beta_2}]) &= a_{43}\psi([x_2, x_3^{\beta_2}]) + a_{44}\psi([x_2, x_4^{\beta_2}]) \;. \end{split}$$

Therefore we may choose a_{11} , a_{12} , a_{43} and a_{44} such that $\psi([x_1^*, x_3^{*\beta_1}]) = \psi([x_2^*, x_4^{*\beta_2}]) = 0$ and a_{11} , a_{43} are odd. In the case b) put $h_1^* = h_2$, $h_2^* = h_1^{a_{31}}h_2^{a_{32}}$, $h_3^* = h_3^{a_{33}}h_4^{a_{34}}$ and $h_4^* = h_4$ for odd integers a_{21} and a_{33} . Then we have

$$egin{aligned} &\psi([x_1^*, x_3^{*^{eta_1}}]) = -a_{33}\psi([x_2, x_3^{B^3}]) - a_{34}\psi([x_2, x_4^{B_2}]) \ &\psi([x_2^*, x_4^{*^{eta_2}}]) = a_{21}\psi([x_1, x_4^{B_1}]) + a_{22}\psi([x_2, x_4^{B_2}]) \ , \end{aligned}$$

and hence we may choose a_{21}, a_{22}, a_{33} and a_{34} such that $\psi([x_1^*, x_3^{*\beta_1}]) = \psi([x_2^*, x_4^{*\beta_2}]) = 0$, a_{21} and a_{33} are odd. In the case c) put $h_1^* = h_2$, $h_2^* = h_1^{a_{31}}h_2^{a_{32}}$, $h_3^* = h_3^{a_{33}}h_4^{a_{34}}$ and $h_4^* = h_3$ for odd integers a_{21} and a_{34} . Then we have

$$\begin{split} \psi([x_1^*, x_3^{*\beta_1}]) &= -a_{33}\psi([x_2, x_3^{\beta_2}]) - a_{34}\psi([x_2, x_4^{\beta_2}]) \\ \psi([x_2^*, x_4^{*\beta_2}]) &= a_{21}\psi([x_1, x_3^{\beta_1}]) + a_{22}\psi([x_2, x_3^{\beta_2}]) , \end{split}$$

and hence we may choose a_{21}, a_{22}, a_{33} and a_{34} such that $\psi([x_1^*, x_3^{*\beta_1}]) = \psi([x_2^*, x_4^{*\beta_2}]) = 0$, a_{21} and a_{34} are odd. Thus we may assume that $\psi([x_1, x_3^{\beta_1}]) = \psi([x_2, x_4^{\beta_2}]) = 0$, and hence $D_4(G) = G_4$. Q.E.D.

Remark. Although in the case $\beta_1 > \beta_2 > \beta_3 = \beta_4$, if $\beta_1 = 2\beta_2$ or $\beta_2 = 2\beta_3$, then we may show that $D_4(G) = G_4$. Similarly in the case $\beta_1 > \beta_2 = \beta_3 > \beta_4$, if $\beta_1 = 2\beta_2$ or $\beta_3 = 2\beta_4$, then we may show that $D_4(G) = G_4$. Thus we conjecture that $D_4(G) = G_4$ in the both cases $\beta_1 > \beta_2 > \beta_3 = \beta_4$ and $\beta_1 > \beta_2 = \beta_3 > \beta_4$.

We construct infinitely many counterexamples to $D_4(G) = G_4$, whose order is $2^{8k+22+\ell}$ with $k \ge 2$ and $\ell \ge 0$ in the case $\beta_1 \ge \beta_2 > \beta_3 > \beta_4$. In particular take k = 2 and $\ell = 0$, then this group is just the counterexample due to Rips [2].

Let G be a 2-group of order $2^{8k+22+\ell}$ satisfying the following:

1)
$$\alpha_{1} = 2^{k+\theta}, \alpha_{2} = 2^{k+4}, \alpha_{3} = 2^{k+2}, \alpha_{4} = 2^{k}$$

2) $\beta_{1} = 2^{k+4+\ell}, \beta_{2} = 2^{k+4}, \beta_{3} = 2^{k+2}, \beta_{4} = 2^{k}$
3) $[x_{1}, x_{2}] = y_{1}^{2}y_{2}, [x_{1}, x_{3}] = y_{1}^{-2^{3}}y_{3}, [x_{1}, x_{4}] = y_{1}^{2^{5}}y_{4}, [x_{2}, x_{3}] = y_{1}, [x_{2}, x_{4}] = y_{1}^{2}, [x_{3}, x_{4}] = y_{1}^{-2^{2}}, [x_{1}, y_{q}] = 1$ $(1 \leq q \leq 4)$
 $[x_{2}, y_{1}] = [x_{2}, y_{3}] = [x_{2}, y_{4}] = 1, [x_{2}, y_{2}] = y_{1}^{2^{2}}, [x_{3}, y_{1}] = [x_{3}, y_{2}] = [x_{3}, y_{4}] = 1, [x_{3}, y_{3}] = y_{1}^{-2^{4}}, [x_{4}, y_{1}] = [x_{4}, y_{2}] = [x_{4}, y_{3}] = 1, [x_{4}, y_{4}] = y_{1}^{2^{6}}$
4) $x_{1}^{\beta_{1}} = y_{2}^{-2^{k+3+\ell}}, x_{2}^{\beta_{2}} = y_{3}^{2^{k}}y_{4}^{-2^{k-1}}, x_{3}^{\beta_{3}} = y_{2}^{2^{k}}y_{4}^{2^{k-2}}, x_{4}^{\beta_{4}} = y_{2}^{2^{k-1}}y_{3}^{2^{k-2}}.$

Then we may easily show that G is a 2-group of class 3. In this case the equations (I) and (II) in Theorem A are the following:

$$2^{2} \frac{X_{i1}}{\beta_{i}} = 0 \qquad (1 \leq i \leq 4)$$

$$2^{\delta_{12}} \left\{ -\frac{X_{13}}{2^{2-\ell}} + \frac{X_{14}}{2^{1-\ell}} \right\} = 0 , \qquad \frac{X_{12}}{2^{2-\ell}} = 0$$

$$\frac{X_{33}}{4} - \frac{X_{34}}{2} - \frac{X_{22}}{4} - 2^{k+4} \psi(y_{1}) = 0 \qquad (1)$$

$$-\frac{X_{44}}{2} - \frac{X_{22}}{2} - 2^{k+5}\psi(y_1) = 0$$
(2)

$$\frac{X_{44}}{4} - \frac{X_{32}}{2} - \frac{X_{33}}{4} + 2^{k+4}\psi(y_1) = 0.$$
 (3)

Taking $(1) \times 2 + (2) + (3) \times 2$, we have

$$2^{k+5}\psi(y_1) = \psi(y_1^{2^{k+5}}) = 0$$
 ,

and hence by [1, Proposition 4.1]

$$D_4(G) = \{1, y_1^{2^{k+5}}\} \neq G_4 = \{1\}$$
.

Thus we constructed a 2-group of order $2^{8k+22+\ell}$ such that $D_4(G) = \{1, y_1^{2^{k+5}}\} \neq \{1\}$ and $G_4 = \{1\}$.

6

In particular take k = 2 and $\ell = 0$, then this group is of order 2^{38} , and we may show that this group is just equal to the counterexample due to Rips [2].

REFERENCES

- [1] I. B. S. Passi, Dimension subgroups, J. Algebra 9 (1968), 152-182.
- [2] E. Rips, On the fourth integer dimension subgroup, Israel J. Math. 12 (1972), 342-346.
- [3] K. Tahara, The fourth dimension subgroups and polynomial maps, J. Algebra 45 (1977), 102-131.
- [4] —, On the structure of Q₃(G) and the fourth dimension subgroups, Japan. J. Math. 3 (New Ser) (1977).
- [5] —, Some remarks on the structure of $Q_n(G)$ for finitely generated groups G, to appear.

Aichi University of Education