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THE FOURTH DIMENSION SUBGROUPS AND

POLYNOMIAL MAPS, II

KEN-ICHI TAHARA

§ 1. Introduction

In our previous paper [3] we proved the following ([3, Theorem 16]):

THEOREM A. Let G be a 2-group of class 3. Let G2 and G/G2 be
direct products of cyclic groups (yqy of order aq (1 ̂  q ̂  m), and of
cyclic groups (hi} of order βi (1 <. i <^ n) with βx >̂ β2 Ξ> ^> βn9 respec-
tively. Let Xi be representatives of hi (1 ̂  i <̂  ri), and put x\ι = y¥xyψ
• Vmm (1 ̂  i ̂  n), [xj,y$] = yfyf ^ ( l ^ j < ^ n , l < : s < . m ) . Then a
homomorphism ψ:G3-*T can be extended to a polynomial map from G
to T of degree ^ 4 if and only if there exists an integral solution in
the following linear equations of Xiq (1 ̂  i ̂  n, 1 ̂  q ̂  m) wife coefficients
in T:

Σ ^ 7 ~ τ = <> α^U'gw,U8^m) (I)
^ ^ (βi,aq)

ΣΣ ^ { T ^ Γ + Ψ(feo»J)}l = o (ii)
^ l(βi9 aq) ) A

(1 ^ i < j ^ n) ,

where 3^ is the Kronecker symbol for βiii.e. δis = 1 or 0 according to
βi = ^̂  or /?< > ̂ , respectively.

As corollaries we had

COROLLARY 1 ([3, Corollaries 18 and 21]). // 2 ̂  w ̂  3: i.e. ίfee m ώ
of G/G2 is at most three, then D4(G) = G4.

In this paper we discuss the problem in the case n ;> 4. We find
out some sufficient conditions for DJJJ) = G4 in the general case n ̂  4,
as the case such that the equations (I) and (II) in Theorem A have a
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normal solution.*} We know only one counterexample to DJJJ) = G4

due to Rips [2]. But we show that there exist infinitely many counter-

examples to D4(G) = G4 in the case n — 4, containing Rips' one as the

simplest case.

§ 2. General case n ̂ > 4

We determine some sufficient conditions for DJJJ) = G4 in this general

case n >̂ 4, as the case such that the equations (I) and (II) in Theorem

A have a normal solution.

C O R O L L A R Y 2 . // [ x i 9 x β j ψ ί J — 1 f o r i < j w i t h l ^ ί ^ n - 2 : e . g .

βn-2 ^ oίr (1 S r ^ m), ίften DA{G) = G4.

Proo/. Assume that [aj<, α J']2"' = 1 and hence 2ίi'ψ ([a?<, â *]) = 0

(i < y, 1 ̂  ΐ ^ n — 2) for any homomorphism ψ: Gz —» Γ. Then it is easy

to show by [3, Proposition 4] that Xiq — 0 (l<^ί^n — l9l<Zq<> m), Xnq

= — (j8w, αβ)ψ([ίCn> 1/J) (1 ̂  ^ ̂  m ) i s a n integral solution of the equations

(I) and (II) in Theorem A, since 2'»-ι »ψ([αn_1, atf-1]) - - 2 a - 1 ψ([a?n,a?fcϊ1]).

Now if /3n_2 ̂ > α r (1 ̂  r ^ m), then we have by [3, Proposition 4] for

i < y with 1 ̂  i ^ n — 2,

βj

= 0 . Q.E.D.

COROLLARY 3. Assume that [xi9 x
β/YδiJ = 1 /or ΐ < y with 1 ̂  i ^ n

— 3 : β.^. /3n_3 ̂  ar (1 ̂  r ^ m). // α τ̂/ o^e o/ the following three condi-

tions is satisfied, then D4(G) = G4:

1) [flJn-2, ̂ ϊ ] 2 ' - " ' " - 1 - 1

2) [ » « . 2 , ^ " - ] 2 ί » — = 1

3) [Xn-uXt-ψ71-1"1^!

Proof. Assume t h a t [xi9 xβ/]2δij = 1 and hence 2δίjψ([xif xβ/]) = 0

(i < /, 1 ̂  i ^ n — 3) for any homomorphism ψ:G3->T. Then it is easy

to show by [3, Proposition 4] that XiQ = 0 (1 <: i ^ n — 1,1 <£ g ̂  m) and

*} See its definition in [3, §6].
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Xnq = — (βn,aq)ψ([xn,yq]) (1 <*q<*m) is an integral solution of (I) and

(II) in the case 1). In the case 2) Xίq = 0 (1 ^ i ^ w - 3,1 ^ « ^ m ) ,

#«]) (1 ^ g ^ m), XW_1(Z = 0 (1 ^ g ^ m) and

^ 0 ^ m ) i s t h e i r integral solution, and in

the case 3) Xίq = 0 (1 ^ i <: n - 3,1 ^ g ^ m), Xn_2ί? = -(/3W_2, αβ)ψ([a;n_2,

yj) (1 ^ ? ^ w), Z n . l β = 0 (1 ̂  g ^ m ) , Z n β = -C8n,αβ)ψ([a?«,yj) (l^q£m)

is their integral solution. Now if βn_z ^ ar (1 ^ r ^ m), then we have

by [3, Proposition 4] for i < j with 1 <: i ^ n — 3,

[xifx^ = 1 . Q.E.D.

We may prove the following by a similar method of Corollary 6

below.

COROLLARY 4. Assume that [xi9 x^]2δίj = 1 for i<j with l ^ i ^ n — A:

e.g- βn-i ^ <*r (1 ^ r ^ m ) J/ ^ 2 / °^e o/ ί/̂ e following seven conditions

is satisfied, then D4(G) = G4.

1) [Xn-3, Xtϊψn-*'n-* = [»»-l, ^ - 1 ] 2 δ " - 1 - = 1

2) [an_8, ajJί i Γ'—--1 - [xn-2, »£—r—' = 1

3) K_3, ajjj—]"—- = [̂ n_2, afcϊ ] * — ' - 1 = 1
4"i Γ T /y»iSn_8-|25n-3,n-2 Γ ,̂ ri9n_3-j25»-3,n-l U /v,)Sra_2"|23n-2,n-l -j
^ 7 L^rc-3> ^ - 2 J — L ̂ n_3> Λ'n-l J — l^n-29 Xn-l J — J-

5) [xw_3, afcϊ r - - = [ ,̂_3, a?2—]Λ- = [xn_2, χβnn-ψ»->.« = l

6) [an_s, αfcϊ ] 2 * 1 - ' - 1 = [»n-3, a?£—I11—•• = K . ! , ajj;-*]^-1- = 1

COROLLARY 5. Let n = 2£ or 2S + 1. If [xi9 xξ*γδ" = 1 for 1 ^ i < j

^ ^ and ^ + 1 <£ < < y ^ w, ίfceti J94(G) = G4.

Proof. Let ψ:Gz->T be any homomorphism. Then by [3, Proposi-

tion 4] we have that Xiq = 0 (1 ^ ί ^ ^, 1 <£ g ^ m) and -3Γ<g = — (^, αβ)

Ψ([^>^/J) (S + 1 ^i ^ n,l ^ q ^ m) is an integral solution of (I) and

(II) in Theorem A, since 2δ{^([xiy x?/]) = -2δvψ([Xj, xζ*]) for i + 1 ^ i ^ n.

Q.E.D.

§ 3. The case n = 4

In this case w = 4 we show the following :

COROLLARY 6. // any one of the following seven conditions is satis-

fied, then D^G) = G4;
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2)

3)

4)

5)

6)

7)

[Xι, Xsf

lχ» *M 2 ί

lχ» %tVι

L ̂ l> «^3 J

I> /y W
L*^2> *^3 J

1S = [^2, %{*Y

^ = [aj2, aj^p

— L ̂ U Λ>4 J

'13 Γ/y. Λ ^lΊSfl
— L^l> «^4 J

'23 Γ ^ / y,/9SΊ2^
— L«̂ 2> «^4 J

24 _ _ 1

1» _ Γ/y. /,.j8a-|2«2»

114 = [£c2, a ; f a ] 2 ί 2 4

= L^3> «^43J

= 1

= 1

= l

= 1

Proof. Assume that [xu xξψ" = [x3, x{*Y3u = 1 and hence 25l2ψ(|>1, xξ1])

= 2a84ψ([a;3, x%']) = 0 for any homomorphism ψ: G ,-» 21. Then Z i β

= — (jSf, αβ)f ([*<, 2/,]) (i = 1,2 1 ^ 9 ^ m), Xiq = 0 (i = 3,4 1 ^ 5 ^ m) is

an integral solution of (I) and (II). In the remainder cases we list an

integral solution corresponding in each case:

Case

2)
3)
4)
5)
6)

7)

*

0
0
0

0
0
0
0
*
0

Xzq

0
0
*

0
0

Xiq

0

0
0
0

where * means —(βi9aq)φ([xi9yq]).

As a corollary of Corollary 6 we have

Q.E.D.

COROLLARY 7. We have D4(G) = G4 in each case of the following

three:

2) βi = βϊ > βs = ̂ 4

3) ft = ft = ft > ft .

Proof. Its proof is very similar in each case. For example we

prove it in the case 2). We show that we may take ψ([xί9xίx])

= ψ([x29 #42]) = 0 by a suitable base change of {hu h2, hs, h4}. Let ψ: G3 -> Γ

be any homomorphism. For 1 <£ i < 7 <£ 4 put ^([ίCt, x§*\) = A<y/2 r" with

A 4 J e Z and (2, A^) = 1. Put Λf = Λx, fe2* = h^h29 hf = Λί Λj 4 and fcf

= ht^hϊ" for an odd integer α33α44 — α34α43, and put xf = ω(fef) (1 fg i ^ 4).

Then we have
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ψ([xf,xfβl]) =

Therefore if ?-13 < f14 and y23 ^ ?-24, or ?-13 = yu and ?-23 =£ r24, or γ13 > yu and

Ϊ23^T2iy then we may choose a2l, a33, a3i, ai3 and α44 such that ψ([xf,xfβ1])

= Ψ([»?, α? Ί ) = 0, α21 = 0 and α33α44 - α34α43 is odd. If γ13 < γu and γu ^ ^24,

or y13 = p14 and ?-14 ^ ^24, or f13 < yu and ^13 ^ f23, then we may choose a2l,

^33^34^43 and α44 such that ψ([x?,xfβ1]) = ψ([a??,»f^]) = 0 and α33α44

— α34α43 is odd. Thus we may suppose that a) γ13 < γU9 γ23 < γu and γu < γu:

or b) γ13 = γu, γ23 = ^24 and ^14 < ^ 2 4: or c) γ13 < γu, γ23 > γ2i and γ13 < γ23.

In the case a) put hf = hfha

2

x\ hf = fe2, fe3* = fe4 and fef = hp*M" for odd

integers an and α43. Then we have

ψ([x?,xfβ1]) = - α n

Therefore we may choose a119 α12, α43 and α44 such that ψCtίcf, aj^1])

= Ψ([x*> x*β2]) = 0 and αn, α43 are odd. In the case b) put hf = h2, hf

== hThψ\ hf = Λj feJ * and ft4* = fe4 for odd integers α21 and α33. Then we

have

ψ([xf,xfβ1]) = ~

and hence we may choose α21, α22, α33 and α34 such that ψ([xf,xfβ1])

= Ψ([ f̂> ̂ f^2]) = 0, α21 and α33 are odd. In the case c) put hf = fe2, /̂ 2*

= foίai/ι£2% Λf = fe?33^84 and hf = h3 for odd integers α21 and α34. Then

we have

ψ([χf,χfβlΊ) = -α 3 3 ψ(fe,^ 2 ])

xξ1]) + a22ψ([x2

and hence we may choose α21,α22,α33 and α34 such that ψ([xf,xfβ1])

— Ψ([xf, xfβ2]) = 0, a2l and α34 are odd. Thus we may assume that

^ a l ) = 0, and hence D£G) = G4. Q.E.D.

Remark. Although in the case βx > β2 > βz = /34, if j9x = 2β2 or ^2

= 2βs, then we may show that DA(G) = G4. Similarly in the case ft > β2

= ft > ft, if ft = 2ft or ft = 2ft, then we may show that D4(G) = G4.

Thus we conjecture that D4(G) = G4 in the both cases ft > ft > ft = ft
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and & > & = & > ft-
We construct infinitely many counterexamples to D4(G) = G4, whose

order is 2SJc+22+β with k ^ 2 and ^ 0 in the case ft ^ ft > ft > ft. In
particular take k = 2 and £ = 0, then this group is just the counter-
example due to Rips [2].

Let G be a 2-group of order 28fe+22+ί satisfying the following:

υ sy Ofc + 6 n O& + 4 ^ Oλ + 2 „ — Ofc

2) βx = 2*+ 4 4Λ /32 = 2 Λ + 4 , ^ = 2k+\ β4 = 2&

3) [α;1? α;2] = y\y2y [x19 x3] = 2/r232/3, [a?i, ^ ] = 2/ϊ52/4 ?

[ ^ , ^ = 1 ( l ^ g ^ 4 )

ί%2, yJ = [^2? 2/3] = [̂ 2,2/4] = 1, ί^ y2] = 2/Γ

[^3? 2/J = [^3? 2/2] = [χ3> vJ = i> [̂ 3,1/3] = 2/r24

fe? i/J = ί%4,2/2] = [^4? 2/3] = l , t̂ 4> 2/4] = yT

4) ^ - yς*+z+i, xί* - 2/fa/r2*"1, »f3 - 2/fi/f"', ^ί4 - vf^vΐ" .

Then we may easily show that G is a 2-group of class 3. In this case
the equations (I) and (II) in Theorem A are the following:

(1 ^ i ^ 4)
t

2 2 ^ 2 1 ί

1^-Jk.-Λ^- 2*+SKIΛ) = o (l)

^ • 2 2 Ok + ^Kfni ^ — 0 ( 2 )

2 2
v v

i) = 0 . ( 3 )
^ 4 4 ^ 3 2 ^ 3 3

Taking (1) x 2 + (2) + (3) x 2, we have

2*+fiψ(!/i) - ψ(!/f+B) - 0 ,

and hence by [1, Proposition 4.1]

Thus we constructed a 2-group of order 28&+22+^ such that D,(G) = {l,yf+5}
Φ {1} and G4 - {1}.
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In particular take k = 2 and i = 0, then this group is of order 238,
and we may show that this group is just equal to the counterexample
due to Rips [2],
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