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THE FOURTH DIMENSION SUBGROUPS AND
POLYNOMIAL MAPS, II
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§1. Introduction

In our previous paper [3] we proved the following ([3, Theorem 16]):

THEOREM A. Let G be a 2-group of class 8. Let G, and G/G, be
direct products of cyclic groups {y,> of order a, 1 < q <m), and of
cyclic groups <h;y of order B;,(1 <i<n) with B, =p, = -+ = B, Te€spec-
tively. Let x, be representatives of hy; (1 <1 < ), and put b = yinyis
ey (i), [e,y] =iy oy B A<i<n,1<8<m). Then a
homomorphism : G;— T can be extended to a polynomial map from G
to T of degree <4 if and only if there exists an integral solution in
the following linear equations of X;, 1 <1 < n,1 < q < m) with coefficients
m T:

e’s Xiq

= 15,75 n,1<s<m I
1 % By, ) a1=s47= <s=m) (1)

X B X
] ey = () Bl ey + sl <0
1§QZ§:’”L th(‘Bj, aq) pj lquS:m ch (ﬁi’ aq) + "Il‘([mi yq]) ( )
I=si<j=s=nm,
where d;; is the Kronecker symbol for B;:i.e. §;; =1 or 0 according to
Bi = B; or B; > By, respectively.
As corollaries we had

COROLLARY 1 ([3, Corollaries 18 and 21]). If 2 <n < 3: t.e. the rank
of G/G, is at most three, then D(G) = G,.

In this paper we discuss the problem in the case » = 4. We find
out some sufficient conditions for D,(G) = G, in the general case n = 4,
as the case such that the equations (I) and (II) in Theorem A have a
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normal solution.® We know only one counterexample to D,/(G) = G,
due to Rips [2]. But we show that there exist infinitely many counter-
examples to D,(G) = G, in the case n = 4, containing Rips’ one as the
simplest case.

§2. General case n = 4

We determine some sufficient conditions for D,(G) = G, in this general
case n = 4, as the case such that the equations (I) and (II) in Theorem
A have a normal solution.

COROLLARY 2. If [z, xﬁi]”’” =1for i<j with 1<i1<n—2: e.g.
Bo= o, (1 <7 < m), then D(G) = G,

Proof. Assume that [z, 241" = 1 and hence 2" ([z;,z%]) = 0
1<7,1<t1<n—2) for any homomorphism +: G,— T. Then it is easy
to show by [3, Proposition 4] that X;, =0 1 =i=sn—-1,1Z9g=m), X,
= — (B a2, y,) 1 < qg=<m) is an integral solution of the equations
(I) and (II) in Theorem A, since 2°»-tm([2,_;, 2fr-1]) = —2%-vn([2,, 2Em71]).
Now if 8,.,=a, 1 <7 < m), then we have by [3, Proposition 4] for
1 <jwithlgigsn -2,

2yl )] = 29( ) 3 (3 ejeet) 4w

B; 1€g2m
= 2B, 3 di,)
=0. Q.E.D.

COROLLARY 3. Assume that [, xf]™¢ =1 for i <j with 1<i<n
—3:e.9. o= a, A =r=<m). If any one of the following three condi-
tions is satisfied, then D(G) = G,:

1) [z, :(:;5;752]25"—2,"-1 -1

2)  [®pg &fn-t]P2n = 1

3) [xn—u xin—x]zﬁn—l,n =1

Proof. Assume that [xz;,2%]"7 =1 and hence 2"y ([x;,2%]) = 0
(t<j,1=t=<n— 3) for any homomorphism +: G,— T. Then it is easy
to show by [3, Proposition 4] that X;,, =01 <i<n—1,1<q¢=<m) and

* See its definition in [3, §6].
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Xy = —Buad¥(x,, ¥, ) A = ¢ < m) is an integral solution of (I) and
(II) in the case 1). In the case 2) X;, =0 (1A <i{=n—-3,1<q9=<m),
Xpsg = —Baoer V([ @nss YD) A< q=M), Xy =0 (1< g=<m) and
Xug = — By ad¥([%,,¥,) A = ¢ <m) is their integral solution, and in

the case 3) X;, =0 A<i=n—3,1=q¢=m), X, 50 = —Broz )V ([%,_,,
YDA =<g=m), X, ,=00=q=m), Xpy= — B, @V ([Zn, ¥ ) A =g =m)
is their integral solution. Now if §, ;= «, (1 <7 < m), then we have
by [8, Proposition 4] for 1 <j with 1 <¢i<n — 3,

[, 28] =1 . Q.E.D.

We may prove the following by a similar method of Corollary 6
below.

COROLLARY 4. Assume that [x;, 28127 =1 for i <j with 1<i<n—4:
e.9. o=, A <r <m). If any one of the following seven conditions
1s satisfied, then D(G) = G,.

1) [®y_g 2irg 0=t = [@,_y, tf—1] 0" = 1

2) [ e = [ W = 1

) [y =] = [y, afng? P = 1

4) @,y @lnge ]P0 = [, X271 = [y, P = 1
5) [®p_g @fr5e 0" = 2, g, Xbn—3]" 0" = [, _,, xfn-2]Pr-n =

6) [,_s &brpe] 2"t = [, g, i3]m0 = [,y @b =1

7) [xn_?,, xﬁ:;z]zﬁn—g,n—l — [xn—z, xin_g]zan—ﬁ.n — [xn—ly xfzn_l]zaﬂ—l.n — 1 .

COROLLARY 5. Let n=2¢ or 20+ 1. If [x;, 241 =1 for 1<1<j
<‘fland L +1=<1<j=mn, then D(G) = G,.

Proof. Let +:G;— T be any homomorphism. Then by [3, Proposi-
tion 4] we have that X;, =0 1 =i 4,1<q=<m) and X;;, = —(Bi, ap)
Yz, YD) ¢ +1 =<1 <01 < qg=<m) is an integral solution of (I) and
(ID) in Theorem A, since 2%wr([x;, 28]) = —2%np([x;, 2]) for £ + 1< i < .

Q.E.D.

§3. The case n = 4

In this case n = 4 we show the following:

COROLLARY 6. If any one of the following seven conditions is satis-
fied, then D,(G) = G,;
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D Lo, 2T = [z, P = 1
2) [wy, 2f ™ = [y, 2™ =1

3)  [wy, 21 = [y, 2™ =1

4) [z, xgx]zdm = [z, xg1]2013 = [, xg,]gm =1
5 [z, ng]zm = [z, x£1]2514 = [,, xf,]mﬁn =1
6) [, xg;]zhs =[x, xf;]%’u = [z, xfs]z"“ =1
7) [.’X,'z, xga]ﬂaa — [xz, xfa]zbz; — [CU;,, %fa]zau =1.

Proof. Assume that [z, 8™ = [x,, 2£2]** = 1 and hence 2°=([,, 2£])
= 2% ([2;, 2f*]) = 0 for any homomorphism +:G,— T. Then X,
= —Bua (2, YD @E=1,2;1<q¢g=m), X;; =000=3,4;1<qg=<m) is
an integral solution of (I) and (II). In the remainder cases we list an
integral solution corresponding in each case:

Case qu ng X3q X4q
2) * 0 * 0
3) * 0 0 *
4) 0 0 0 *
5) 0 0 * 0
6) 0 * 0 0
7D * 0 0 0
where * means —(8;, a ) ([, ¥ D). Q.E.D.

As a corollary of Corollary 6 we have

COROLLARY 7. We have D(G) = G, in each case of the following
three:

1) ,31;.82‘:-,33:.34
2) ,31=.82>.33=,34
3) ,31=192:.33>.B4-

Proof. Its proof is very similar in each case. For example we
prove it in the case 2). We show that we may take +([x,, 2f])
= ([, 2{*]) = 0 by a suitable base change of {h,, h,, hts, h,}. Let v:G;— T
be any homomorphism. For 1 =<1 <j =<4 put y([z;, 2%]) = A,;/2"* with
AyeZ and 2,4;) =1. Put k¥ = hy, h¥ = himh,, h¥ = hi=hi* and hf
= h3spg for an odd integer a0, — a;0,, and put 2¥ = (k) A <1 £ 4).
Then we have
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vl 2F) = agp(l2, 251) + agp(le,, 241)
([, xikp"]) = a'zl{aas\p([xu 2 + a2y, xfl])}
+ @ ([ 282D + ([, 252D .

Therefore if 7, <7, and 75 = 7a, OF 713 =7 and yu # 72 OF 733 > 714 and
72 < 7o then we may choose a,, @y, 0y, ¢, and a,, such that ([z¥, zF"])
= P([zF, x¥h]) =0, Uy =0 and ay0, — Gy0 is odd. If 7, < 71 and 7y = 7o
or yiy =17y and yy, < 7u OF 743 <7, and 7, = 73, then we may choose ay,
Oy, Qs @y and @, such that (zf, z¥]) = v(@F, 2¥*) =0 and a0,
— Q30 is odd. Thus we may suppose that a) 7, <7u, 172 <7 and ry, <7yt
or b) ris=rurs=7u and r, <y or ¢ 7, < T T2s > 720 AN 713 < 75
In the case a) put k¥ = hiuhie, h¥ = h,, h¥ = h, and h¥ = h¢sh for odd
integers a,, and a,,. Then we have

Y(lak, 258 = —a (@, 2810 — app((@,, 28])
Yk, 2] = ([, 281 + @ ((2,, 282]) .

Therefore we may choose a,, @y, a; and a, such that ([zF, 2F"])
= Y([z¥, 2¥”]) = 0 and a,,a, are odd. In the case b) put i¥ = h,, h¥
= h{™hg», hf = h{=hi* and h}¥ = h, for odd integers a, and a,. Then we
have

([, 962“5’]) = — ([ 25°]) — asﬂk([xz’ x4
Y(laf, 25D = apv (@, 80) + (2, 282]) ,

and hence we may choose a,, @, a; and a, such that ([x¥, 2F%])
= Y([zF, 2¥”]) = 0, a, and a, are odd. In the case ¢) put h¥ = hy, h¥
= h{hgn, h¥ = hi#hi and h¥ = h, for odd integers a,, and a,. Then
we have

Y(laF, 25 = — s ([@, 287]) — agr([,, 252])
V([ws, 5] = a2y, 280) + apppr([,, 25°])

and hence we may choose @y, 0y 0 and a, such that ([zF, 23]
= (¥, 2¥*]) =0, a, and @, are odd. Thus we may assume that
Y[, 5] = ([, 2#]) = 0, and hence D(G) = G,. Q.E.D.

Remark. Although in the case > f, > fs =B if B, =28, or B,
= 28;, then we may show that D(G) = G,. Similarly in the case p,> 8,
=B > B, if B, =28, or B, = 2B, then we may show that D(G) = G..
Thus we conjecture that D,(G) = G, in the both cases 8, > 8, > 8 = B,
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and B, > B = B > B

We construct infinitely many counterexamples to D,(G) = G,, whose
order is 2%***¢ with k¥ =2 and ¢ = 0 in the case g, =, > 5> f. In
particular take ¥ =2 and ¢ = 0, then this group is just the counter-
example due to Rips [2].

Let G be a 2-group of order 2%+2+¢ gatisfying the following:

1) = 280, @, = 284 @ = 28+ o, = 2F

2) p= Qr+a+e B = ks By = ok+2, B = ok

3) oy, @] = Vi, (2, @] = ¥7%0s, (20, 2] = ¥y,
[, ) = Yy, [0, 2] = W3, [, 2] = ¥7¥,
[,y ]=11A=Z9g=4)
[ ¥1] = (% U] = [0, 0] = 1, [%, 2] = 47
(@5 ¥i] = (%3, v.] = [@5, 9] = 1, [@5, ) = w7™
[ vd = [2, 2] = [2, ¥:] = 1, {2, v] = o7°

4) wf =yl = T el = T e = T

Then we may easily show that G is a 2-group of class 3. In this case
the equations (I) and (II) in Theorem A are the following:

zz&z:o 1=i=<4)

f.ii _ 2234 _ :’%L — 2Er(y,) = 0 (1)
_% _ Xé- — 280y(y,) = 0 (2)
%ﬁég_%+zk+4qf(yl>=o. (3)

Taking (1) X 2 + (2) + (3) X 2, we have
2600 () = (i) =0,
and hence by [1, Proposition 4.1]
D@ = {L, 4"} # G, = {1} .

Thus we constructed a 2-group of order 2%+#+¢ such that D,(G) = {1, "}
#+ {1} and G, = {1}.
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In particular take k¥ = 2 and £ = 0, then this group is of order 2%,
and we may show that this group is just equal to the counterexample
due to Rips [2].
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