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ON THE CORRELATION BETWEEN
THE VOLUMES OF THE TYPICAL
POISSON–VORONOI CELL AND
THE TYPICAL STIENEN SPHERE

VIKTOR OLSBO,∗ Chalmers University of Technology and Göteborg University

Abstract

In this paper we consider a tessellation V generated by a homogeneous Poisson process
� in R

d and, furthermore, the random set of spheres with centres being the points in �

and having radii equal to half the distance to their closest neighbouring point in �. In
R

d we give an integral formula for the correlation between the volume of the typical cell
and the volume of the sphere in the typical cell, and we also show that this correlation is
strictly positive. Furthermore, on the real line we give an analytical expression for the
correlation, and in the plane and in space we give simplified integral formulae. Numerical
values for the correlation for d = 2, . . . , 7 are also given.
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1. Introduction

Let � be a homogeneous Poisson process in R
d with intensity λ ∈ (0, ∞) and let V denote

the tessellation generated by �. This means that, for each point x ∈ �, we let Vx be the cell that
has the point x as its nucleus (or generator), i.e. Vx = {y ∈ R

d : ‖y − x‖ ≤ ‖y − z‖, z ∈ �},
where ‖ · ‖ denotes the Euclidean norm, and then V = {Vx : x ∈ �}. The tessellation V is
known as the Poisson–Voronoi tessellation and was introduced by Meijering [5]. For a more
in-depth view of Poisson–Voronoi tessellations, the reader is referred to [6] and [7]. Calka [1],
[2] investigated the size and the form of Voronoi cells in the plane. Hug et al. [4] investigated
the shape of large Voronoi cells.

In order to describe the statistical properties of V it is useful to introduce the typical cell.
Following the approach introduced in [6], we let � denote the set of polytopes in R

d equipped
with a ‘suitable’ σ -field A. For a set A ∈ A, we define the following distribution:

Q(A) = 1

λνd(B)
E

[ ∑
x∈�∩B

1(Vx − x ∈ A)

]

for an arbitrary Borel set B such that 0 < νd(B) < ∞. Here, νd denotes the Lebesgue measure.
The typicalVoronoi cell is defined as the random polytope Vt on (�, A) having distribution Q. It
is known (see, e.g. [6]) that Vt has the same distribution as Vo, where Vo denotes the cell whose
nucleus is the origin. This means that the distribution P of � is given by the Palm distribution
at the origin. To emphasize this we use the notation �o. On the real line ν1(Vo) ∼ �(2, 2λ)
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Figure 1: Examples of realizations of Vo and So.

and, for R
2, Calka [2] gave an expression for both the density of the number of neighbours and

the conditional distribution function of the area of the typical cell, conditioned on the number
of neighbours. For d ≥ 3, the distribution of the volume of the typical cell is unknown.

Around each point x ∈ � we place a sphere with diameter equal to the distance to the
closest neighbour of x. The random closed set made up of the union of these spheres is
known as the Stienen model and was introduced by Stienen [11], motivated by an application
in materials science. Conditioning on � with a point at the origin, we call the sphere having
the origin as its centre the typical Stienen sphere (or the typical sphere) and denote it by
So. Distributional properties of the Stienen model were studied by Schlater and Stoyan [10].
Although the distributions of the volumes of the typical sphere and the typical cell (at least for
d = 2) are known, the correlation between them is not available in the literature. At first it
seems obvious that this correlation must be positive, but examining the selected realizations in
Figure 1 suggests that the answer is not this obvious as, for example, two neighbouring points
lying close together often produce small spheres and large Voronoi cells.
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2. Main results

In this section we state and discuss the main results while the proofs are postponed to Sec-
tion 3. In Proposition 2.1, below, we give a closed-form expression for the correlation between
ν1(Vo) and ν1(So). In Theorem 2.1, below, we give an integral formula for corr(νd(Vo), νd(So))

in arbitrary dimensions, d ≥ 2.

Proposition 2.1. On the real line it holds that

corr(ν1(Vo), ν1(So)) = 1√
2

.

The real line is the only case where we have been able to obtain an analytical expression for
corr(νd(Vo), νd(So)). An integral formula for corr(νd(Vo), νd(So)) in arbitrary dimensions,
d ≥ 2, is given in Theorem 2.1, below. Lemma 3.1 in Section 3 gives an integral formula that
holds for any d ≥ 1.

Theorem 2.1. For d ≥ 2, the correlation between the volume of Vo and the volume of So is
given by

corr(νd(Vo), νd(So))

= σ 2
d

∫ ∞
0

∫ 2v

0 ud−1vd−1e−bd−1Wd(u,v) du dv − (2d − 1)/2d√
(d − 1)(bd/bd−1)

∫ π

0

∫ ∞
0 (sind−2(α)Rd−1/Sd(R, α)2) dR dα − 1

, (2.1)

where

Wd(u, v) = ud

∫ π

arccos (u/2v)

sind t dt + vd

∫ π

arccos (2v2−u2/2v2)

sind t dt (2.2)

and

Sd(R, α) = Rd

∫ π

α

sind t dt + (R2 + 1 − 2R cos α)d/2
∫ π

T (R,α)

sind t dt, (2.3)

with

T (R, α) = arccos

(
1 − R cos α√

R2 + 1 − 2R cos α

)
.

Here, σd and bd denote the surface area and the volume of the d-dimensional unit sphere,
respectively.

The function bd−1Wd(u, v) can be interpreted as the volume of the union of two
d-dimensional spheres with radii u and v and their centres a distance v apart. Furthermore,
bd−1Sd(R, α) can be interpreted as the volume of two spheres, with their centres a unit distance
apart, where one has radius R and the other has radius

√
R2 + 1 − 2R cos α. For any d ≥ 2,

the integrals defining Sd(R, α) and Wd(u, v) can be evaluated in terms of elementary functions.
This means that, for example, in the plane and in space it is straightforward to use (2.1) to obtain
numerical approximations for the correlation between νd(Vo) and νd(So).

Corollary 2.1. In the plane and in space the following two assertions hold.

(i)

corr(ν2(Vo), ν2(So)) = 4π2�2 − 3/4√
(π/2)�1 − 1

≈ 0.7051,
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where

�1 =
∫ π

0

∫ ∞

0

R

S2(R, α)2 dR dα

and

�2 =
∫ ∞

0

∫ 2v

0
uve−2W2(u,v) du dv,

with

S2(R, α) = 1

2

{
(1 + R2 − 2R cos α)

(
π − arccos

(
1 − R cos α√

1 + R2 − 2R cos α

))

+ R2(π − α) + R sin α

}

and

W2(u, v) = u2

2

(
π − arccos

u

2v

)
+ v2

2

(
π − arccos

(
1 − u2

2v2

))
+ u

4

√
4v2 − u2.

(ii)

corr(ν3(Vo), ν3(So)) = 16π2J2 − 7/8√
(8/3)J1 − 1

≈ 0.6778,

where

J1 =
∫ π

0

∫ ∞

0

R2 sin α

S3(R, α)2 dR dα

and

J2 =
∫ ∞

0

∫ 2v

0
u2v2 exp

(
−π(3u4 + 8u3v + 16v4)

12v

)
du dv,

with

S3(R, α) = 1
6 (4 + 9R2 + 4R3 − 12R cos α + 4(1 + R2 − 2R cos α)3/2 + 3R2 cos 2α).

Table 1 displays numerical estimates of corr(νd(Vo), νd(So)) for d = 1, . . . , 7. The
numerical results were obtained using the NIntegrate routine in MATHEMATICA©R. As can
be seen from Table 1, the correlation seems to decrease as the dimension increases. Using the
bounds in (2.4), below, it follows that corr(νd(Vo), νd(So)) → 0 as d → ∞.

Table 1: Numerical estimates of corr(νd(Vo), νd(So)) for d = 1, . . . , 7.

d corr(νd(Vo), νd(So))

1 0.707 107
2 0.705 143
3 0.677 790
4 0.649 534
5 0.623 393
6 0.599 667
7 0.578 145
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It was questioned above whether corr(νd(Vo), νd(So)) is positive or not. As seen, we cannot
find a closed form for the correlation between νd(Vo) and νd(So) in arbitrary dimensions, but
we can give a lower bound which shows that it is strictly positive, a result which is in accordance
with intuition. Furthermore, we give bounds for the covariance between νd(Vo) and νd(So).

Proposition 2.2. For any dimension, it holds that

(i)
1

22d(1 + 2d)λ2 ≤ cov(νd(Vo), νd(So)) ≤ 1

2dλ2 , (2.4)

(ii)

corr(νd(Vo), νd(So)) ≥ 1

2d(1 + 2d)
.

A result which lies a little outside the main focus of this article is the following proposition,
which gives bounds on the second moment of the volume of the typical cell in arbitrary
dimensions.

Proposition 2.3. It holds that

1

λ2 ≤ E[νd(Vo)
2] ≤ 2

λ2 .

Remark 2.1. The lower bound in Proposition 2.3 is elementary since E[νd(Vo)] = 1/λ;
see (3.3), below. Also note that, for d = 1, we have E[ν1(Vo)

2] = 3/2λ2.

3. Proofs

A result, given in [8] and [9], that will be central in the proofs states that

E[νd(X)n] =
∫

Rd

· · ·
∫

Rd

P(x1, . . . , xn ∈ X) dx1 · · · dxn (3.1)

for any random closed set X.

3.1. Moments of the typical cell

Equation (3.1) implies that

E[νd(Vo)
n] =

∫
Rd

· · ·
∫

Rd

P(x1, . . . , xn ∈ Vo) dx1 · · · dxn

=
∫

Rd

· · ·
∫

Rd

e−λUd(x1,...,xn) dx1 · · · dxn, (3.2)

where Ud(x1, . . . , xn) is the volume of the union of n spheres in R
d , centred at x1, . . . , xn and

having radii ‖x1‖, . . . , ‖xn‖, respectively. The property that

P(x1, . . . , xn ∈ Vo) = e−λU(x1,...,xn)

follows from the fact that the points x1, . . . , xn lie inside the typical cell if and only if

�!
o ∩

⋃
i=1,...,n

Bd(xi , ‖xi‖) = ∅,
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where �!
o denotes �o \ {o} and Bd(x, r) = {y ∈ R

d : ‖x − y‖ ≤ r}. It is well known that

E[νd(Vo)] = 1

λ
, (3.3)

which is straightforward to obtain from (3.2). This result was initially given in [3]. Unfortu-
nately it is the only moment known in analytical form, except for the special case in which
d = 1, where all moments are known. On the real line, Vo is an interval. The distance from
the origin to the left-hand endpoint of Vo and the distance from the origin to the right-hand
endpoint of Vo are two independent Exp(2λ)-distributed random variables. This means that
ν1(Vo) ∼ �(2, 2λ), which implies that

E[ν1(Vo)
n] = (n + 1)!

(2λ)n
. (3.4)

3.2. Distribution of the typical sphere

Let Ro denote the radius of a typical sphere in the Stienen model, i.e. the sphere that has
the origin as its centre. We have P(Ro > r) = e−λ2dbd rd

, as Ro is greater than r if and only if
�!

o ∩ Bd(o, 2r) = ∅. This means that

P(νd(So) > s) = P(bdRd
o > s) = P

(
Ro >

(
s

bd

)1/d)
= e−λ2d s ,

i.e. νd(So) ∼ Exp(2dλ); hence,

E[νd(So)
n] = n!

(2dλ)n
. (3.5)

3.3. Proofs of Proposition 2.1 and Theorem 2.1

In this section we give the proofs of Theorem 2.1 and Proposition 2.1. To prove these results
we will use the following lemma, which gives an integral formula for the correlation between
νd(Vo) and νd(So) for any d .

Lemma 3.1. The correlation between the volume of Vo and the volume of So is given by

corr(νd(Vo), νd(So)) = (1 − 2d)/2d + ∫∫
‖x1‖≤2‖x2‖ e−Vd(x1,x2) dx1 dx2√∫

Rd

∫
Rd e−Ud(x1,x2) dx1 dx2 − 1

, (3.6)

where Vd(x1, x2) is the volume of the union of two spheres in R
d , centred at the origin and x2,

with radii ‖x1‖ and ‖x2‖, respectively.

Proof. Define Ṽo as the part of Vo that lies outside So, i.e. Ṽo = Vo \ So. Now, to obtain
the correlation between νd(Vo) and νd(So) we first compute the covariance. We have

var(νd(Ṽo)) = var(νd(Vo) − νd(So))

= var(νd(Vo)) + var(νd(So)) − 2 cov(νd(Vo), νd(So)),

which implies that

cov(νd(Vo), νd(So)) = 1
2 (var(νd(Vo)) + var(νd(So)) − var(νd(Ṽo))). (3.7)
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Now, from (3.2), (3.3), and (3.5) it follows that

var(νd(Vo)) =
∫

Rd

∫
Rd

e−λUd(x1,x2) dx1 dx2 − 1

λ2

and

var(νd(So)) = 1

(2dλ)2 . (3.8)

It remains to find var(νd(Ṽo)). The expectation is given by

E[νd(Ṽo)] = E[νd(Vo) − νd(So)] = 2d − 1

2dλ
. (3.9)

This is what we would expect since the volume fraction of the Stienen model is equal to
2−d . We will use (3.1) to find the second moment of νd(Ṽo); then we will need to compute
P(x1, x2 ∈ Ṽo). Now, for ‖x1‖ ≤ ‖x2‖, we have

P(x1, x2 ∈ Ṽo) = P(Ro < ‖x1‖, x1, x2 ∈ Vo)

and

P(x1, x2 ∈ Vo) = P(Ro < ‖x1‖, x1, x2 ∈ Vo) + P(Ro ≥ ‖x1‖, x1, x2 ∈ Vo).

Furthermore, x1 and x2 lie in Vo and Ro ≥ ‖x1‖ if and only if there are no points of �!
o in

Bd(o, 2‖x1‖) ∪ Bd(x2, ‖x2‖) and, therefore,

P(Ro ≥ ‖x1‖, x1, x2 ∈ Vo) = e−λVd(x1,x2,2),

where
Vd(x1, x2, 2) = νd(Bd(o, 2‖x1‖) ∪ Bd(x2, ‖x2‖)).

Using (3.1), the above means that

E[νd(Ṽo)
2] =

∫
Rd

∫
Rd

e−λUd(x1,x2) dx1 dx2 − 2
∫∫

‖x1‖≤‖x2‖
e−λVd(x1,x2,2) dx1 dx2. (3.10)

Using (3.2), (3.5), (3.9), and (3.10), (3.7) now becomes

cov(νd(Vo), νd(So)) = 1

2

∫
Rd

∫
Rd

e−λUd(x1,x2) dx1 dx2 − 1

2λ2 + 1

2(2dλ)2

− 1

2

∫
Rd

∫
Rd

e−λUd(x1,x2) dx1 dx2

+
∫∫

‖x1‖≤‖x2‖
e−λVd(x1,x2,2) dx1 dx2 + (2d − 1)2

2(2dλ)2

= 1 − 2d

(2dλ)2 +
∫∫

‖x1‖≤‖x2‖
e−λVd(x1,x2,2) dx1 dx2. (3.11)

Finally, (3.2), (3.5), and (3.7) imply that

corr(νd(Vo), νd(So)) = (1 − 2d)/(2dλ)2 + ∫∫
‖x1‖≤‖x2‖ e−λVd(x1,x2,2) dx1 dx2

(1/2dλ)

√∫
Rd

∫
Rd e−λUd(x1,x2) dx1 dx2 − 1/λ2

.
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The change of variables (xi1, . . . , xid) �→ (yi1λ
−1/d , . . . , yidλ−1/d), i = 1, 2, has the Jacobian

λ−1, giving a factor of λ−2 outside each double integral. We also have

λUd(x1, x2) = Ud(y1, y2) and λVd(x1, x2, 2) = Vd(y1, y2, 2).

Furthermore, the change of variables

(x11, . . . , x1d) �→ (z112−1, . . . , z1d2−1)

has the Jacobian 2−d and it further holds that Vd(x1, x2, 2) = Vd(z1, x2, 1) = Vd(z1, x2). The
integration limits become ‖z1‖ ≤ 2‖x2‖. This completes the proof.

For d = 1, the integrals in (3.6) can be calculated explicitly, but instead we will use the fact
that ν1(So) and ν1(Ṽo) are independent, which follows from the basic properties of the Poisson
process. The above directly yields

corr(ν1(Vo), ν1(So)) =
√

var(ν1(So))

var(ν1(Vo))
= 1√

2
.

The last equality follows from (3.4) and (3.8). For d ≥ 2, consider the following. Let α =
� (o, x1, x2), r = ‖x1 − x2‖, and R = ‖x1‖/‖x1 − x2‖. Then, by using the results in [3], it
follows that∫

Rd

∫
Rd

e−Ud(x1,x2) dx1 dx2

= d(d − 1)bdbd−1

∫ ∞

0

∫ π

0

∫ ∞

0
sind−2(α)e−bd−1Sd(R,α)rd

r2d−1Rd−1 dR dα dr,

where Sd(R, α) is as defined in (2.3). By integrating over r , we obtain the double integral
of the denominator in (2.1). Furthermore, (2.2) holds since Bd(o, ‖x1‖) ∪ Bd(x2, ‖x2‖) =
S(‖x1‖, t1) ∪ S(‖x2‖, t2), where S(‖x1‖, t1) and S(‖x2‖, t2) are two disjoint, truncated
d-dimensional spheres of radii ‖x1‖ and ‖x2‖, respectively, truncated at distances

t1 = ‖x1‖2

2‖x2‖ and t2 = 2‖x2‖2 − ‖x1‖2

2‖x2‖
from their respective centres. Geometric considerations and straightforward calculations show
that the volume of each of these spheres is equal to bd−1 times the corresponding term in (2.2).
Changing to polar coordinates yields the expression in the denominator of (2.1).

3.4. Proofs of Propositions 2.2 and 2.3

We will use (3.6) to obtain bounds on the covariance. All we require are bounds on∫∫
‖x1‖≤2‖x2‖ e−Vd(x1,x2) dx1 dx2. As Vd(x1, x2) ≤ bd(‖x1‖d + ‖x2‖d), we have∫∫

‖x1‖≤2‖x2‖
e−Vd(x1,x2) dx1 dx2 ≥

∫∫
‖x1‖≤2‖x2‖

e−bd (‖x1‖d+‖x2‖d ) dx1 dx2

= 1

1 + 2d
. (3.12)
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To obtain an upper bound we first use the fact that∫∫
‖x1‖≤2‖x2‖

e−Vd(x1,x2) dx1 dx2 =
∫∫

‖x1‖≤‖x2‖
e−Vd(x1,x2) dx1 dx2

+
∫∫

‖x2‖≤‖x1‖≤2‖x2‖
e−Vd(x1,x2) dx1 dx2

and, furthermore, since Vd(x1, x2) ≥ bd‖x2‖d , the facts that∫∫
‖x1‖≤‖x2‖

e−Vd(x1,x2) dx1 dx2 ≤ 2πd/2

�(d/2)

∫
Rd

e−bd‖x2‖d

∫ ‖x2‖

0
rd−1 dr dx2 = 1

and ∫∫
‖x2‖≤‖x1‖≤2‖x2‖

e−Vd(x1,x2) dx1 dx2 ≤ 2πd/2

�(d/2)

∫
Rd

∫ 2‖x2‖

‖x2‖
rd−1e−bdrd

dr dx2

= 1 − 1

2d
.

Using the above, together with (3.11), proves Proposition 2.2(i). Furthermore, by symmetry,
we have ∫

Rd

∫
Rd

e−Ud(x1,x2) dx1 dx2 = 2
∫∫

‖x1‖≤‖x2‖
e−Ud(x1,x2) dx1 dx2 ≤ 2, (3.13)

where we have used the fact that Ud(x1, x2) ≥ bd‖x2‖d . The lower bound in (3.12) and the
upper bound in (3.13) yield Proposition 2.2(ii). Finally, as∫

Rd

∫
Rd

e−λUd(x1,x2) dx1 dx2 = E[νd(Vo)
2],

(3.13) together with Remark 2.1 yield Proposition 2.3.
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