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1. INTRODUCTION
Kojima (1961) derived approximate formulae for the mean and the variance of

the change in gene frequency from a single cycle of selection applied to a population
of finite size. He used these formulae to derive the expected gain from the selection.
Kojima's paper was the first to take full account of the variable effects of selection
in finite populations. In this paper, we use and extend Kojima's formulae to derive
a simple approximate method for studying the effects of repeated cycles of selection
and regeneration in a finite population. The method yields not only the first two
moments of the gene frequency distribution, the expected gain from selection and
the probabilities of fixation but also the variability of gain, i.e. the variation to be
expected between the gains made in identical replicate populations. This latter
variation is of interest in the study of evolution; in the design and interpretation of
selection experiments and in devising plant and animal breeding improvement
programmes. Reference will be made to the alternative of using transition matrices.

2. THE GENETIC MODEL AND THE SELECTION PROCEDURE

Using Kojima's notation, the population consists initially of iV diploid individuals
in which the three single locus genotypes, A A, Aa and aa, occur with frequencies
Ux, U2, and U3 respectively. We shall assume that the population is a random-mating
population and that, following each selection, the selected individuals are mated at
random. Therefore Ux = q2, U2 = 2q(l — q) and U3 = (1 — q)2, where q is the frequency
of the A allele.

Kojima assumed that the distribution of the phenotypic values of the character
being used for selection would be similar for each genotype, differing only in mean.
We shall denote the three means as follows:

Genotype Frequency Mean

AA
Aa
aa

<72

2q(l-q)
(I-?)2

a
ha
0

https://doi.org/10.1017/S001667230001123X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230001123X


106 R. N. CTJENOW AND L. H. BAKER

The homozygote difference is a and the degree of dominance is measured by h. We
shall assume that the phenotypic distribution for each of the three genotypes is
normal. Because the genetic effects at a single locus are assumed small relative to the
total variation, the variance for each genotype will be taken equal to the total pheno-
typic variance, a2. We shall assume that there are no epistatic effects and no linkage.
We shall assume that the heritability of the character is sufficiently low that the
total phenotypic variance can be assumed constant. This should be a reasonable
approximation in the early cycles of a selection programme unless the selection is
very intense or the population very small. The genetic values at a locus will be
measured as a proportion of the phenotypic standard deviation, a, i.e. a/a will
henceforth be written as a.

At each selection, the n individuals with the highest value of the character will be
selected. The selected individuals are then mated at random to produce the next
generation and so on.

Kojima showed that in a single selection, the change in gene frequency, Aq, had
mean and variance given by

E(Aq) = akq(l-q)[h + q(l-2h)] (1)

and V(Aq) =
 g ( 1 ~ g ) {l+ak[(l-2h)q(l-q) + (l-2q)(h + q-2hq)}, (2)

where k is the mean of the top n values in a random sample of size N from a standard
normal distribution. Values of k can be calculated from tables given in Biometrika
Tables for Statisticians, volume 1 (1958). Kojima discusses formulae (1) and (2) in
some detail. All terms of order a2 and higher are, of course, being ignored.

We shall need one further result that can be derived from Kojima's formulation
of the problem. This is the probability that an allele, A say, becomes fixed in a single
selection. Kojima shows that the number of A A individuals selected has a binomial
distribution with

parameters n and p = q2 1 + 1 VJ ° ,

where dx is the deviation of the AA mean from the population mean in standard
deviation units. <f>(Y0) and (1 — P) are the values of the standard normal frequency
function and distribution function at Yo, the value of the best individual that is not
selected. For given 3̂ ,, the probability that all the individuals selected are AA and
therefore that A becomes fixed is

Averaging this probability over the distribution of 3̂ ,—a random variable since n is
fixed—leads to analytical difficulties. Instead, as an approximation, we shall replace
<fr(Y0)/P within the bracket by its expected value. This expected value can be shown
to be k as defined above. The approximate probability of fixing A is then given by

(3)
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The corresponding formula for the probability of fixing a is

(4)

P1(g
r) and P0{q) cannot be satisfactorily approximated by using only the first two

terms of the binomial expansion of pn because this assumes that na as well as a is
small.

3. CYCLES OF SELECTION

Equations (1) and (2) can be used at any stage of a programme of continued
selection provided that q is the gene frequency in the preceding generation. This
permits an iterative approach to the study of the effects of cycles of selection. We
shall use symbols without dashes to indicate parameters in one generation and the
same symbols with dashes for the corresponding parameters in the next generation.

From (1),

= q + akq(l-q)\h + q-2hq\. (5)

Denoting the rth moment about zero of the distribution of gene frequencies by /ir

and averaging over the distribution of q, (5) becomes

(6)

Similarly, E[(q')2] = q* + 2qE(Aq) + E(bq)2.

Using (1) and (2) and averaging over the distribution of q this gives, to the order of
a single-locus genetic effect,

= IH + ̂ ^ + 2ak[h(^2 - ft,) + (1 - 2h) (ft, -ft,)]

ak
[

ak
+ — [(1 - 2h) (2ft, - 5ft, + 3ft,) + kfa - 3ft, + 2ft,)]. (7)

Equations (6) and (7) cannot yet be used for iteration since they contain the
higher moments /i3 and /*4. Further equations could be derived for fi3 and /*£ but they
would involve still higher moments. A particular form for the gene frequency distri-
bution has to be assumed to relate /i3 and /*4 to the lower moments, /ix and fi2. We
shall assume that the gene frequency distribution is made up of finite probabilities,
Po and Px, that q = 0 and q = 1 and a beta-distribution with parameters I and m for
0 < q < 1. Symbolically,

P r ( ? = l ) = P1

Pr(<7=0)=P0> (8)

where B(l, m) is the usual beta-function. The beta-distribution is extremely flexible.
The true gene-frequency distribution is concentrated at the (2n+\) points
r = ij2n (i = 0,1,.. . , 2n). A continuous distribution is probably a sufficiently good
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approximation providing that n is not too small. Selfing (n = 1) will be discussed
later. The distribution has four parameters: Pv Po, I and TO. We already have two
iterative equations, (6) and (7). They involve the first four moments of the distribu-
tion. These moments can be written in terms of the four parameters above by
evaluating the moments of distribution (8). This gives

l)
) ( ' -1 ,2 ,3 ,4) . (9)

We need two more iterative equations. These are obtained by relating the
probabilities of fixation in one generation (P'o, P[) to those in the previous generation
(Po.Pi). Using (3) and (4),

nkam(2l + m + 4ra + 1 - 2hl - 4Jin)\
+ {l + m + 2n)(l + m + 2n+l) / ' ( '

(l-P0-P1)B(l,m + 2n)l nkaljl + 2hm + 4/m +1) \
0 ° B(l,m) \ (l + m + 2n)(l + m + 2n+l)}'

Terms involving a2,a3,..., do not need to be considered because they are not
multiplied by terms of order n2, n3,..., as they were in the binomial expansion of pn

mentioned previously. Similarly,

(11)

The process of iteration can be described as follows, where the numbers are the
relevant equations.
Starting values a, h, k, n, G (number of generations), q.

II ii n ii P ~P 1 vn
jM/i /^2 ^"\ r^4 0 1

Initially q q2 q3 q* 0 0 \l = ^ L = QQI

Generation g fix /i2 fi3 /*4 Po Px I m

-Pi(lO)

V, TO' (9)
V f

/4, K (9)
G e n e r a t i o n (gr+1) ju,^ /i'2 ji'z fi't P'o P[ V TO'

The values of Po and Px following the first selection can most easily be calculated
from equations (3) and (4). The values of the beta-function in (10) and (11) will only
be difficult to evaluate when n is large. A reasonable approximation then might be

B(l + 2n,m) T(l + m) 1
{2n)m'

where F is the usual gamma function. There is a similar approximation for the other
ratio.
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4. GENETIC MEAN AND BETWEEN-POPULATION VARIANCE
IN GENETIC MEAN

The population mean after random mating in units of phenotypic standard
deviations, when the gene frequency is q, is

This has a mean value of
(12)

The variance among replicate populations in mean performance in units of the
phenotypic variance is

a?E{q[q + 2h(l-q)]}2- (mean)2

2. (13)

Both these quantities can be calculated after each cycle of selection. With no
linkage or epistasis, the means and variances can be added over loci to study changes
in the genetic value of the population. Values of the variance between replicate
populations should be useful in devising and interpreting selection programmes; in
studying evolutionary processes and in designing and analysing selection experi-
ments.

5. APPLICATION OF METHOD

Formulae (l)-(7) and (10)-(ll) assume that the selected individuals each act as
both male and female parents of the next generation. It is not difficult to show that
the following changes are needed in the iterative equations (6), (7), (10) and (11)
when the 'selection intensities' and numbers selected are km and nm, and kf and nf

for males and females respectively.
(6) For k read k =

(7) /4 =

where ne is the effective population size,

and k is the weighted mean of the k values;

(10) and (11) For n read nm + nf and for nk read nmkm + nfkf.
The methods of this paper have been used to consider how best to improve a

composite population of maize as a source of inbred lines (Baker & Curnow, 1968).
In this application the number of males was considered infinite and the selection
applied to females only (nm = oo, km = 0). With an infinite number of males, no gene
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will become fixed so that Po = Px = 0 throughout. Values for the genetic variation
between replicate populations of different sizes were calculated. The possible use
of this variation in a breeding programme was discussed quantitatively for the first
time. A computer is needed to carry out the calculations but the method has clear
advantages over simulation studies. Simulation might provide reasonably good
estimates of mean progress but the large sampling fluctuations involved make the
variance in mean progress much more difficult to estimate. Simulation will still
probably be needed to study the effects of multiple alleles, linkage and epistasis.
However, Kojima's method could be extended to cover these situations. Kojima's
formulation already covers the possibility of non-normality in the phenotypic
distributions and deviations from random mating.

All the results obtained by the methods described in this paper could be derived
using transition matrices (see Allan & Robertson (1964), Ewens (1963), Hill &
Robertson (1966) and Robertson (1960) for examples of the use of transition
matrices). The elements of the matrices are the probabilities of moving from one
gene frequency to another in a single cycle of selection. The transition matrix
approach is possible because all the first- and second-order statistics derived by
Kojima's more correct procedure could be derived by calculating selective ad-
vantages for the genotypes based on selection above a fixed point (truncation
selection) but with the usual 'selection intensity' i replaced by k. Kojima (1961)
does show that the selective advantages for non-additive genes in finite populations
have not always been calculated correctly (for a discussion of this, see Hill, 1968).
The method described in this paper has some advantage in computer time over
transition matrices, particularly for large population sizes. Work is in progress on
checking the adequacy of the approximations, i.e. the beta-distribution assumption
and the approximation used in calculating the probabilities of fixation, P1(g

r) and
P0(q). The problem considered in Baker & Curnow (1968) would be difficult to solve
for any population size using transition matrices. This is because the selection was
applied only to the females and the males were assumed to be infinite in number. In
this situation the size of the transition matrices will increase geometrically with the
number of cycles of selection. Any differentiation between the sexes, whether or not
it involves differences in the selection intensities or population sizes, will lead to a
considerable increase in the size of the transition matrices involved.

Transition matrices have been used to check the results in Baker & Curnow (1968)
for the first two cycles of selection when n} = 1. Even for this low value of nf, the
approximation of the three- and nine-point gene frequency distributions in the first
two cycles by a beta-distribution led to very little error in terms of genetic mean and
variance. Later cycles should be even better until approximation errors accumulate
or the gene frequencies change to values more sensitive to the approximation.

The next section, on selfing, shows how analytical results can sometimes be
obtained using an approach that is essentially that of transition matrices.
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6. SELFING

With selfing (w = 1), only three gene frequencies are possible and the assumption
of a beta distribution of gene frequencies between q = 0 and q = 1 clearly invalid.
Let the probabilities that the selected individual at the sth generation is A A,
Aa and aa be PS(AA), Ps{Aa) and Ps{aa), respectively. If the (s — l)th generation
individual is Aa then the probabilities that the sth generation individual is AA,
Aa and aa are Pv 1 — PQ — P1 and Po respectively, where, from (3) and (4),

and P0

The probabilities in succeeding generations are related by the following formulae:

PS+1(AA) =
Ps+1(Aa) = Ps(Aa)[l-P0-P1],

Ps+1(aa) = Ps(aa) + Ps(Aa) Po.
If initially

= C71, P0(Aa) = U2, P0(aa) = U3 (E^ + K. + t ^ 1),

then P3(AA) = Ux + ̂ k l - (1 - Po - A)8].

and Ps(aa) = U3+
•

The values of f71; C/2
 a n d Ĉ 3 can be chosen appropriately if the first plant to be selfed

is chosen at random or by some selection procedure. The mean gene frequency at
the sth generation is

The genetic mean and between-population variance in genetic mean after random
mating are easily derived. The probability that A becomes fixed at the sth gene-
ration is

with a corresponding expression for the fixation of the other allele. After an infinite
number of generations the probabilities of fixation are

^ and U3 + J ^

for the A and a alleles respectively. Clearly one or the other allele will eventually
be fixed.

The mean time to fixation for A is (C4P1)/(PO + P1)
2 and for a is (f/2P0)/(P0
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The half-life (i.e. the time at which the mean gene-frequency is half-way to its final
value) is given by the solution to the equation

_ -log 2

The half-life is independent of the initial genotypic frequencies U^ U2 and U3.

SUMMARY

Kojima's (1961) approximate formulae for the mean and variance of the change
in gene frequency from a single cycle of selection applied to a finite population are
used to develop an iterative method for studying the effects of repeated cycles of
selection and random mating. This is done by assuming a particular, but flexible and
probably realistic, approximate form for the distribution of gene frequencies at each
generation.

The method gives for each generation the first two moments of the gene frequency
distribution, the expected gain from selection, the probabilities of fixation and also
the variability of gain. The variability of gain is of considerable importance in
evolution, selection experiments and in plant and animal breeding programmes.

Kojima's (1961) formulae have been extended to allow for differentiation between
males and females. Hence different selection intensities and population sizes for the
two sexes can be studied. Selfing with selection is considered separately. Extensions
to cover simple examples of multiple alleles, linkage and epistasis are possible.
Reference is made to previous work using transition matrices.

The iterative procedures described have been used to compare different selection
schemes for composite populations of maize (Baker & Curnow, 1968).

Work is in progress on testing, applying and extending these methods.

We are grateful to Dr Alan Robertson and Mr D. J. Pike for helpful comments on an
earlier draft of this paper.
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