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Drop coalescence occurs through the rapid growth of a liquid bridge that connects the
two drops. At early times after contact, the bridge dynamics is typically self-similar, with
details depending on the geometry and viscosity of the liquid. In this paper we analyse
the coalescence of two-dimensional viscous drops that float on a quiescent deep pool;
such drops are called liquid lenses. The analysis is based on the thin-sheet equations,
which were recently shown to accurately capture experiments of liquid lens coalescence.
It is found that the bridge dynamics follows a self-similar solution at leading order, but,
depending on the large-scale boundary conditions on the drop, significant corrections may
arise to this solution. This dynamics is studied in detail using numerical simulations and
through matched asymptotics. We show that the liquid lens coalescence can involve a
global translation of the drops, a feature that is confirmed experimentally.

Key words: breakup/coalescence, capillary flows

1. Introduction

Coalescence of drops is one of the most common capillarity-driven phenomena which
can be observed in multiphase fluid dynamics. The early-time dynamics of coalescence is
dependent on both the viscosity of the drops and their geometry. Different power laws
for the growth of the connecting structure (referred to as neck or bridge) have been
found for viscous and inviscid freely suspended drops (Eggers, Lister & Stone 1999;
Duchemin, Eggers & Josserand 2003; Aarts et al. 2005; Thoroddsen et al. 2007; Paulsen,
Burton & Nagel 2011), as well as for sessile drops in the viscous and inviscid limits
(Ristenpart et al. 2006; Narge, Beysens & Pomeau 2008; Hernández-Sánchez et al. 2012;
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Figure 1. Side-view sketch of two coalescing lenses initial radius R and equilibrium contact angle θ . The drop
profile is described by h̄(x̄, t̄), while the minimal height in the neck region h̄0(t) = h̄(0, t̄). The coalescence
velocity V̄ is defined as V̄ = dh̄0/dt̄.

Lee et al. 2012; Eddi, Winkels & Snoeijer 2013). The study of coalescence phenomena is
also relevant for many applications where the underlying substrate of the coalescing drops
is a liquid. Some examples are wet-on-wet printing (Hack et al. 2018), emulsions (Shaw
2003; Kamp, Villwock & Kraume 2016) and lubricant impregnated substrates (Anand
et al. 2012; Smith et al. 2013).

Here, we focus on liquid lenses (de Gennes, Brochard-Wyart & Quéré 2004), consisting
of liquid drops floating on a quiescent pool of another liquid. This case was studied for
Newtonian drops (Burton & Taborek 2007) and liquid crystals (Delabre & Cazabat 2010),
where the authors analysed the growth of the bridge in top-view experiments. Recent work
considered the coalescence of lenses using side-view experiments (Hack et al. 2020).
This perspective is sketched in figure 1, providing a quasi-two-dimensional view of the
problem. The experiments revealed a self-similar dynamics of the bridge profiles, with
scaling laws for the bridge height h0 with time t that depend on the viscosity of the
lenses (Hack et al. 2020). At low viscosity, the dominant balance during coalescence is
between surface tension and inertia, and it was found that h0 ∼ t2/3. At high viscosity,
the dominant balance between surface tension and viscosity leads to h0 ∼ t. These scaling
laws are the same as those described in the merging of liquid wedges (Billingham & King
2005). Owing to the slender geometry of the drops – typically the contact angle θ in
figure 1 is small – the coalescence of liquid lenses can be analysed using the thin-sheet
equations (Ting & Keller 1990; Erneux & Davis 1993). Using a similarity analysis, the
experimentally observed inertial and viscous scaling laws are recovered (Hack et al. 2020).
For example, the viscous coalescence speed was found to be dh̄0/dt̄ ≈ V̄0 = 0.5525γ θ2/η,
where γ and η respectively are the drop surface tension and viscosity (for consistency we
here use overbars to indicate dimensional variables). This prediction was found to be in
very good agreement with experiments.

The viscous similarity analysis, however, contains a salient feature that remains to be
explained: the obtained self-similar velocity profile does not decay at large distance from
the thin bridge region, but reaches a finite value. This is rather unusual for problems
involving coalescence (or drop breakup, cf. Eggers & Fontelos 2015). Namely, the
similarity analysis is typically based on the assumption that the flow remains confined
to the scale of the bridge – at large scale, i.e. the scale of the drop, the flow is usually
assumed to vanish. Such is the case for the coalescence of sessile drops as illustrated
in figure 2(a). It shows an experimental top-view sequence of merging drops that are in
contact with a solid substrate. During the initial growth of the bridge the global features
of the drops appear nearly stationary – away from the bridge region one observes only
a minute spreading of the drops. Figure 2(b) shows the equivalent top-view sequence for
liquid lenses, for which the situation is manifestly different. Clearly, these floating drops
do not remain stationary, but their centres of mass exhibit an inward motion as soon as
the drops establish contact. This inward motion is not a small effect. Figure 2(c) compares
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Ū
 (m

 s
–1

)

V̄ (m s–1)

(b)(a) (c)

Figure 2. Top-view coalescence of drops in the viscous regime. (a) Sessile drops in contact with a substrate,
(b) liquid lenses floating on a water bath. During lens coalescence we see a clear inward motion of the drops that
does not occur for sessile drops. (c) Comparison of the centre of mass velocity Ū and the ‘bridge’ coalescence
velocity V̄ = dh̄0/dt̄ for liquid lenses, taken for three oils of different viscosity and nearly identical contact
angles (blue: η = 115 Pa s and θ = 27◦, green: η = 33 Pa s and θ = 32◦, red: η = 9 Pa s and θ = 31◦, see Hack
et al. (2020) for experimental details). The centre of mass velocity Ū is not a small effect, as it is comparable
in magnitude to the coalescence velocity V̄ .

the centre of mass velocity Ū (measured in top view) with the bridge coalescence velocity
V̄ = dh̄0/dt̄ (measured in side view), showing that the two velocities are proportional.
These velocities were obtained using the experimental method described in Hack et al.
(2020). We remark that this inward motion does not at all arise for liquid lenses of very
low viscosity – this is in line with the inviscid similarity solutions, whose velocity rapidly
decays away from the bridge (Hack et al. 2020).

In this paper, we provide a detailed analysis of the coalescence of highly viscous lenses
and elucidate the coupling between the inner ‘bridge’ solution and the global dynamics
of the drops. We treat the problem using the two-dimensional thin-sheet equations,
reflecting an analysis along the cross-section shown in figure 1. Such a two-dimensional
approximation turned out successful for the geometry of spherical caps (Ristenpart et al.
2006; Hernández-Sánchez et al. 2012; Hack et al. 2020), since close to the bridge the
length scale in the third dimension, O((Rh̄0/θ)1/2), is much larger than the horizontal and
vertical length scales of the bridge, O(h̄0/θ) and O(h̄0).

We demonstrate that, in general, the coalescence velocity exhibits significant
logarithmic corrections, O(1/ ln t), where t � 1 is the (dimensionless) time after
coalescence. On the other hand, the thin-sheet equations admit an outer solution where
the drop’s centre of mass can migrate freely, closely resembling the motion observed
in figure 2(b). In this latter case, the corrections to the leading-order result are much
smaller. The analysis is confirmed in detail by comparison with time-dependent numerical
simulations of the thin-sheet equations.

The article is organised as follows: the governing equations for coalescing lenses are
presented in § 2. In § 3, we study the inner scale dynamics, near the point of coalescence,
followed in § 4 by an analysis of the outer region, which is where the two different
boundary conditions manifest themselves. We end with our conclusion and outlook in
§ 5.

2. The viscous thin-sheet equations

2.1. Formulation
Following the approach of Hack et al. (2020), the process of coalescence is modelled
by the two-dimensional viscous thin-sheet equations (Ting & Keller 1990; Erneux &
Davis 1993). The underlying approximations are the following: (i) similar to sessile drops
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(Ristenpart et al. 2006; Hernández-Sánchez et al. 2012) the flow in the bridge region is
quasi-two-dimensional in the early stage of coalescence; (ii) the equilibrium contact angle
θ is small, such that a slender body approximation can be employed; (iii) the influence of
the bath on the dynamics is negligible, i.e. free slip boundary conditions can be employed
at both interfaces of the two-dimensional lenses; (iv) due to negligible differences in
surface tension between the bath and liquid lens and the liquid lens and air, the liquid
lenses are assumed to be symmetrical with respect to the bath–air interface – although
asymmetric surface tensions can actually be mapped to an ‘effective’ symmetric surface
tension (cf. Hack et al. 2020, Supplementary Material). We note that these assumptions
are in accordance to the previous experiments of Hack et al. (2020) where the ratio of
viscosities of the lenses and the bath is more than a thousand and the corresponding
surface tension asymmetry is only approximately ten per cent. The former justifies (iii)
and the latter (iv).

The resulting model equations for negligible inertia of the flow, in dimensionless
variables, take the form

ḣ + (hu)′ = 0, hh′′′ + 4(hu′)′ = 0. (2.1a,b)

Here, h(x, t) and u(x, t), respectively, are the dimensionless interface height and horizontal
velocity, and dots and primes indicate derivatives with respect to t and x, respectively.
Dimensional variables (x̄, h̄, ū, t̄) are scaled as

x̄ = Rx, h̄ = θRh, ū = γ

η
θu, t̄ = Rη

θγ
t, (2.2a–d)

where R is the initial lens radius and θ is the contact angle (cf. figure 1). The surface
tension is denoted as γ and η is the viscosity of the liquid inside the lenses. The thin-sheet
equations (2.1) correspond to mass and (horizontal) momentum conservation. The latter
gives the balance between capillary forces (first term) and viscous forces (second term),
while inertia has here been neglected.

The momentum equation (2.1b) can be readily integrated to give the horizontal force
balance

hh′′ − 1
2 h′2 + 4u′h = −1

2 + F(t). (2.3)

The terms on the left-hand side represent the horizontal force transmitted through the thin
drop by pressure, surface tension and viscous stresses, respectively. We have introduced the
constant −1/2 on the right-hand side corresponding to the total force in the static solution,
see (2.6) below. Therefore F(t) measures any additional horizontal force that arises during
the coalescence dynamics.

2.2. Two-dimensional numerical simulations
In order to illustrate the interplay between the dynamics of the small bridge region
and the large bulk of the drops, we simulate the coalescence of two-dimensional lenses
numerically. Due to symmetry about the point of coalescence x = 0, we can impose the
boundary conditions h′ = u = 0 at x = 0 and focus on the domain x ≥ 0. We consider two
different sets of outer boundary conditions.

The first case corresponds to the experimentally realised setup of two freely floating
lenses. In this case, the length L(t) of each lens decreases with time (as can be seen in
figure 2) from its initial value L(t = 0) = 2, and at the edge of the lens we impose the
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Coalescence of viscous lenses

thickness h(L), the contact angle and conservation of mass

h(L) = 0, h′(L) = −1, u(L) = L̇. (2.4a–c)

Substitution into the momentum equation (2.3) then yields F(t) ≡ 0, i.e. the horizontal
force transmitted through the lens is equal to its initial value at all times. With F = 0
in (2.3), the condition h′(L) = −1 is redundant as it follows from h(L) = 0, so we are
left with three boundary conditions h′(0) = u(0) = h(L) = 0 for the third-order governing
equations and a fourth condition L̇ = u(L) that determines the evolution of L(t).

The second case we consider is one where the lenses do not move, due to a symmetry
condition being imposed about the centres of the lenses, such as in a periodic array of
simultaneously coalescing lenses,

h′(1) = u(1) = 0. (2.5)

This yields three boundary conditions h′(0) = u(0) = h′(1) = 0 on the governing
equations and a fourth condition u(1) = 0 that determines the unknown F(t).

The key finding is that the different outer boundary conditions will lead to different
spatial and temporal dynamics also in the inner region, at the scale of the bridge. As we
shall see, the leading-order solution in the two cases remains the same – however, the
coalescence velocity can exhibit significant corrections at the next order.

The theoretical initial condition is taken to be the static solution of (2.1) with
non-dimensional radius 1 and contact angle 1 (corresponding to the dimensional values
R and θ , respectively),

h(x, t = 0) = hs(x) = 1
2 x(2 − x), (2.6)

but in the numerical simulations a small-scale perturbation (h0i − x/2) exp(−x/2h0i)
is added to initialise the coalescence. The perturbation profile is chosen to satisfy the
symmetry boundary condition h′(0) = 0 and have an initial bridge height h0i = h0(t = 0),
which is taken to be 10−10 unless stated otherwise.

We solve the governing equations (2.1a) and (2.3) numerically in Matlab using a finite
difference method with a Crank–Nicolson time-stepping scheme. Both the spatial and
temporal grids are non-uniform with a relative resolution of 1 %, and the discretisation
is second-order accurate in both space and time. For the periodic lenses (2.5), the
computational domain is 0 ≤ x ≤ 1. For the free lenses (2.4), where the domain 0 ≤
x ≤ L(t) changes with time, we use a rescaled position variable x̂ = 2x/L(t) and solve
the rescaled equations on the fixed domain 0 ≤ x̂ ≤ 2 instead. As explained above, four
boundary conditions are imposed on the third-order system of equations, in order to
determine the additional unknown L̇(t) or F(t).

Some snapshots of height and velocity profiles from the simulations are shown in
figure 3. The free-floating lenses immediately begin to move towards each other at a
constant velocity, and eventually merge into one larger lens with double the volume (and
hence

√
2 times the radius and height). The periodic lenses instead flatten out towards a

uniform height of 1/3, determined by the initial volume in the lens. Importantly, and this
is one of the central points of the paper, the velocity profiles are significantly different
between the two cases, even at very early times, due to the different outer boundary
conditions. We will show how this affects the coalescence velocity, ḣ0.
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Figure 3. Numerical height and velocity profiles for the coalescence of (a) two free-floating lenses (2.4) and
(b) an array of periodic lenses (2.5), evaluated at the times t = 10−4, 0.1, 0.5, 1, 2, 10. The arrows indicate
increasing time.

3. The inner region

In order to study the dynamics of the region close to the point of coalescence, we rescale
the variables as

ξ = x
h0(t)

, h(x, t) = h0(t) H(ξ, τ ), u(x, t) = ḣ0(t) U(ξ, τ ), (3.1a–c)

with τ = t. In choosing the scaling used above, we are motivated by the fact that in the
inner region the length scale of importance is the bridge height h0. The resulting governing
equations become

h0

V
Ḣ + H − ξH′ + (HU)′ = 0, (3.2a)

HH′′ − 1
2H′2 + 4VHU ′ + 1

2 − F(τ ) = 0, (3.2b)

where V = ḣ0 is the unknown coalescence velocity that we wish to determine. At ξ = 0,
the definition h(0, t) = h0(t) and the symmetry about ξ = 0 yield

H(0) = 1, H′(0) = U(0) = 0. (3.3a,b)

The system of equations (3.2) has three spatial derivatives and accordingly three
boundary conditions (3.3). However, the equations contain two unknowns V and F that
are determined on matching to the outer solution. The matching necessitates that we
evaluate H and U as ξ → ∞, and from (3.2) we obtain, on neglecting the time-derivative
term,

U = F
4αV

ln ξ − β + O(ln ξ/ξ), H = αξ + O(ln ξ), as ξ → ∞. (3.4a,b)

This asymptotics contain two degrees of freedom α and β that are determined during the
solution process. (Given that the system is third order in space, there should be a further
degree of freedom as ξ → ∞. However, it can be shown by perturbation analysis of (3.2)
(cf. Eggers & Fontelos 2015), that this degree of freedom appears as a prefactor of a term
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Coalescence of viscous lenses

decaying through an exponential in ξ as long as α > 0, which is always the case in this
coalescence problem. The degree of freedom does thus not appear in our leading-order
asymptotics.) This matching will be performed explicitly in § 4, but below we already
anticipate some of the results necessary to evaluate the inner solutions.

3.1. The leading-order similarity solution
The leading-order solution to the foregoing equations is a steady self-similar solution,
which was previously obtained by Hack et al. (2020). The leading-order quantities H0(ξ),
U0(ξ) and V0 are independent of τ , so that (3.2) reduces to

H0 − ξH′
0 + (H0U0)

′ = 0, (3.5a)

H0H′′
0 − 1

2H
′2
0 + 4V0H0U ′

0 + 1
2 = 0, (3.5b)

where we have anticipated that F(τ ) � 1 – this indeed is true as we see later. The boundary
conditions required to evaluate these quantities are given by (3.3), complemented by
H′

0 = 1 as ξ → ∞ (α = 1) set by the leading-order outer solution given in (2.6). These
equations (and also the higher-order equations) are solved numerically in Mathematica
using a shooting method on the domain 0 ≤ ξ ≤ 105. We find the leading-order
coalescence and far-field translational velocities to be (Hack et al. 2020)

V0 = 0.5525, U0 → −β0 = −0.5734 as ξ → ∞. (3.6a,b)

3.2. Next-order corrections
The solutions H0 and U0 are plotted in figure 4(a,b), where they are compared with the
numerical solutions. The two columns correspond to the two types of boundary conditions,
free-floating lenses and periodic lenses. For both cases an excellent agreement is found at
early times after coalescence. However, the velocity profiles in figure 3(a,b) revealed large
differences between these two situations. While these differences do not turn up in the
leading-order inner solutions H0 and U0, they impact the next-order corrections. As we
will see, this also has a strong effect on the evolution of the coalescence velocity V . We
therefore now address the inner solution beyond the leading order.

3.2.1. The case F(τ ) ≡ 0
In the case of free-floating lenses, for which F(τ ) ≡ 0, it turns out that we can set
up a consistent expansion based on the expansion parameter h0(τ ). On substituting the
expansions

{H(τ ),U(τ ), V(τ ), β(τ )} = {H0,U0, V0, β0} + h0(τ ) {H1,U1, V1, β1} + O(h2
0), (3.7)

(where the dependence of H and U on ξ is understood) into (3.2)–(3.3) we obtain at O(h0),

2H1 − ξH′
1 + (H0U1 + H1U0)

′ = 0, (3.8a)

H0H′′
1 + H1H′′

0 − H′
0H′

1 + 4(V0H0U ′
1 + V0H1U ′

0 + V1H0U ′
0) = 0, (3.8b)

H1(0) = H′
1(0) = U1(0) = 0. (3.8c)

The differential equations for H1 and U1 are of third order with three boundary
conditions, so one further condition is required in order to determine the unknown V1.
This is obtained from a matching with the outer region. As ξ → ∞, the generic solutions
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Figure 4. Similarity solution profiles – leading order (3.6) and first correction ((3.9) and (3.12)) – for
(a, c) free-floating lenses and (b,d) periodic lenses. Rescaled numerical results are shown for comparison,
evaluated at (a,c) t = 10−3, 10−2, 10−1 and (b,d) t = 10−4, 10−3, 10−2. The numerical height profile is
transformed as H0,num = h/h0 and H1,num = (h/h0 − H0,asy)/ε where ε = h0 for free lenses and ε = F for
periodic lenses, and the velocity is transformed similarly. (In order to resolve the O(10−3) corrections in (c),
the numerical simulation was performed with a resolution of 0.1 %, which restricted h0i to the larger value
10−6.) The arrows indicate increasing time.

to (3.8) are quadratic, H1 ∝ ξ2, and so will need to match the second derivative h′′
s (0) =

−1 (an O(h0) quantity when expressed in inner variables) of the outer solution. We thus
impose H′′

1 → −1 as ξ → ∞, and obtain the numerical solutions plotted in figure 4(c),
with the coefficients

V1 = −0.7625, U1 → −β1 = −0.3492, as ξ → ∞. (3.9a,b)

3.2.2. The case of non-zero F(τ )

When the horizontal force F(τ ) is non-zero, the next-order corrections are at O(F). As we
shall see in the next section, these corrections dominate the O(h0) corrections that arise
due to time evolution of the outer solution, since F, though unknown yet, is evaluated to
be O(1/ ln(h0)). For this reason, we now expand the solution in terms of F, i.e.

{H(τ ),U(τ ), V(τ ), β(τ )} = {H0,U0, V0, β0} + F(τ ) {H1,U1, V1, β1} + O(F2). (3.10)

After substituting into the governing equations, we obtain, at O(F),

H1 − ξH′
1 + (H0U1 + H1U0)

′ = 0, (3.11a)

H0H′′
1 + H1H′′

0 − H′
0H′

1 + 4(V0H0U ′
1 + V0H1U ′

0 + V1H0U ′
0) = 1, (3.11b)

H′
1(0) = U1(0) = H1(0) = 0. (3.11c)

Since the corrections to the outer solution at O(h0) are to be neglected when matching the
inner and outer solutions at O(F), we now impose the condition H′

1 → 0 as ξ → ∞.
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Coalescence of viscous lenses

On solving these equations numerically, we obtain the solution profiles plotted in
figure 4(d) and the coefficients

V1 = −0.6227, β1 = 0.7079. (3.12a,b)

As F = O(1/ ln h0) will typically not be very small, it is useful to calculate the
second-order O(F2) correction, which includes contributions proportional to F2 as well
as contributions proportional to (h0/ḣ0)Ḟ. We perform this calculation in Appendix A.

4. The outer region and matching

We now turn to the outer solution, and calculate the corrections to the initial static profile
hs (2.6) that are generated by the coalescence in the bridge region. Time integration of the
evolution equation (2.1a) from this initial condition yields

h(x, t) = hs(x) −
∫ t

0

(
u(x, t̂)h(x, t̂)

)′ dt̂. (4.1)

The outer solution, where h, u, x = O(1), is thus given by the initial profile hs(x) with an
O(t) = O(h0) correction.

Integration of the momentum equation (2.3) using h = hs + O(h0) then yields the
outer-region velocity profile

uo = F(t)
4

ln
x

2 − x
+ B(t) + O(h0). (4.2)

The coefficients B(t) and F(t) are determined by boundary conditions and by matching to
the inner solution.

4.1. The case of freely floating lenses
For coalescing free lenses, the boundary conditions (2.4) result in no additional horizontal
force, F(t) ≡ 0, and hence the leading-order velocity profile (4.2) is a uniform translation.
The translation velocity is given by the far-field behaviour (3.6) of the inner solution, so at
leading order uo ≈ −V0β0 = −0.3168, which is independent of time.

The first corrections in the outer solution then come in at O(t) = O(h0). Time
integration of the mass conservation equation (2.1a) yields the result

h(x, t) = hs(x) − tuoh′
s(x) + O(h2

0) = hs(x − uot) + O(h2
0), (4.3)

which reveals that the first-order correction simply represents a translation of the initial
profile hs(x) by the steady leading-order velocity uo < 0. (In fact, it can be shown that to
all orders in h0, the velocity profile is spatially uniform and hence the drop is undergoing
pure translation, with deformation only occurring in the bridge region x = O(h0).)

In order to match with the bridge region, we substitute x = h0ξ into (4.3) and expand in
powers of h0, making use of tuo ≈ −V0β0t ≈ −β0h0. This yields

h = h0

[(
ξ − h0

ξ2

2

)
+ β0 (1 − h0ξ) + · · ·

]
. (4.4)

Comparing this with the definition of the inner variables (3.1), we now identify the
appropriate far-field behaviour of the inner solution to be

H1(ξ) ∼ −ξ2

2
− β0ξ + · · · as ξ → ∞. (4.5)
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Figure 5. The dependence of the coalescence velocity V = ḣ0 on the bridge height h0, for both free-floating
(2.4) and periodic (2.5) lenses. Numerical results for three different values of the initial bridge height h0i are
shown (solid lines). The asymptotic results for the free-floating and periodic lenses are given (dashed lines),
respectively, by (4.6) and (4.10).

This yields the condition H′′
1 → −1 as ξ → ∞ that we anticipated in § 3.2.1, which was

imposed to obtain the solution (3.9).
The resulting expression for the coalescence velocity is, from (3.6a) and (3.9a),

ḣ0(t) = 0.5525 − 0.7625h0 + O(h2
0), (4.6)

predicting a linear correction to the coalescence velocity. This prediction is tested
quantitatively in comparison with numerical simulations in figure 5. The result (4.6) is
shown as a dashed line labelled ‘free’, while the solid lines are numerics that were
initialised at three different initial bridge heights h0i. After a short time, the numerical
curves for free lenses rapidly converge to the predicted asymptotics (4.6). Note that in
typical experimental conditions where h0 ∼ 10−3 · · · 10−2, the coalescence velocity is
very close to the leading-order value V0.

4.2. The case of periodic lenses
The periodic lenses come with the symmetry boundary condition (2.5) on the velocity
profile (4.2). This yields B(t) ≡ 0 and hence

uo = F(t)
4

ln
x

2 − x
. (4.7)

This logarithmic velocity at small x can indeed be matched to the velocity at large ξ from
the inner region calculated in § 3.2.2. Specifically, we equate (4.7) (taking the limit x � 1)
with the far-field inner velocity profile (3.4a) (using u = VU and ξ = x/h0),

F(t)
4

ln
x
2

= F(t)
4

ln
x
h0

− Vβ, (4.8)

where it is noted that V and β are expanded in F themselves.
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Equation (4.8) finally enables us to express F in terms of h0, which to leading order
gives the result

F = 4Vβ

ln(2/h0)
= 4V0β0

ln(2/h0)
+ O(ln(2/h0)

−2). (4.9)

This confirms the slow, logarithmic decay of the force term, suggesting strong corrections
with respect to the leading-order similarity solution. Most importantly, this leads us to the
sought-after coalescence velocity for periodic drops

ḣ0 = V0 + V1F + O(F2) = V0 + V̂1

ln(2/h0)
+ O(ln(2/h0)

−2), (4.10)

where V0 = 0.5525, V1 = −0.6227 and V̂1 = 4V0β0V1 = 0.7892. The O(ln(2/h0)
−2)

correction to the coalescence velocity is calculated in Appendix A.
Once again, the asymptotic prediction is tested quantitatively in comparison with

numerical simulations in figure 5. The result (4.10) is shown as a dashed line labelled
‘periodic’, while the solid lines are numerics that were initialised at three different initial
heights h0i; again the numerics are in excellent agreement with the asymptotics. We
notice a dramatic difference between the coalescence velocities for periodic drops as
compared with the free drops, owing to the logarithmic decay of F. At values where
h0 ∼ 10−3 · · · 10−2, the coalescence velocity for periodic drops is significantly below the
leading-order value V0.

5. Conclusion

In the present work, we have analysed the coalescence dynamics of viscous liquid lenses
using both matched asymptotics and numerical simulations. We restricted our attention
to the case where the flow in the bath is negligible, which is a consistent approximation
for lenses of high viscosity, and where the contact angles are small to enable a slender
thin-sheet description. In addition, following a previously used assumption in coalescence,
we treated the problem as quasi-two-dimensional. The common scenario in coalescence
and pinch-off is that the flow remains localised into the narrow bridge region, while the
far field remains stationary. Here, we have found that this is not the case for viscous lens
coalescence, and demonstrated that the bridge region affects the global dynamics, using
both matched asymptotics and numerical simulations.

For freely floating two-dimensional viscous lenses, as soon as the lenses start coalescing
there is a motion of the outer contact line towards the point of coalescence. In dimensional
form, the growth rate of the bridge height h̄0(t̄) = h̄(x̄ = 0, t̄) (4.6), and the horizontal
translation velocity of the drop’s centre of mass ūo ((3.6) and (3.9)) can be written as

V̄ = ˙̄h0 =
(

0.5525 + 0.7625
h̄′′

s (0)h̄0

θ2 + · · ·
)

γ θ2

η
, (5.1a)

Ū = ūo = −
(

0.3168 − 0.2443
h̄′′

s (0)h̄0

θ2 + · · ·
)

γ θ

η
. (5.1b)

Here, we have eliminated the lens radius R in favour of the second derivative h̄′′
s (0) =

−θ/R of the initial condition (2.6), in order to highlight that the coalescence process
depends only on the local shape of the lens near the bridge.

For a periodic array of two-dimensional viscous lenses, the centres of mass of the drops
do not move due to symmetry. Instead, a horizontal force is generated that resists the
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inward motion towards the bridge, which results in a logarithmic velocity profile in the
lens. In dimensional form, the growth rate of the bridge (4.10) and the additional force
generated (4.9) are then given by

V̄ = ˙̄h0 =
(

0.5525 + 0.7892
ln(2Rθ/h̄0)

+ · · ·
)

γ θ2

η
, F̄ =

(
1.267

ln(2Rθ/h̄0)
+ · · ·

)
γ θ2.

(5.2a,b)

A further, second-order, correction is calculated in Appendix A. It is important to note that
the corrections are logarithmic in time, so these can be significant even at the very early
stages of coalescence. In fact, logarithmic corrections also arise for viscous coalescence
of freely suspended drops (Hopper 1990; Eggers et al. 1999). The structure of the problem
is, however, different. In the freely suspended case the dynamics is h ∼ t ln t, which in
contrast to (5.2a) does not exhibit a finite velocity at early times.

It is of interest to compare these two-dimensional, slender predictions with the
experiments shown in figure 2(c). In Hack et al. (2020) it was already shown that the
experimental vertical coalescence velocity V̄ was in very good quantitative agreement with
the leading-order prediction of (5.1). Indeed, for freely floating drops, the higher-order
terms are expected to be negligible in the experimental range. The current theory predicts
a ratio of horizontal to vertical velocity Ū/V̄ ≈ 0.57/θ for the freely moving drops, which
for the experimental contact angles amounts to Ū/V̄ ≈ 1.1. The experimentally measured
ratio in figure 2(c) was found Ū/V̄ ≈ 1.7, which implies an even stronger centre of mass
motion than predicted. This quantitative disparity could be due to three-dimensional
effects, or due to the fact that the contact angles are not very small. Still, our theory
offers an explanation for the appearance of a centre of mass motion for viscous lenses, and
provides the relevant scaling laws. This centre of mass motion is not observed for inertial
drops, which is in accordance with the decaying velocity in the inertial similarity solution
(Hack et al. 2020). For future experiments, it might be of interest to study coalescence
while the centres of the drop are prevented from translating towards each other (e.g.
by attaching the drops to fixed capillaries). In that case, we expect the appearance of
significant (logarithmic) corrections to the coalescence velocity.

Besides three-dimensional effects, it is also of interest to discuss the influence of gravity.
Gravity becomes important if the (dimensional) radius R of the lenses is no longer small
compared with the capillary length 
c = √

γ /Δρ g, where Δρ is the difference in density
between the lenses and either of the external fluids. In this case, we expect gravity to
flatten the static lens profile hs(x) (2.6), but near the rim of the lens, when x � 
c,
gravity becomes negligible and the capillary thin-sheet equations (2.1) and contact angle
θ are recovered, and hence the leading-order inner solution (3.6) will still hold. For
(two-dimensional) free lenses, which can undergo uniform translation even in the presence
of gravity, the O(h0) correction (5.1) also holds, but with a modified value of h′′

s (0) that
simply follows from the static drop. For periodic lenses, the correction becomes more
involved as the outer velocity profile (4.2) is affected by the change in hs.

More generally, the dynamical structure of the problem bears a strong similarity with
drop spreading on a rigid substrate, where the motion of the contact line also induces a
weak flow on the scale of the drop (Bonn et al. 2009). The spreading velocity exhibits a
logarithmic dependence on the scale separation between drop size and the characteristic
scale of the contact line in that case too. An important difference, however, is that for drop
spreading the universal leading-order similarity solution for the inner problem captures
the phenomenon, as it has only algebraically small corrections. Here we found that for
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viscous lens coalescence, the corrections are themselves only logarithmically small, and
therefore can be significant.
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Appendix A. Details of the inner solution for non-zero F

We calculate both the O(F) and O(F2) corrections to the leading-order result (3.6) by
expanding

H = H0 + FH1 + F2H2 + h0

ḣ0
ḞHT + O(F3), (A1)

and similarly for U , V and β. Note that, since we anticipate that F = O(1/ ln t), the terms
with subscript 2 and T are both O(F2).

We substitute the expansion into the (3.2)–(3.3), together with the matching condition
H′(∞) = 1 which is accurate to all orders in F, and identify coefficients. The resulting
governing equations for the corrections HΔ, UΔ and VΔ, where Δ = 1, 2, T , are given by

( HΔ − ξH′
Δ + (H0UΔ + HΔU0)

′

H0H′′
Δ + HΔH′′

0 − H′
0H′

Δ + 4(V0H0U ′
Δ + V0HΔU ′

0 + VΔH0U ′
0)

)
(A2a)

=
(

0
1

)
︸︷︷︸
Δ=1

,

( −(H1U1)
′

−H1H′′
1 + 1

2H′2
1 − 4(V0H1U ′

1 + V1H0U ′
1 + V1H1U ′

0)

)
︸ ︷︷ ︸

Δ=2

,

(−H1
0

)
︸ ︷︷ ︸

Δ=T

, (A2b)

and the boundary conditions are H′
Δ(0) = UΔ(0) = HΔ(0) = H′

Δ(∞) = 0.
Solving these equations numerically using Mathematica yields the results

V0 = 0.5525, V1 = −0.6227, V2 = −0.1267, VT = 0.3028, (A3a–d)

β0 = 0.5734, β1 = 0.7079, β2 = 0.8728, βT = −0.5277, (A4a–d)

for the coefficients in the far-field behaviour (3.4).
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We can then use the matching (4.9) to obtain the results

F = 4(V0 + V1F + O(F2))(β0 + β1F + O(F2))

ln(2/h0)
(A5a)

= 4V0β0

ln(2/h0)
+ 16V0β0(V0β1 + V1β0)

ln(2/h0)2 + O(ln(2/h0)
−3), (A5b)

and

ḣ0 = V0 + V1F + V2F2 + VT(h0/ḣ0)Ḟ + O(F3) (A6a)

= V0 + V̂1

ln(2/h0)
+ V̂2

ln(2/h0)2 + O(ln(2/h0)
−3) (A6b)

= V0 + V̂1

ln(c/h0)
+ O(ln(2/h0)

−3), (A6c)

where V0 = 0.5525, V̂1 = 4V0β0V1 = 0.7892 and

V̂2 = 16V2
0β2

0 V2 + 16V0β0(V0β1 + V1β0)V1 + 4V0β0VT = 0.07272, (A7a)

c = 2 exp(−V̂2/V̂1) = 2.19. (A7b)

The second-order coefficient V̂2 is coincidentally quite small when ḣ0 is expanded in
terms of ln(2/h0), so including the second-order correction in figure 5 would not have
a noticeable effect. However, when ḣ0 is expanded in terms of e.g. ln(1/h0) or ln(1/t), the
second-order correction yields a significant improvement.
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