REFLEXIVE HOMOMORPHIC RELATIONS

G.D. Findlay

(received December 7, 1959)
It is well known that a symmetric and transitive relation on a set is reflexive wherever it is defined. In this note we show that a converse is true for homomorphic relations in certain classes of algebras.

Consider a class b of similar algebras which contains the sub-algebras and quotient algebras of each of its members. Assume also that the direct product $A \times B$ of each pair A, B in b is also an algebra belonging to b. The algebras of b, being similar, have the same set of operations. We observe that other operations, called compound operations, may be obtained by composition from the assigned operations.

By a homomorphic relation ρ on an algebra A we mean a subalgebra of the direct product $A \times A$. If the pair $\left(a, a^{\prime}\right) \in \rho$, we write, as usual, a pa'.

PROPOSITION. Let the class b have a (possibly compound) ternary operation $f:(x, y, z) \rightarrow f(x, y, z)$ such that

$$
\begin{equation*}
f(x, y, y)=x, \quad f(x, x, y)=y \tag{*}
\end{equation*}
$$

Then a reflexive homomorphic relation p on an algebra A of b is also symmetric and transitive and hence is a congruence on A.

Proof. Let a ρa^{\prime}. Then, since ρ is reflexive, a ρ a and $a^{\prime} \rho a^{\prime}$. Therefore $f\left(a, a, a^{\prime}\right) \rho f\left(a, a^{\prime}, a^{\prime}\right)$ so that $a^{\prime} \rho a$, on account of $(*)$. Hence ρ is symmetric.

This note was written while the author was a Fellow of the Summer Research Institute, Canadian Mathematical Congress.

Can. Math. Bull. vol. 3, no. 2, May 1960

Again, let $a \rho a^{\prime}$ and $a^{\prime} \rho a^{\prime \prime}$. Then $a^{\prime} \rho a^{\prime}$. Therefore $f\left(a, a^{\prime}, a^{\prime}\right) \rho f\left(a^{\prime}, a^{\prime}, a^{\prime \prime}\right)$ so that $a a^{\prime \prime}$. Hence ρ is transitive.

An example of such a class of algebras is the class of all groups, which includes, of course, the classes of rings and of Boolean algebras, with $f(x, y, z)=x y^{-1} z$.

A discussion of algebras satisfying (*) is contained in [1], where further examples are given.

REFERENCE

1. J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1957), 45-56.

McGill University

