A CLASS OF REFLEXIVE SYMMETRIC BK-SPACES

D. J. H. GARLING

1. Introduction. We denote by ω the linear space of all sequences of real or complex numbers. A linear subspace of ω is called a sequence space. A sequence space E is a BK-space (9) if it is equipped with a norm under which: first, E is a Banach space and second, each of the coordinate maps $x \to x_i$ is continuous. Let Σ be the group of all permutations of $Z^+ = \{1, 2, 3, \ldots\}$. If $x \in \omega$ and $\sigma \in \Sigma$, the sequence x_{σ} is defined by $(x_{\sigma})_i = x_{\sigma(i)}$. A sequence space E is symmetric if $x_{\sigma} \in E$ whenever $x \in E$ and $\sigma \in \Sigma$. Accounts of symmetric sequence spaces occur in (3;7;8). The well-known spaces l^p $(1 are examples of symmetric BK-spaces which are also reflexive (as Banach spaces); our aim in this paper is to describe a class of reflexive symmetric BK-spaces closely related to, but distinct from, the <math>l^p$ spaces. Special cases of spaces of this class occur in the theory of Fourier coefficients (theorems of Paley and of Hardy and Littlewood, 10, pp. 120–131).

2. Notation and terminology. We shall, in general, use the notation and terminology of (3); we follow (7), however, by defining the *reduced form* of a sequence x in c_0 as the sequence $\hat{x} = (\hat{x}_1, \hat{x}_2, ...)$ defined by

$$\hat{x}_n = \inf_{\substack{J \subseteq Z^+ \\ |J| \le n}} \sup_{i \notin J} |x_i|.$$

Thus $\hat{x} = [x]$, in the notation of (3). If E is a symmetric sequence space, $E^{++} = \{x: x \in E, x = \hat{x}\}$. If $1 \leq p \leq \infty$, we denote by q the associate of p; q = p/(p-1) if 1 , <math>q = 1 if $p = \infty$, and $q = \infty$ if p = 1. We denote the unit ball of l^q by B_q , and denote by M_q the set $(l^q)^{++} \cap B_q$. We denote by e_i the sequence with 1 in the *i*th position and 0 elsewhere; if $x \in \omega$, we denote by $P_n(x)$ the sequence $\sum_{i=1}^n x_i e_i$. If λ is a sequence space, λ^x denotes the α -dual of λ :

$$\lambda^{x} = \left\{ x \colon x \in \omega, \sum_{i=1}^{\infty} |x_{i}y_{i}| < \infty, \text{ for each } y \text{ in } \lambda \right\}.$$

Finally, if (E, F) is a dual pair of vector spaces, the weak topology on E of the dual pair (E, F) is denoted by $\sigma(E, F)$.

3. The space $\mu_{a,p}$. Suppose that $a \in c_0^{++}$, and that $a \notin l^1$. If $1 \leq p < \infty$, then the space $\mu_{a,p}$ is defined as the space

$$\left\{x\colon x\in c_0,\sum_{i=1}^\infty \,\hat{x}_i^{\ p}a_i<\infty
ight\}$$
.

Received December 10, 1967.

Let $b_i = a_i^{1/p}$, and let $b = (b_i)$. Then

$$\mu_{a,p} = \left\{ x \colon x \in c_0, \sup_{y \in M_q} \sum_{i=1}^{\infty} \hat{x}_i y_i b_i < \infty \right\} = \mu_B,$$

where $B = \{(y_i b_i): y \in M_q\}$. Thus $\mu_{a,p}$ is a linear space and a Banach space under the norm

$$||x||_{a,p} = \left(\sum_{i=1}^{\infty} \hat{x}_i^p a_i\right)^{1/p} = \sup_{y \in B} \sum_{i=1}^{\infty} \hat{x}_i y_i$$

(3, Theorems 6 and 7). Note that if p = 1, then $\mu_{a,p} = \mu_a$; from now on we shall assume that p > 1. It is clear that if $x \in \mu_{a,p}^{++}$, there exists an element y in $\mu_{a,p}^{++}$ for which $x_i/y_i \to 0$ as $i \to \infty$. It therefore follows from (3, Theorem 9) that $P_n(x) \to x$ for each x in $\mu_{a,p}$; that is, in the terminology of Zeller (9), $\mu_{a,p}$ is an AK-space. In particular, this means that $\mu_{a,p}'$, the topological dual of $\mu_{a,p}$, may be identified with the sequence space $\mu_{a,p}^X$. Since $\mu_{a,p}$ is a Köthe space (3, Theorem 6), to show that $\mu_{a,p}$ is reflexive it is enough to show that $\mu_{a,p}^X$ is also an AK-space (6, p. 421, § 30, paragraph 7(5)). This is done in the next section, by giving an explicit characterization of $\mu_{a,p}^X$.

4. The space $\nu_{a,p}$. We now introduce another space $\nu_{a,p}$ which we shall eventually identify as $\mu_{a,p}^X$. $\nu_{a,p}$ (where a, b, and p have the same meaning as in the preceding section) is defined to be the collection of those sequences f in c_0 for which it is possible to find k in M_q such that

$$\sup_{n} \frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i} b_{i}} < \infty.$$

PROPOSITION 1. $\nu_{a,p}$ is a linear space, and the function

$$|||f|||_{a,p} = \inf_{k \in M_q} \sup_{n} \frac{\sum_{i=1}^{n} \hat{f}_i}{\sum_{i=1}^{n} k_i b_i}$$

is a norm on $v_{a,p}$. Under this norm, $v_{a,p}$ is a BK-space, and the unit ball of $v_{a,p}$ is compact under the topology of coordinatewise convergence.

If $f \in \nu_{a,p}$, then clearly $\alpha f \in \nu_{a,p}$, and $|||\alpha f|||_{a,p} = |\alpha| \cdot |||f|||_{a,p}$, for any scalar α . Suppose that f and g belong to $\nu_{a,p}$, so that given $\epsilon > 0$ there exist k and l in M_q for which

$$\sum_{i=1}^{n} \hat{f}_{i} \leq (|||f|||_{a,p} + \epsilon) \left(\sum_{i=1}^{n} k_{i}b_{i}\right)$$
$$\sum_{i=1}^{n} \hat{g}_{i} \leq (|||g|||_{a,p} + \epsilon) \left(\sum_{i=1}^{n} l_{i}b_{i}\right),$$

and

for all *n*. Let $m = (|||f|||_{a,p} + |||g|||_{a,p} + 2\epsilon)^{-1}((|||f|||_{a,p} + \epsilon)k + (|||g|||_{a,p} + \epsilon)l)$; *m* belongs to M_q . If h = f + g, then

$$\sum_{i=1}^{n} \hat{h}_{i} \leq \sum_{i=1}^{n} \hat{f}_{i} + \sum_{i=1}^{n} \hat{g}_{i} \leq (|||f|||_{a,p} + |||g|||_{a,p} + 2\epsilon) \left(\sum_{i=1}^{n} m_{i}b_{i}\right);$$

since this is true for any $n, f + g \in v_{a,p}$, and since ϵ is arbitrary,

$$|||f + g|||_{a,p} \leq |||f|||_{a,p} + |||g|||_{a,p}.$$

Thus $\nu_{a,p}$ is a normed linear space under $||| |||_{a,p}$. Further, $|f_i| \leq \hat{f}_1 \leq b_1|||f|||_{a,p}$, so that the coordinate functionals are continuous. Thus the unit ball C of $\nu_{a,p}$ is coordinatewise bounded, and is therefore a relatively compact subset of ω in the topology of coordinatewise convergence. Since ω is metrizable in this topology, if f belongs to the closure of C in ω there exists a sequence $(f^{(r)})$ in C such that $f^{(r)} \to f$ coordinatewise. Note that

$$\hat{f}_n \leq \limsup_{r} \hat{f}_n^{(r)}, \text{ for any } n.$$

Given $\epsilon > 0$, there exists, for each r, $k^{(r)}$ in M_q such that

$$\sum_{j=1}^{n} \hat{f}_{j}^{(r)} \leq (1+\epsilon) \sum_{j=1}^{n} k_{j}^{(r)} b_{j}, \text{ for all } n.$$

Since the unit ball of l^q is $\sigma(l^q, l^p)$ compact, we can suppose (by taking a subsequence, if necessary) that $k^{(r)}$ converges coordinatewise to an element k of M_q . Then

$$\sum_{j=1}^{n} \hat{f}_{j} \leq \limsup_{r} \sum_{j=1}^{n} \hat{f}_{n}^{(r)} \leq (1+\epsilon) \limsup_{r} \sum_{j=1}^{n} k_{j}^{(r)} b_{j} = (1+\epsilon) \sum_{j=1}^{n} k_{j} b_{j}.$$

This holds for all n, so that $f \in v_{a,p}$, and $|||f|||_{a,p} \leq 1 + \epsilon$. Since ϵ is arbitrary, $f \in C$. Thus C is compact under the topology of coordinatewise convergence. In particular, C is complete under the topology of coordinatewise convergence, and is also closed in $v_{a,p}$ under the topology of coordinatewise convergence. Thus, C is complete under the norm topology (**2**, *Chapitre* 1, *Proposition* 8), so that $v_{a,p}$ is a BK-space.

We denote by $\pi_{a,p}$ the collection of those sequences f in c_0 for which it is possible to find k in M_q such that

$$\frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i} b_{i}} \to 0 \quad \text{as } n \to \infty.$$

PROPOSITION 2. $\nu_{a,p} = \pi_{a,p}$, and $\nu_{a,p}$ is an AK-space under the norm $||| |||_{a,p}$. Proof. Clearly, $\nu_{a,p} \supseteq \pi_{a,p}$. Suppose that $f \in \nu_{a,p}$, and that k is an element of

604

 M_q for which

$$\sup_{n} \frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i} b_{i}} < \infty.$$

We consider two cases. If first $f \in l^1$, then since $b \notin l^p$, there exists k' in M_q such that $\sum_{i=1}^{\infty} k_i' b_i = \infty$. Then

$$\frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i}' b_{i}} \to 0 \quad \text{as } n \to \infty.$$

If secondly $f \notin l^1$, then $\sum_{i=1}^{\infty} k_i b_i = \infty$. Furthermore (3, Theorem 9), there exists k' in M_q such that $k_i/k_i' \to 0$. A straightforward argument then shows that

$$\frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i}' b_{i}} \to 0 \quad \text{as } n \to \infty.$$

Hence $f \in \pi_{a,p}$, and $\nu_{a,p} = \pi_{a,p}$.

Further, given $\epsilon > 0$, there exists n_0 such that

$$\frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i}' b_{i}} \leq \epsilon \quad \text{for } n \geq n_{0}.$$

Also, since $f \in c_0$, there exists i_0 such that $|f_i| \leq n_0^{-1}k_1'b_1\epsilon$, for $i \geq i_0$. Suppose that $k \geq i_0$, and let $q = f - P_k(f)$. Then, if $n \leq n_0$,

$$\sum_{i=1}^{n} \hat{q}_{i} \leq n n_{0}^{-1} k_{1}' b_{1} \epsilon \leq \epsilon \left(\sum_{i=1}^{n} k_{i}' b_{i} \right)$$

and if $n \geq n_0$,

$$\sum_{i=1}^{n} \hat{q}_{i} \leq \sum_{i=1}^{n} \hat{f}_{i} \leq \epsilon \left(\sum_{i=1}^{n} k_{i}' b_{i} \right),$$

so that $|||f - P_k(f)||| \leq \epsilon$, for $k \geq i_0$, and $\nu_{a,p}$ is an AK-space.

PROPOSITION 3. $\nu_{a,p}'$, the topological dual of $\nu_{a,p}$, may be identified isometrically with $\mu_{a,p}$.

Let us denote the dual norm of $\nu_{a,p'}$ by $||| |||_{a,p'}$. Since $\nu_{a,p}$ is an AK-space and a Banach space, $\nu_{a,p'}$ may be identified with $\nu_{a,p}^X$. Further, since $b \notin l^p$, $\nu_{a,p} \not\subseteq l^1$, and therefore $\nu_{a,p}^X \not\supseteq l^\infty$; thus, since $\nu_{a,p}^X$ is symmetric, $\nu_{a,p}^X \subseteq c_0$ (3, Proposition 6). Suppose that $h \in \nu_{a,p}^X$. Then clearly $\hat{h} \in \nu_{a,p}^X$, and $|||h|||_{a,p'} = |||\hat{h}|||_{a,p'}$. If $k \in l^q$, $(\hat{k}_i b_i) \in \nu_{a,p}$, and $|||(\hat{k}_i b_i)|||_{a,p} \leq ||k||_q$. Thus $\sum_{i=1}^{\infty} \hat{h}_i \hat{k}_i b_i \leq |||h|||_{a,p'} ||k||_q.$ However, as this is true for any k in l^q , this implies that $(\hat{h}_i b_i) \in (l^q)' = l^p$ and that

$$||(\hat{h}_{i}b_{i})||_{p} = \left(\sum_{i=1}^{\infty} \hat{h}_{i}^{p}a_{i}\right)^{1/p} \leq |||h|||_{a,p'}.$$

However, this means that $h \in \mu_{a,p}$, and that $||h||_{a,p} \leq |||h|||_{a,p'}$.

Conversely, suppose that $g \in \mu_{a,p}$. If $f \in \nu_{a,p}$, and $\epsilon > 0$, let $k \in M_q$ be such that

$$\sum_{i=1}^{n} \hat{f}_{i} \leq (|||f|||_{a,p} + \epsilon) \left(\sum_{i=1}^{n} k_{i} b_{i}\right) \quad \text{for all } n.$$

Let $s_n = \sum_{i=1}^n \hat{f}_i$, $t_n = \sum_{i=1}^n k_i b_i$. Then

$$\sum_{i=1}^{n} |f_{i}g_{i}| \leq \sum_{i=1}^{n} \hat{f}_{i}\hat{g}_{i}$$

$$= \sum_{i=1}^{n} s_{i}(\hat{g}_{i} - \hat{g}_{i+1}) + s_{n}\hat{g}_{n}$$

$$\leq (|||f|||_{a,p} + \epsilon) \left(\sum_{i=1}^{n} t_{i}(\hat{g}_{i} - \hat{g}_{i+1}) + t_{n}\hat{g}_{n}\right)$$

$$= (|||f|||_{a,p} + \epsilon) \sum_{i=1}^{n} \hat{g}_{i}k_{i}b_{i}$$

$$\leq (|||f|||_{a,p} + \epsilon) \left(\sum_{i=1}^{n} \hat{g}_{i}^{p}a_{i}\right)^{1/p} \left(\sum_{i=1}^{n} k_{i}^{q}\right)^{1/p}$$

$$\leq (|||f|||_{a,p} + \epsilon) ||g||_{a,p}.$$

Thus $g \in v_{a,p}^{X}$, and $|||g|||_{a,p'} \leq ||g||_{a,p}$.

THEOREM 1. The BK-spaces $\mu_{a,p}$ and $\nu_{a,p}$ are reflexive, and each is isometrically isomorphic to the dual of the other.

Proposition 3 shows that $\mu_{a,p}$ may be identified with the dual of $\nu_{a,p}$. On the other hand, $\mu_{a,p}$ is an AK-space, so that $\mu_{a,p'}$ may be identified with $\mu_{a,p'}^X$. The unit ball C'' of $\mu_{a,p'}$ is $\sigma(\mu_{a,p'}, \mu_{a,p})$ -compact, and hence $\sigma(\mu_{a,p'}, \mu_{a,p})$ and the topology of coordinatewise convergence induce the same topology on C'', and thus on C, the unit ball of $\nu_{a,p}$. This implies that C is $\sigma(\nu_{a,p}, \mu_{a,p})$ compact; since $\mu_{a,p} = \nu_{a,p'}$, this means that $\nu_{a,p}$ is reflexive, and the result follows.

Remark. The proof of Theorem 1 would be much simpler if I could show directly that

$$\inf_{k \in M_{q}} \sup_{n} \frac{\sum_{i=1}^{n} \hat{f}_{i}}{\sum_{i=1}^{n} k_{i} b_{i}} = \sup_{||x||_{a,p} \le 1} \sum_{i=1}^{\infty} |x_{i} f_{i}|$$

for any f in c_0 . For this would show that $\nu_{a,p} = \mu_{a,p}^X$, and, bearing in mind the

606

BK-SPACES

remarks made at the end of § 3, it would then only remain to prove Proposition 2.

5. Another representation of $\nu_{a,p}$. We now give another representation of $\nu_{a,p}$, which appears to be more natural than that described in the preceding section, but which seems to be less suitable for determining the properties of $\nu_{a,p}$.

Suppose that $f \in \mu_{a,p}$, that $k \in l^q$, and that $c \in \mu_b^X$. Then

$$\begin{split} \sum_{i=1}^{n} |c_{i}k_{i}f_{i}| &\leq \sum_{i=1}^{n} \hat{c}_{i}\hat{k}_{i}\hat{f}_{i} \\ &\leq ||c||_{b}'||P_{n}(\hat{k}\hat{f})||_{b} \\ &= ||c||_{b}'\sum_{i=1}^{n} \hat{k}_{i}\hat{f}_{i}b_{i} \\ &\leq ||c||_{b}' \left(\sum_{i=1}^{n} \hat{k}_{i}^{q}\right)^{1/q} \left(\sum_{i=1}^{n} \hat{f}_{i}^{p}a_{i}\right)^{1/p} \\ &\leq ||c||_{b}'||k||_{q}||f||_{a,p}. \end{split}$$

Thus each element f of $\mu_{a,p}$ defines a continuous bilinear functional T(f) on $\mu_b^X \times l^q$; further, T is a continuous linear map of $\mu_{a,p}$ into $B(\mu_b^X, l^q)$, the Banach space of continuous bilinear functionals on $\mu_b^X \times l^q$, and $||T|| \leq 1$. Note also that

$$||f||_{a,p} = ||\hat{f}b||_{p} = \sup_{k \in M_{q}} \sum_{i=1}^{\infty} \hat{k}_{i}\hat{f}_{i}b_{i} \leq \sup_{k \in B_{q}} \sup_{||c||_{b} \leq 1} \left| \sum_{i=1}^{\infty} k_{i}f_{i}c_{i} \right| = ||T(f)||,$$

so that *T* is a norm-preserving map, and $(\mu_{a,p}, || ||_{a,p})$ may be identified with a closed linear subspace of $B(\mu_b^X, l^q)$. There is a canonical norm-preserving map *J* of the projective tensor product $\mu_b^X \otimes^{\uparrow} l^q$ into $B'(\mu_b^X, l^q)$, the topological dual of $B(\mu_b^X, l^q)$. Let *S* be the composite map *T'J* from $\mu_b^X \otimes^{\uparrow} l^q$ into $\nu_{a,p} = \mu_{a,p'}$. It is readily verified that if $c \in \mu_b^X$ and $k \in l^q$, then $S(c \otimes k) = h$, where $h_i = c_i k_i$. Thus *S* is a continuous linear mapping of $\mu_b^X \otimes^{\uparrow} l^q$ onto a dense linear subspace of $\nu_{a,p}$. Identifying $B(\mu_b^X, l^q)$ with $(\mu_b^X \otimes^{\uparrow} l^q)'$, however, it is easy to see that S' = T. It therefore follows, since *S'* is norm-preserving, that *S* maps $\mu_b^X \otimes^{\uparrow} l^q$ onto $\nu_{a,p}$, and that the norm on $\nu_{a,p}$ is the quotient norm defined by *S* (**4**, *Chapitre* IV, p. 298, § 2, *Théorème* 3, *Corollaire* 1).

The following theorem therefore follows from the characterization of the projective tensor product of two Banach spaces (5, *Chapitre* I, p. 51, *Théorème* 1).

THEOREM 2. A sequence x belongs to $\nu_{a,p}$ if and only if there exist $\lambda \in l^1$, a sequence $(c^{(i)})$ in the unit ball of μ_b^X , and a sequence $(k^{(i)})$ in the unit ball of l^q such that

(*)
$$x = \sum_{i=1}^{\infty} \lambda_i c^{(i)} k^{(i)}.$$

Further, $||x|| = \inf \sum_{i=1}^{\infty} |\lambda_i|$, the infimum being taken over all representations of the form (*).

D. J. H. GARLING

6. Concluding remarks. We conclude by remarking that in general the spaces $\mu_{a,p}$ and $\mu_{a,p}{}^{x}$ are distinct from, and indeed not linearly isomorphic to, the l^{p} spaces. For example, take $a_{r} = 1/r$, and suppose, if possible, that T is a linear isomorphism of $\mu_{a,p}{}^{x}$ onto l^{s} , for some s. Clearly, $1 < s < \infty$. Let $x_{i} = T(e_{i})$; since $e_{i} \rightarrow 0$ in the weak topology $\sigma(\mu_{a,p}{}^{x}, \mu_{a,p}), x_{i} \rightarrow 0$ in the weak topology of l^{s} . Thus, by (1, *Chapitre* XII, *Théorème* 3), there exists a subsequence (x_{ik}) such that

$$\left\|\sum_{k=1}^{n} x_{i_k}\right\| = O(n^{1/s}).$$

Since T is an isomorphism, it follows that

$$\left\| \sum_{k=1}^{n} e_{i_k} \right\|_{a,p} = O(n^{1/s}).$$

However, if $k \in M_q$ and m is any positive integer, then

$$\sum_{i=1}^{m} k_{i} b_{i} \leq \left(\sum_{i=1}^{m} k_{i}^{q}\right)^{1/q} \left(\sum_{i=1}^{m} i^{-1}\right)^{1/p} \leq \left(\sum_{i=1}^{m} i^{-1}\right)^{1/p}$$

Thus

$$\left\|\left\|\sum_{k=1}^n e_{ik}\right\|_{a,p} \ge rac{n}{\left(\sum\limits_{i=1}^n i^{-1}
ight)^{1/p}}$$
 ,

from which it easily follows that

$$\left\|\sum_{k=1}^{n} e_{i_k}\right\|_{a,p} \neq O(n^{1/s}),$$

giving the required contradiction.

References

- 1. S. Banach, Opérations linéaires (Chelsea, New York, 1955).
- N. Bourbaki, Éléments de mathématique, Livre V: Espaces vectoriels topologiques, Chapitres I-II, Actualités Sci. Indust., no. 1189 (Hermann, Paris, 1953).
- 3. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966), 85-105.
- A. Grothendieck, Espaces vectoriels topologiques, 2º éd., mimeographed notes (Sociedade de Matemática de Sao Paulo, Sao Paulo, 1958).
- 5. Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., no. 16, 1955.
- 6. G. Köthe, Topologische lineare Räume (Springer, Berlin, 1960).
- 7. W. Ruckle, Symmetric coordinate spaces and symmetric bases, Can. J. Math. 19 (1967), 828-838.
- 8. W. L. C. Sargent, Some sequence spaces related to the l^p spaces, J. London Math. Soc. 35 (1960), 161–171.
- 9. K. Zeller, Theorie der Limitierungsverfahren (Springer, Berlin, 1958).
- 10. A. Zygmund, Trigonometric series, Vol. II (Cambridge Univ. Press, Cambridge, 1959).

St. John's College, Cambridge, England

608