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Abstract. Recently, differential geometric properties of embedded projective varieties have gained
increasing interest. In this note, we consider plane algebraic curves equipped with the Fubini–Study
metric fromP2(C) and give an estimate for the diameter in terms of the degree, initiated in a paper
by F. A. Bogomolov.
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Recently, differential geometric properties of embedded projective varieties have
gained increasing interest. In this note, we consider plane algebraic curves equipped
with the Fubini–Study metric fromP2(C) and give an estimate for the diameter in
terms of the degree, initiated in a paper by F. A. Bogomolov [2]. In particular,
this paper implied that contrary to a general belief the diameter is not bounded
from above. The result was extended by N. A’Campo [1]. The curvature had been
explicitly computed by L. Ness [5]. Her results show the existence of areas of
negative curvature and that the curvature is not bounded from below in the family
of all embedded algebraic curves of a fixed degree. Using curvature when proving
an estimate for the diameter requires a careful consideration of these areas. Bogo-
molov pointed out that the best estimate to expect is logarithmic, since Gromov’s
Betti number theorem implies a lower estimate for the diameter in the following
sense: Under the restriction to curves, whose curvature is bounded from below by a
number−κ2, the diameter is bounded from below byC log(d)/κ, whereC denotes
a posivite constant. We use rather explicit methods to show the following result

THEOREM 1.The diameter of a plane algebraic curveC ⊂ P2(C) of degreed,
equipped with the Fubini-Study metric is bounded by(2d2− 2d + 1)(4d2+ 1) · π.

The theorem has immediate consequences for the diameter of complete inter-
sections inPn. Our estimate seems to be also of interest in connection with results
of Y. Yomdin [6] and M. Briskin–Y. Yomdin [3] in the area of polynomial control
problems.
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1. Preparations

Our estimates will be based upon projections onto projective lines. Let
(x0 : x1 : x2) denote homogeneous coordinates onP2 = P2(C). For j = 0,1,2
and{j, k, `} = {0,1,2} we consider the linesLj defined as zero setsV (xj ) and
the pointsPj defined as zero setsV (xk, x`). Furthermore, we have the canonical
projectionsπj : P2\Pj → Lj , defined by omitting thej th coordinate. The project-
ive planeP2 and the linesLj resp. are equipped with the Fubini-Study formsωP2

andωP1 resp.

LEMMA 1. Let γ : [0,1] → P2\{P0, P1, P2} be a curve of classC∞. Then
the length is estimated byL(γ ) 6

∑2
j=0L(πj ◦ γ ), or equivalentlyωP2 6∑2

j=0π
∗
j (ωP1). onP2\⋃Lj .

Proof. With respect to inhomogenous coordinates(1 : x1 : x2) we have

ds2
P2
= |dx1|2+ |dx2|2+ |x1dx2 − x2dx1|2

(1+ |x1|2+ |x2|2)2

6 |dx1|2
(1+ |x|21)2

+ |dx2|2
(1+ |x2|2)2 +

|d( x2
x1
)|2

(1+ | x2
x1
|2)2 .

Obviously, it is sufficient to show an upper bound in terms of the degree only for a
generic class of embedded curves: LetCd be the set of all smooth plane curvesC
of degreed such that

(i) Pj /∈ C for j = 0,1,2;
(ii) π2|C : C → L2 is a simple branched covering.

We estimate the length of a particular class of real algebraic curves. LetC ∈ Cd ,
and letLR ⊂ L2 be a closed geodesic. We denote its preimage underπ2|C : C →
L2 byCR.

LEMMA 2. The curvesπ0(CR) ⊂ L0 and π1(CR) ⊂ L1 are real algebraic of
degree at mostd2.

Proof. Let C be the zero setV (F) with F = F(x0, x1, x2) homogeneous and
irreducible of degreed. We first show the claim for theLR = {(t,1); t ∈ R} ⊂ L2

andπ0(CR) say. SinceC is irreducible of degree greater than one, it intersects any
fiber of the mapπ0 in a discrete set of points. Therefore we can restrict ourselves
to an affine setU = P2\L1 = π−1

0 (L0\{P2}). Thenπ0(CR) is the closure of
π0(U ∩ CR). Now (0 :1 : x2) ∈ π0(U ∩ CR), if and only if there existst ∈ R such
thatF(t,1, x2) = 0. Classical elimination theory yields the following. Denote by
R(x2, x2) the resultant of Re(F (t,1, x2)) and Im(F (t,1, x2)) with respect tot . We
use the fact that for any two polynomialsg(y, z), h(y, z) of degreem andn resp.
the resultantRg,h(z) (wherey is eliminated) is a polynomial of degree at mostm·n.
Henceπ0(CR) is real algebraic of degree at mostd2.
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Let LR ⊂ L2 be an arbitrary geodesic. ThenLR is the closure of the set of all
(a + b · t : c + d · t :0) ∈ L2; t ∈ R, where thea, b, c, d determine an element of
SU(2). As above the resultant of Re(F (a + b · t, c + d · t, x2)) and Im(F (a + b ·
t, c + d · t, x2)) is a polynomial of degree at mostd2 in x2 andx2.

LEMMA 3. LetCR ⊂ P1(C) be a real algebraic curve of degreeδ. Then the length
ofCR with respect to the Fubini-Study metric ofP1(C) is at most2πδ.

Proof. We assume thatCR ⊂ C ⊂ P1 is connected and choose a piecewise
smooth parametrizationγ : [0,1] → CR; γ (t) = u(t)+ iv(t). Then

L(γ ) =
∫ 1

0

(|u′|2+ |v′|2)1/2
1+ u2 + v2

dt 6
∫ 1

0

|u′|
1+ u2

dt +
∫ 1

0

|v′|
1+ v2

dt.

Since the projectionsz 7→ u andz 7→ v, restricted toCR have at most a number of
δ sheets, the above integral is at most 2δ · ∫ +∞−∞ (du/1+ u2) = 2δπ .

2. Proof of the Theorem

In the sequel, we describe a generic type of branching. LetC ⊂ P2\{P0, P1, P2}
and denote byπ : C → P1 the restriction ofπ2: P2\P2→ L2 to C. Againπ must
have only simple generic branch pointsPj and we impose that

(iii) the imagesQj = π(Pj) of the branch pointsPj are distinct, wherej =
1, . . . , b, with b = d2 − d, and no three of these are contained in a closed
geodesic.

Next we choose a pointR in P1\⋃j<k Ljk, whereLjk is the closed geodesic
throughQj andQk. Let Sj be the segment of the real projective line fromR to
Qj, j = 1, . . . , d, andS = ∪Sj . The complementP1\S is simply connected and
π−1(P1\S) decomposes intob isomorphic copiesEν ; ν = 1, . . . , d, where we set
Eν = P(ν)1 \∪S(ν)j , with copiesP(ν)1 andS(ν)j resp. ofP1 andSj resp. LetR(ν) ∈ P(ν)1
correspond toR.

Any branch pointBj is contained in the closureEν of Eν in C for exactly two
values ofν. For allj with Pj /∈ Eν we fill S(ν)j \R(ν) intoEν and obtainẼν , which is
a copy ofP1 with a certain number of segments emanating from one point removed.
We count boundary points of̃Eν twice, except for the endpoints of line segments.
The domainẼν with boundary added is called̂Eν . Now C is obtained from∪Êν
by means of the usual gluing process. There is a natural projectionρν : Êν → P1.
We chose arbitrary sheetŝE1 and Ê2 say and pointsRj ∈ Êj ; j = 1,2 with
ρj(Rj ) = R; j = 1,2. We want to connect the images ofR1 andR2 in C by
the images of line segments in the boundaries ofÊ, where sheets are switched
at branch points. We give the construction. LetS

(ν)

j,1, S
(ν)

j,2 ⊂ ∂Êν correspond to

S
(ν)
j ⊂ P(ν)1 . We follow one of these segments fromR1 in Ê1 to the adjacent branch

point. Either we switch sheets at the branch point, or go back on the opposite
edge of the samêEν . We follow the next edge on the present sheet to the next
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branch point and switch again sheets, or not, keeping the orientation, i.e., in a way
such that the set̂Eν is always ot the same side of the edge. After circulating a
certain number of times we arrive atR2. Now we need to visit any branch point at
most once: otherwise we get a closed loop which we can eliminate from our path.
Hence the total number of segments does not exceed twice the number of branch
points 2b.

In order to conclude the proof, is is sufficient to show the claim for genericC ⊂ P2

with π : C → P1 as above. Let two points ofC be given. By a continuity argument
one of these can play the role ofR2, whereas the other point is contained in the
image of some other sheetÊν sayÊ2 and can be connected with someR2 located
overR1 on the corresponding boundary component. This amounts to a total of at
most 2b + 1 segments. According to Lemma 2 and 3 the length of each segment
is at most(4d2 + 1)π , which shows that the diameter is bounded from above by
(2b + 1)(4d2 + 1) · π = (2d2− 2d + 1)(4d2 + 1)π .
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