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Three-dimensional buoyant hydraulic fractures:
finite-volume release
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In impermeable media, a hydraulic fracture can continue expanding even without
additional fluid injection if its volume exceeds the limiting volume of a hydrostatically
loaded radial fracture. This limit depends on the mechanical properties of the surrounding
solid and the density contrast between the fluid and the solid. We show that two
dimensionless numbers characterize self-sustained fracture growth. The first is a buoyancy
factor that compares the total released volume to the volume of a hydrostatically loaded
radial fracture to determine whether buoyant growth occurs. The second number is the
dimensionless viscosity of a radial fracture when buoyant effects become of order one.
Notably, this dimensionless viscosity depends on the rate at which the fluid volume is
released, indicating that both the total volume and release history impact self-sustained
buoyant growth. We identify six well-defined propagation histories based on these two
dimensionless numbers. Their growth evolves between distinct limiting regimes of radial
and buoyant propagation, resulting in different fracture shapes. Notably, our findings reveal
two growth rates depending on the dominant energy dissipation mechanism (viscous flow
versus fracture creation) in the fracture head. For finite values of material toughness, the
toughness-dominated limit represents a late-time solution for all fractures in growth rate
and head shape (possibly reached only at a very late time). The viscosity-dominated limit
can appear at intermediate times. Our three-dimensional simulations confirm the predicted
scalings. This contribution highlights the importance of the entire propagation and release
history for accurate analysis of buoyant hydraulic fractures.
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A. Möri and B. Lecampion

1. Introduction

This work investigates the growth of a planar three-dimensional (3-D) hydraulic fracture
(HF) from the release of a finite volume of fluid from a point source and its possible
transition to a self-sustained buoyant fracture. Hydraulic fractures are tensile, fluid-filled
fractures driven by the internal fluid pressure exceeding the minimum compressive in
situ stress (Detournay 2016). Natural occurrences of HFs are related to the transport of
magma through the lithosphere by magmatic intrusions (Spence, Sharp & Turcotte 1987;
Lister & Kerr 1991; Rivalta et al. 2015) or pore pressure increases due to geochemical
reactions during the formation of hydrocarbon reservoirs (Vernik 1994). One of the most
frequent engineering applications of HFs is the production stimulation of hydrocarbon
wells (Economides & Nolte 2000; Jeffrey et al. 2013; Smith & Montgomery 2015).

In the absence of buoyancy, the propagation of radial HFs upon the end of the release
(denoted as ‘shut-in’ in industrial applications) has been analysed recently in detail (Möri
& Lecampion 2021). In an impermeable medium, the final radius of the HF depends
solely on the material parameters and the total amount of fluid volume injected/released.
However, the HF does not necessarily stop its growth directly upon the end of the release.
When dissipation through viscous fluid flow is important at the end of the release, the
propagation continues in a viscosity-dominated pulse regime before finally arresting at
a radius independent of the release rate. These theoretical findings derived in Möri
& Lecampion (2021) were recently verified experimentally by Tanikella, Sigallon &
Dressaire (2023).

When considering gravity, recent research has focused on deriving the limiting volume
necessary for the emergence of a 3-D buoyant fracture (Dahm 2000; Davis, Rivalta
& Dahm 2020; Salimzadeh, Zimmerman & Khalili 2020; Smittarello et al. 2021).
Neglecting fluid viscosity, Davis et al. (2020) identify a critical volume similar to
previous two-dimensional (2-D) predictions (Weertman 1971). It is, however, impossible to
constrain the ascent rate of the fracture without accounting for the effect of fluid viscosity
(as discussed in Garagash & Germanovich 2014). The consensus of these studies is that
the resulting buoyant fracture features a head and tail structure (Lister & Kerr 1991), where
the head dominates the overall fracture behaviour, but the tail dominates the ascent rate
(Garagash & Germanovich 2022) (see figure 1). Davis et al. (2023) estimate a maximum
ascent velocity considering a viscosity-dominated tail. A similar solution has been derived
by Garagash & Germanovich (2014) (see Garagash & Germanovich (2022) for details)
for a finger-like fracture with a toughness-dominated head. In their work, they derive
a 3-D head similar to the limiting volume of Davis et al. (2020). This fracture ‘head’
is coupled to a tail of constant breath, providing a late-time solution after the end of
the transition from radial to self-sustained buoyant propagation. Considering lubrication
flow in the initially radially propagating fracture, Salimzadeh et al. (2020) performed a
few simulations investigating the early phase of the transition to buoyant propagation.
Equivalent to Davis et al. (2020) and Garagash & Germanovich (2014), a limiting value
for the necessary volume released for a buoyant fracture to emerge is reported. All three
minimal/critical volume release estimates have the same characteristic scale and differ
only in prefactors. A combined study of the limiting volume, considering not only the
emergence of buoyancy-driven fractures but also their evolution towards their late-time
characteristics, is not yet available.

2. Preliminaries

We investigate tensile (mode I) HFs under the classical assumption of linear elastic fracture
mechanics and laminar Newtonian lubrication flow (Detournay 2016). A finite volume is
972 A20-2
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3-D buoyant hydraulic fractures: finite volume
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Figure 1. (a) Buoyant self-sustained growth of an HF. (b) Arrested HF at depth. Both fractures emerge from
a finite fluid volume released from a point source through a block injection, and propagate in a homogeneous
linear elastic medium (x–z plane) with the downwards oriented gravity vector g (in −z) creating linear confining
stress σo(z). The fracture area is denoted by A(t), with a closed front C(t) and a local normal velocity vc(xc, zc)

(with (xc,zc) ∈ C(t)). The fracture extent is defined by its local breadth b(z, t) and total length �(t).

released from a point source at depth into a linearly elastic and impermeable medium
with uniform properties. The fracture orientation and stress state are equivalent to those
described in Möri & Lecampion (2022) and sketched in figure 1. We omit the detailed
discussion of the mathematical formulation (see Möri & Lecampion (2022) for details) as
the only difference pertains to the history of the fluid release. We consider here a simple
injection history where the fluid volume is released at a constant rate until the end of the
release at time t = ts (the shut-in time), where the rate suddenly drops to zero. We denote
the constant release rate during the block injection as Qo such that the rate history is simply

Q (t) =
{

Qo t ≤ ts,
0 t > ts.

(2.1)

The coherent global volume balance in the case of an impermeable medium is

V(t) =
∫
A(t)

w (t, x, z) dx dz =
{

Qot t < ts,
Vo = Qots t ≥ ts,

(2.2)

where Vo = Qots is the total volume of fluid released.
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A. Möri and B. Lecampion

In the following, we combine scaling arguments and numerical simulations using
the fully coupled planar 3-D HF solver PyFrac (Zia & Lecampion 2020). We refer
the reader to Peirce & Detournay (2008), Zia & Lecampion (2020) and references
therein for a detailed description of the numerical scheme. In short, the solver is a
Python-based displacement discontinuity method combined with the implicit level set
algorithm implemented using boundary elements. The documentation of the open-source
code and examples of applications are available for download at PyFrac. We initiate the
fracture according to the self-similar solution of a radial, viscosity-dominated fracture
(see its definition in Savitski & Detournay 2002) at a fixed time tinit. For this solution
to be valid, we must ensure that the dimensionless numbers describing the transition from
viscosity- to toughness-dominated (Km(t), see (2.4)) and the change from radial to buoyant
propagation (Bk(t) and Bm(t), see (2.9a,b)) are all significantly smaller than 1 at t = tinit.
We provide the time of initialization and other parameters of the simulations in the shared
data of this paper. Note that we could equivalently initiate our simulations with a finite-size
radial fracture with a radius smaller than the respective transition scales �mk, �mm̂ and
�kk̂ (Savitski & Detournay 2002; Möri & Lecampion 2022). The simulation would then
automatically approach the self-similar, viscosity-dominated solution. Note that in any
case, we need to ensure that tinit � ts or equivalently for a finite-size fracture, �init � Ra
(see (2.3)).

2.1. Arrest of a finite-volume radial HF without buoyancy
In the absence of buoyant forces, considering the limiting case of an impermeable medium,
HFs finally arrest after the end of the injection when reaching an equilibrium between
the injected volume and the linear elastic fracture mechanics propagation condition. This
problem was investigated in Möri & Lecampion (2021). The fracture characteristics at
arrest are independent of the shut-in time ts. They depend only on the properties of the
solid and the total amount of fluid released. For example, the arrest radius Ra (subscript a
for arrest) is given by

Ra =
(

3
8
√

π

)2/5 (E′Vo

KIc

)2/5

, (2.3)

where E′ = E/(1 − ν2) is the plane-strain modulus, with E the material’s Young’s
modulus and ν its Poisson’s ratio, and KIc is the fracture toughness of the material.

Even though the arrest radius is independent of ts, the growth history prior to
arrest depends on it. In particular, the arrest is not necessarily immediate after the
end of the release. Notably, the arrest is not immediate when the HF propagates in
the viscosity-dominated regime at the end of the release. The immediate arrest versus
continuous growth is captured by the value of the dimensionless toughness at the shut-in
time:

Kms = KIc
t1/9
s

E′13/18μ′5/18Q1/6
o

, (2.4)

where μ′ = 12μ, and μ is the fracturing fluid viscosity. In (2.4), we have used the
subscripts m and s to indicate, respectively, a viscous scaling and the end of the release. If
the fracture is viscosity-dominated (Kms � 1), then it propagates in a viscosity-dominated
pulse regime for a while until it finally arrests when reaching R = Ra. On the other hand,
if fracture energy is already dominating (Kms � 1), then the arrest is immediate upon
shut-in. The viscosity-dominated pulse regime has been shown to emerge for Kms � 0.3
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3-D buoyant hydraulic fractures: finite volume

(for a detailed description of the viscosity-dominated pulse regime, see § 3.2 of Möri
& Lecampion 2021). A numerical estimation of the immediate arrest yields a value
Kms � 0.8 (note that Möri & Lecampion (2021) report a value 2.5 due to an alternative
definition of (2.4) using K′ = √

32/π KIc instead of KIc).

2.2. Buoyant HF under a continuous release
In the case of a fluid release occurring at a constant volumetric rate Qo, the fracture
elongates along the orientation of the gravity vector. These buoyant forces are generated
by the density difference between the solid and the fracturing fluid. To obtain the value of
the buoyancy, we assume fractures propagating in vertical planes and the minimum in situ
horizontal stress as

σo(z) = σh(z) = α σ ′
v(z) + pp(z), (2.5)

with σh the minimum in situ horizontal stress, σ ′
v the effective vertical stress, α a lateral

Earth pressure coefficient, and pp the pore pressure in the formation. Assuming now that
the vertical stress is lithostatic, σv = ρsgz′, and the formation fluid pressure is hydrostatic,
pp = ρFgz′, the gradient of the stress normal to the fracture plane is (in the coordinate
system sketched in figure 1)

∇σo = (α(ρs − ρF) + ρF) g, (2.6)

where ρs is the solid and ρF the formation fluid density, g is the Earth’s gravitational
acceleration coefficient, and g = (0, 0, −g) is the gravity vector. Using the net pressure
(p = pf − σo) in the Poiseuille relation, we obtain the expression

q(x, z, t) = −w(x, z, t)3

μ′

(
∇p(x, z, t) + Δγ

g
|g|
)

, (2.7)

with Δγ = (
α(ρs − ρF) + ρF − ρf

)
g. (2.8)

In (2.8), Δγ is the effective buoyancy contrast of the system. A positive buoyancy will
lead to a fracture elongation in the opposite direction of the gravity vector. A negative
buoyancy will lead to propagation in the direction of the gravity vector. Without additional
stresses (e.g. tectonic stresses), the lateral Earth pressure coefficient can be approximated
as α = ν/(1 − ν). In the following, we include any tectonic or other effects into α and
assume, consistent with (2.8), that Δγ = const. Note that the expression for Δγ differs
from that in Möri & Lecampion (2022), where we assumed a dry formation (e.g. pp = 0).
Two dimensionless buoyancies related to either the viscosity-dominated (subscript m) or
the toughness-dominated (subscript k) regime emerge (Möri & Lecampion 2022):

Bm = Δγ
Q1/3

o t7/9

E′5/9μ′4/9 , Bk = Δγ
E′3/5Q3/5

o t3/5

K8/5
Ic

. (2.9a,b)

These dimensionless buoyancies are related through the dimensionless viscosity of a
radial fracture when buoyancy becomes of order O(1):

Mk̂ = μ′ QoE′3 Δγ 2/3

K14/3
Ic

(2.10)

as
Bk = B27/35

m M12/35
k̂

. (2.11)
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A. Möri and B. Lecampion

Similar to the dimensionless toughness at the end of the release Kms (see (2.4)),
Mk̂ determines if the transition from a radial to an elongated buoyant fracture occurs
in the viscosity-dominated (Mk̂ � 1) or toughness-dominated (Mk̂ � 1) phase of the
radial HF propagation. A family of solutions emerges as a function of this dimensionless
viscosity Mk̂, as discussed in detail in Möri & Lecampion (2022). Notably, a limiting
large toughness solution has been obtained in Garagash & Germanovich (2014) (see
details in Garagash & Germanovich 2022). This large toughness limit is observed for
Mk̂ ≤ 10−2 (Möri & Lecampion 2022) and shows a buoyant finger-like fracture with a
constant breadth and a fixed-volume head. These attributes, combined with a constant
injection rate, lead to a linear growth rate of the buoyant fracture. In an intermediate range
of values for Mk̂ ∈ [10−2, 102], the fractures exhibit a uniform horizontal breadth and
a finger-like shape. In this range of Mk̂, the prefactors (for length, width, etc.) become
dependent on the dimensionless viscosity Mk̂ (see (2.4)). In particular, an increase in
fracture breadth and head volume is observed with increasing values of Mk̂. Even larger
values of Mk̂ ≥ 102 generate fractures exhibiting a negligible-toughness, buoyant solution
at intermediate times, where the growth of the fracture is sub-linear. The breadth of these
fractures increases for a while before reaching an ultimately constant value determined by
the non-zero fracture toughness value. The fracture’s growth rate then becomes constant.
Concurrently, the head and tail structure stabilizes. In the strictly zero-toughness limit, the
breadth increases continuously, and the fracture height growth remains sub-linear due to
global volume balance.

2.3. Hydrostatically loaded radial fracture
The occurrence of the self-sustained buoyant growth of a finite-volume fracture has been
investigated by several authors from the point of view of the static linear elastic equilibrium
of a radial fracture under a linearly varying load (Davis et al. 2020, 2023; Salimzadeh et al.
2020). Under the hypothesis of zero viscous flow, the net loading opening the fracture is
equal to the hydrostatic fluid pressure minus the linearly varying background stress σo(z).
The elastic solution and the evolution of the stress-intensity factor (SIF) at the upper and
lower tips are known analytically for this loading (Tada, Paris & Irwin 2000) (see § 2.2 of
Davis et al. (2020) for a detailed derivation). Adopting a linear elastic fracture mechanics
propagation condition, the SIF KI at the upper end is set to the material fracture toughness
KIc. On the other hand, the lower-tip SIF is set to zero, allowing the fracture to close and
liberate the volume necessary for further upward propagation. Enforcing the conditions of
KI = KIc at the upper tip and KI = 0 at the lower tip constrains the limiting volume to

Vlimit ∝ K8/3
Ic

E′ Δγ 5/3 = Vhead
k̂

. (2.12)

This minimal volume for buoyant propagation has been identified independently in
recent contributions (Davis et al. 2020, 2023; Salimzadeh et al. 2020) and corresponds
to that of the toughness-dominated head of a buoyant HF in the case of a constant release
(Garagash & Germanovich 2014; Möri & Lecampion 2022).

If the volume of fluid released in the radial fracture is slightly larger than this value,
then the upper tip would have a stress intensity KI > KIc, indicating excess energy leading
to upward propagation. Similarly, the lower end would have KI < 0 and the fracture would
interpenetrate. Small perturbations of the released volume around this minimum would
lead to either an arrest of the fracture (lower volume) or a departure of a buoyant fracture
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3-D buoyant hydraulic fractures: finite volume

(larger volume). Note that when the fracture volume equals this minimal volume and
fluid viscosity is neglected, the previous derivation fails to predict how the fracture will
propagate subsequently. Only the introduction of fluid viscosity can resolve the physical
limitation of this approach.

In addition, the previous derivation of the minimum volume for a buoyant self-sustained
propagation assumes a perfectly radial shape until the entire fluid volume has been
released. This approach is equivalent to considering buoyancy only at this moment. It
does not cover cases where buoyant forces become non-negligible when the fracture is
still propagating (whether this is the case during the release or after its end).

3. Arrest at depth versus self-sustained propagation of buoyant HFs

From the discussion of the arrest radius of an HF in the absence of buoyancy (see § 2.1) and
the regimes of buoyant HF growth under a continuous release (see § 2.2), we can anticipate
several scenarios with respect to the emergence of a self-sustained buoyant finite volume
fracture. The transition towards buoyancy-driven growth can occur during the release of
fluid or during the pulse propagation phase when the propagation is viscosity-dominated
at the end of the release. We investigate these different propagation histories in relation to
the dimensionless buoyancies and dimensionless buoyant viscosity introduced in § 2, and
discuss their relationship with the critical minimum volume (2.12).

3.1. Toughness-dominated at the end of the release
We first investigate the case where the fracture is toughness-dominated at the end of
the release. In the absence of buoyancy, a constant fluid pressure establishes in the
penny-shaped fracture, which stops immediately at its arrest radius Ra (see (2.3)). Due
to the addition of buoyant effects, a linear pressure gradient develops and creates the
configuration discussed above (see § 2.3). We anticipate that the total volume released must
exceed Vhead

k̂
(2.12) for a buoyant fracture to emerge. Neglecting the temporal evolution,

the comparison Vo/Vhead
k̂

is sufficient to assess the emergence of buoyant fractures. When
considering a radial growth in time, the dimensionless buoyancy Bk(t) (see (2.9a,b))
indicates when buoyant forces become dominant. Estimating Bk(t) at the end of the release
t = ts, we obtain

Bks = Bk (t = ts) = Δγ
E′3/5Q3/5

o t3/5
s

K8/5
Ic

= Δγ
E′3/5V3/5

o

K8/5
Ic

=
(

Vo

Vhead
k̂

)3/5

. (3.1)

From (3.1), we see that the condition of a dimensionless buoyancy at the end of the
release Bks > 1 (under the hypothesis of a radial toughness-dominated fracture) is strictly
equivalent to the condition of a released volume larger than the minimal volume for
buoyant growth (2.12).

3.2. Viscosity-dominated at the end of the release (Kms � 1)
In contrast to toughness-dominated HFs, radial viscosity-dominated fractures at the end of
the release will continue to propagate in a viscous pulse regime until they reach their arrest
radius Ra (see (2.3)) (Möri & Lecampion 2021). During that post-release propagation
phase, the fracture may become buoyant and continue its growth. In addition, we need
to check if it remains buoyant when it is already so at the end of the release. This can
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A. Möri and B. Lecampion

be done by estimating the dimensionless buoyancy of a radial viscous fracture Bm(t) (see
(2.9a,b)) at the end of the release t = ts:

Bms = Bm (t = ts) = Δγ
Q1/3

o t7/9
s

E′5/9μ′4/9 = Δγ
V1/3

o t4/9
s

E′5/9μ′4/9 . (3.2)

A value Bms ≥ 1 indicates that the fracture has already transitioned to buoyant
propagation when the release stops and is already elongated. On the other hand, if Bms < 1,
then buoyancy is not of primary importance at the end of the release, and the fracture still
exhibits an essentially radial shape.

3.2.1. Dominant buoyancy at the end of the release Bms ≥ 1
In the case Bms ≥ 1, the fracture is already buoyant at the end of the release. We must check
if it remains buoyant or possibly arrests after the release ends. It is natural to compare
the volume of the viscous head at the end of the release Vhead

m̂ (t = ts) to the limiting
volume (2.12). The time-dependent volume of a viscous head is given in (5.6) of Möri &
Lecampion (2022) and relates to (3.2) as

Bms =
(

Vo

Vhead
m̂ (t = ts)

)2/3

. (3.3)

Using the relationship (2.11), we obtain the following relation for the minimal limiting
volume:

Vo

Vhead
k̂

=
(

Vo

Vhead
m̂ (t = ts)

)6/7

M4/7
k̂

. (3.4)

For a viscosity-dominated fracture, one has Mk̂ ≥ 1 necessarily, and to be buoyant at the
end of the release, we have Vo ≥ Vhead

m̂ (t = ts) necessarily as Bms ≥ 1. As a result of the
previous relations, we have Vo ≥ Vhead

k̂
necessarily, respectively Bks ≥ 1, and the volume

released is larger than the minimum required for a toughness-dominated radial fracture
subjected to a linear pressure gradient to become buoyant. After the release has ended,
the viscous forces diminish in the head, which ultimately becomes toughness-dominated.
As a result, after the release, as buoyancy is of order 1, the condition Bks ≥ 1 is always
satisfied, and self-sustained buoyant growth will continue necessarily.

3.2.2. Viscosity-dominated fracture with negligible buoyant forces at the end of the
release (Bms < 1)

If buoyancy forces are negligible at the end of the release, and the propagation is
viscosity-dominated (Bms < 1 and Kms � 1), then the finite volume fracture will continue
to grow radially in a viscous pulse regime for a while before it finally arrests. In the
presence of buoyant forces, it may be possible that buoyancy takes over as a driving
mechanism before the fracture arrests. To incorporate such a possible growth history into
the analysis, we use a dimensionless buoyancy in such a radial viscous pulse regime:

B[V]
m (t) = Δγ

V1/3
o t4/9

E′5/9μ′4/9 = Bms (t/ts)4/9 , (3.5)

where the superscript [V] indicates that the scaling is related to a finite-volume
release (replacing Qo by Vo/t in the continuous release expression). From Möri &
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3-D buoyant hydraulic fractures: finite volume

Lecampion (2021), we know that the radial viscous pulse fracture stops propagating
when it becomes toughness-dominated. The corresponding time scale for which K[V]

m
of a finite-volume radial HF in the absence of buoyancy (see equation (10) of Möri &
Lecampion 2021) becomes of order 1, and the fracture arrest is given by

t[V]
mk = E′13/5V3/5

o μ′

K18/5
Ic

. (3.6)

It is thus possible to check if buoyancy is of order 1 at this characteristic time of arrest
by estimating the value of the dimensionless buoyancy B[V]

m (t) from (3.5) at t = t[V]
mk :

B[V]
m

(
t = t[V]

mk

)
= Δγ

E′3/5V3/5
o

K8/5
Ic

=
(

Vo

Vhead
k̂

)3/5

= Bks. (3.7)

Interestingly, this evaluation is strictly equivalent to the comparison of the limiting
Vhead

k̂
with the total released volume Vo (see (3.1)). We conclude that regardless of

the propagation history, comparing the released volume with the limiting volume for
toughness-dominated buoyant growth is sufficient to characterize the emergence of a
self-sustained buoyant HF. In what follows, we use the dimensionless buoyancy of a radial
toughness-dominated finite-volume HF Bks to quantify the emergence of self-sustained
growth (Bks > 1). Similarly, the volume ratio Vo/Vhead

k̂
= B5/3

ks could also be used.

3.3. Structure of the solution for a finite volume release
In the preceding subsections, the necessary and sufficient condition for the birth of a
buoyant fracture Bks ≥ 1 (see (3.1)) was derived. The fact that the birth (or not) of a
buoyant HF depends solely on the total released volume and elastic parameters but is
independent of how the volume is accumulated intrinsically derives from this statement.
Furthermore, we discussed that the characteristics of self-sustained buoyant fractures
depend additionally on the dimensionless viscosity Mk̂ (see (2.10)), and hence on the
specifics of the release (how the volume got released). These two parameters combined
encompass any possible configuration and thus form the parametric space of the entire
problem (see figure 2).

First, the parametric space can be split into an upper half (Bks ≥ 1) where self-sustained
buoyant propagation occurs, and a lower half (Bks < 1) where the fractures ultimately
arrest at depth. We have investigated this limit numerically, where every symbol in
figure 2 corresponds to a simulation. Empty symbols show simulations where the
fracture ultimately arrests at depth, whereas filled symbols correspond to cases where
self-sustained buoyant growth occurs. In general, figure 2 shows that the scaling argument
that self-sustained buoyant growth occurs for Bks ≥ 1 is correct without any prefactor.
Only toughness-dominated fractures at the end of the release (Kms ≥ 0.8, where no
post-injection radial propagation occurs) sometimes lead to self-sustained buoyant growth
for values of Bks slightly smaller than 1. We use a value Bks = 1 as the limit for the birth
of a self-sustained finite-volume buoyant HF. This limit is close to the results obtained in
previous contributions: Bks ≈ 0.90 for Davis et al. (2020), and Bks ≈ 0.91 for Salimzadeh
et al. (2020). The equivalent value of Bks calculated from the semi-analytically derived
head volume of a propagating toughness-dominated buoyant fracture by Garagash &
Germanovich (2014) is significantly higher: Bks ≈ 1.26.
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Figure 2. Structure of the solution for a finite-volume release HF as a function of the dimensionless buoyancy
Bks (see (3.1)) and viscosity Mk̂ (see (2.10)). Each symbol represents a simulation. Arrested fractures have
empty symbols, and filled symbols indicate self-sustained buoyancy-driven pulses. Numbered areas of different
colours delimit distinct propagation histories. The colour of the symbols represents the value of the horizontal
overrun O (see (5.4)). We indicate the simulations presented in figure 3 via blue arrows.

The parametric space of figure 2 captures more than the limit between fractures
that ultimately arrest and self-sustained buoyant pulses. We distinguish six well-defined
regions, corresponding to several propagation histories visiting the limiting regimes of
radial and buoyant growth: stagnant fractures with a toughness-dominated end of the
release (region 1, bottom left, red, § 4), stagnant fractures with a viscosity-dominated
end of the release (region 2, bottom right, purple, § 4), toughness-dominated buoyant
fractures at the end of the release (region 3, top left, orange, § 5.1), viscosity-dominated
buoyant fractures with a stabilized breadth at the end of the release (region 4, top centre,
dark green, § 5.2.2), viscosity-dominated buoyant fractures without stabilization at the
end of the release (region 5, top centre, light blue, § 5.2.1), and viscosity-dominated
radial fractures at the end of the release (region 6, top right, dark blue, § 5.2.3). The
distinction between regions 4 and 5 stems from the stagnation of lateral growth observed
for viscosity-dominated buoyant HFs under a constant release rate with finite toughness
(Möri & Lecampion 2022), and will be detailed later. We define in table 1 the sequence
and respective limiting regimes visited for every region of the parametric space, with
their estimated range of applicability as a function of the dimensionless numbers Mk̂ and
Bks. The scales of the buoyant finite-volume limiting regimes are listed in the Appendix.
The characteristics of the propagation path of these different regions are described in the
following sections.

4. Fractures arrested at depth Bks < 1

Fractures that arrest at depth do not show self-sustained propagation in the buoyant
direction. In the absence of any form of material or stress heterogeneities, and assuming
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3-D buoyant hydraulic fractures: finite volume

Region Limiting regimes encountered Range of applicability

1 (red) M → K → K[V] 0.30M3/2
k̂

≤ Bks < 1 Mk̂ ≤ 2.23

2 (purple) M → M[V] → K[V] Bks < 1 76B2/3
ks ≤ Mk̂

3 (orange) M → K → K̂ → K̂[V] 1 ≤ Bks Mk̂ ≤ 10−2

4 (dark green) M → M̂ → K̂ → K̂[V] M24/35
k̂

≤ Bks 102 ≤ Mk̂

5 (light blue) M → M̂ → M̂[V] → K̂[V] 3.98M12/35
k̂

≤ Bks ≤ 0.40M24/35
k̂

102 ≤ Mk̂

6 (dark blue) M → M[V] → M̂[V] → K̂[V] 40 ≤ Bks ≤ 0.17M12/35
k̂

8.25 × 106 ≤ Mk̂

Table 1. The regions of figure 2 with their respective propagation history and the estimated limiting values of
the dimensionless coefficients. The descriptions of the limiting regimes can be found in Savitski & Detournay
(2002) for the M and K regimes, Möri & Lecampion (2021) for the M[V] and K[V] regimes, Möri & Lecampion
(2022) for the M̂ and K̂ regimes, and this contribution for the M̂[V] and K̂[V] regimes (see the Appendix for a
summary of the scalings).

an infinite impermeable elastic medium, a fracture will arrest only due to the release of
an insufficient volume: Bks < 1. The lower part of figure 2 distinguishes two propagation
histories for arresting fractures: a region where the fracture is toughness-dominated at
the end of the release (region 1), and one where it is viscosity-dominated (region 2). As
described in § 2.1, the characteristics of radially arresting fractures are independent of the
propagation history. In the cases where Bks � 1, the fracture has an SIF KI along the entire
fracture front equal to the fracture toughness KIc (cf. figures 3d–f ). In other words, as long
as the final radius of the fracture Ra (see 2.3) is small compared to the buoyancy length
scale �b (Lister & Kerr 1991), the fracture arrests radially, and the findings obtained in the
absence of buoyancy are valid (Möri & Lecampion 2021).

For larger released volumes that are still insufficient for the start of self-sustained growth
(Bks � 1), fracture elongation occurs before it finally arrests. The fracture footprints of
figures 3(a–c) indicate such elongated shapes as the dimensionless buoyancy approaches
1. In line with this, the SIF is smaller than the material toughness in the lower part of
the fracture. The final elongation of the fracture is more pronounced for lower values of
the dimensionless viscosity Mk̂. The continuous release case has shown that toughness-
and viscosity-dominated transitions present a distinct evolution of their shape (Möri &
Lecampion 2022). Therefore, it is not surprising that the shapes of the arrested fractures
differ as a function of the dimensionless viscosity if the released volume approaches the
limiting one.

5. Self-sustained finite-volume buoyant fractures: Bks > 1

5.1. Toughness-dominated, buoyant fractures at the end of the release (region 3):
Mk � 1

When the released volume is sufficient to create a buoyant HF (Bks > 1), a set of
possible propagation histories exists as a function of the dimensionless viscosity Mk. We
first discuss toughness-dominated fractures, which, according to the arguments of §§ 2.1
and 3, must have a transition from radial to buoyant when the release is still ongoing.
This results in a well-established, finger-like buoyant fracture with a constant-volume,
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Figure 3. Final shape and SIFs along the front C(t) of ultimately arrested fractures at depth (Bks < 1) as a
function of Bks and Mk̂. Colours indicate the ratio between the local SIF KI and the material fracture toughness
KIc from 0 (light grey) to 1 (red). The blue dashed lines in (a–c) correspond to the shape of an expanding head
of a propagating toughness-dominated buoyant fracture (Garagash & Germanovich 2014).

toughness-dominated head at the end of the release. The head characteristics in the case
of a continuous release were obtained from the assumption that �head(t) ∼ bhead(t) and
elasticity, toughness and buoyant forces are dominating. If, additionally, we restrict these
derivations by the finiteness of the total release volume, then the resulting length, opening
and pressure scales remain unchanged (see (4.1) of Möri & Lecampion 2021), but a
time-dependent dimensionless viscosity emerges:

M[V]
k̂

(t) = μ′ VoE′3 Δγ 2/3

K14/3
Ic t

= Mk̂
ts
t
. (5.1)

The decreasing nature of M[V]
k̂

with time indicates that the fracture head will necessarily
become toughness-dominated at late time. Garagash & Germanovich (2014) similarly
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3-D buoyant hydraulic fractures: finite volume
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Figure 4. Toughness-dominated self-sustained buoyant fractures. Evolution of the dimensionless (a) head
breadth bhead(t)/�b and (b) fracture length �(t)/�(t = ts) as a function of the dimensionless shut-in time t/ts.
The green-dotted line corresponds to the limiting 3-D K̂ GG (2014) solution (bhead(t → ∞) = π−1/3�b in (a)),
and the orange dashed line is the 3-D K̂[V] GG (2014) solution. The inset of (b) shows the same quantity on the
y-axis with a shifted x-axis (e.g. (t − ts)/ts).

derived the finite volume limit and concluded that the head and tail breadths do not
change compared to the continuous release case. Their solution is thus equivalently
representative of any finite-volume, buoyant HF with a finite toughness. We denote
their result hereafter as the 3-D K̂[V] GG (2014) solution. For cases in the intermediate
range Mk̂ ∈ [10−2, 102], we check how their head breadth approaches the 3-D K̂[V] GG
(2014) solution at late time (e.g. bhead(t → ∞) = π−1/3�b). We show in figure 4(a) the
evolution of one toughness-dominated simulation with Mk̂ = 10−2, and two fractures
with an intermediate value Mk̂ = 1. The head breadth of the toughness-dominated
fracture validates the limiting solution during the release (grey line in figure 4a) and
shows no change after the release has ended. In contrast to this constant value of the
head breadth, the simulations with an intermediate value of Mk̂ (green and red lines
in figure 4a) have a maximum value exceeding the limiting breadth at the end of the
release. Afterwards, the head breadth reduces gradually and approaches the limiting 3-D
K̂[V] GG (2014) solution. In the continuous release case, the limiting breadth is valid for
Mk̂ ≤ 10−2, so using (5.1), we can thus estimate the time for the fracture to reach the limit
as t(M[V]

k̂
(t) = 10−2) = 102Mk̂ts (Möri & Lecampion 2022). For Mk̂ ∈ [10−2, 102], i.e.

the simulations presented in figure 4, the 3-D K̂[V] GG (2014) solution would be reached
once t ∼ 100ts. From the rate with which the breadth approaches the 3-D K̂[V] GG (2014)
solution observed in figure 4(a), this estimate seems reasonable. In fact, the fracture with
Mk̂ = 1 and Bks = 2 is already within 15 % of the limiting solution at t ∼ 50ts.

We derive the scaling of the viscosity-dominated tail of such a late-time solution using
the assumption of a constant fracture breadth on the order of the breadth of the head
b ∼ �b = K2/3

Ic /Δγ 2/3 as

�
[V]
k̂

(t) = V2/3
o Δγ 7/9 t1/3

K4/9
Ic μ′1/3

, b[V]
k̂

= K2/3
Ic

Δγ 2/3 ≡ �b, (5.2a,b)

w[V]
k̂

(t) = V1/3
o μ′1/3

K2/9
Ic Δγ 1/9 t1/3

, p[V]
k̂

(t) = E′ Δγ 5/9 V1/3
o μ′1/3

t1/3K8/9
Ic

, (5.3a,b)
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where we use ·̂ to refer to a buoyant scaling. These scales are obtained from the continuous
release scales by replacing Qo with Vo/t, and reveal a sub-linear growth of the fracture
height according to a power law of the form �(t) ∼ t1/3. Note that these scales have
been obtained by Garagash & Germanovich (2014) when deriving their 3-D K̂[V] GG
(2014) solution. We present in figure 4(b) the evolution of dimensionless fracture length
�(t)/�(t = ts) as a function of the dimensionless time t/ts. The green line with a 1 : 1
slope indicates the scaling-derived temporal power law for a toughness-dominated buoyant
HF under a continuous fluid release. The two simulations with low Bks (grey and red)
cannot reach this intermediate regime, as they are not propagating long enough in this
K̂ regime (see the discussion in § 4.4 of Möri & Lecampion 2022). The simulation with
Bks = 4 reaches this limit for about one order of magnitude in time before decelerating
towards the late-time power law predicted by the scaling of (5.2a,b). A similar deceleration
is observed for the other two simulations without any of the simulations reaching the
limiting �(t) ∼ t1/3 power law. The orange dashed line indicates the 3-D K̂[V] GG (2014)
solution for fracture length, which we would expect to be valid at late times. The inset
of figure 4(b) sets the time when the release ends as zero according to the hypothesis of
Garagash & Germanovich (2014). This correction of the data highlights the tendency of the
fracture length of all simulations to approach the limiting solution. A late-time validation
of the solution can be expected as the relative difference between the predicted length and
the simulation with Bks = 2 and Mk̂ = 1 at the end of the simulation is only of the order
of 23 %. These findings indicate that buoyant fractures with a finite toughness will have a
late-time behaviour akin to the 3-D K̂[V] GG (2014) solution. Even though this late-time
behaviour will be consistent, it also shows that the exact shape of the fracture will depend
on both parameters, Mk̂ and Bks. Only the breadth close to the head, the head itself, and
the growth rate will be equivalent to the 3-D K̂[V] GG (2014) solution. To get an idea of
the overall fracture shape, we define a shape parameter called the overrun as

O =
max

z,t
{b(z, t)} − π−1/3�b

π−1/3�b
, (5.4)

sketched in figure 5. This parameter defines how much the maximum lateral extent
exceeds the late-time head breadth π−1/3�b. Here, O has lower bound 0, reached for fully
toughness-dominated fractures with Mk̂ ≤ 10−2. This limit is validated by the simulation
reported in this section with Mk̂ = 10−2 and Bks = 1.25, which effectively has overrun
0 (see figure 5). For the fractures in between the toughness- and viscosity-dominated
limits of the continuous release with a uniform breadth (e.g. Mk̂ ∈ [10−2, 102]), the
overrun cannot be predicted by scaling laws. From the observation of figure 8 of Möri
& Lecampion (2022), we can, however, derive that it will increase with increasing
values of Mk̂. The overruns of the two other simulations reported here are, respectively,
0.88 (Mk̂ = 1 and Bks = 4), and 0.80 (Mk̂ = 1 and Bks = 2). We display the overrun
value for simulations that lead to a buoyant HF in figure 2. Within the region of the
toughness-dominated fractures with a buoyant end of the release (region 1), the values are
effectively 0. The overrun increases with the value of Mk̂ towards the viscosity-dominated
domain (regions 4–6), and will be estimated using scaling arguments later (figure 5
sketches the concept for a fracture of region 5).
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3-D buoyant hydraulic fractures: finite volume

�head (t) �head (t)

O > 0O = 0

max{b (z, t)} = π–1/3�bz
max{b (z, t)} > π–1/3�bz

bhead (t →∞) = π–1/3�b

bhead (t →∞) = π–1/3�b

Figure 5. Illustration of the definition of the overrun (5.4). Left: example of a zero overrun (as obtained for
toughness-dominated buoyant fractures at the end of the release – region 3). Right: example of an overrun
with the maximum breadth larger than the limiting breadth of the 3-D K̂[V] GG (2014) solution (Garagash &
Germanovich 2014, 2022).

5.1.1. Numerical limitations
The fact that no simulations propagating for longer times, which would ultimately exhibit
the 3-D K̂[V] GG (2014) solution, are reported deserves discussion. These simulations have
multiple numerical challenges, such as their overall computational cost and the numerical
treatment of closing cells at the bottom of the fracture, among others. We illustrate
the computational cost by the example of a toughness-dominated buoyant HF. Such
fractures accelerate around the transition from radial to buoyant before slowing down to the
ultimately constant velocity. Möri & Lecampion (2022) report that for their simulations,
the acceleration terminates at a dimensionless time t/tkk̂ ≈ 3, where tkk̂ is the transition
time from radial to buoyant (see (3.6) of Möri & Lecampion 2022). Inspection of
figure 4(b) shows that after the end of the release, additional time is required to transition
to the late-time buoyant pulse solution. This figure gives an estimate of the time to reach
the 3-D K̂[V] GG (2014) solution for t ∼ 100ts. An estimate of the fracture extent for a
simulation with Mk̂ = 10−2 at this time, based on growth according to the power law
of (5.2a,b), gives � ∼ 1600�b. The computational cost can now be estimated by taking a
discretization of approximately 44 elements per �b (see § 4.2 of Möri & Lecampion 2022)
and an approximation of the constant breadth b(t) ≈ π−1/3�b, yielding about 2 × 106

elements in the fracture. Our current implementation of PyFrac (Zia & Lecampion 2020)
can handle buoyant simulations covering up to 20 orders of magnitude in time and up
to 15 orders of magnitude in space within about 4 weeks of computation time on a
multithreaded Linux desktop system with 12 Intel�Core i7-8700 CPUs, using at most
30 GB of RAM, and discretization of up to 2 × 105 elements within the fracture footprint.
It is worth noting that the simulation with Mk̂ = 1 tends towards the predicted �(t) ∝ t1/3

propagation with a significant offset. This difference is related to the inherent assumption
of (5.2a,b) that the total released volume is significantly larger than the volume of the
head (Vhead � Vo). The difference can thus be related to the ratio of the two volumes
or equivalently to Bks (see (3.1)). We show in the supplementary material available at
https://doi.org/10.1017/jfm.2023.711 (§ 1.2) that reaching the solution to within 5 % is only
possible if Bks ≥ 12. For all simulations presented in figure 4, the fracture height could get
within only ∼17 % (for Bks = 4) of (5.2a,b). Reaching the exact solution efficiently would
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require a toughness-dominated fracture Mk̂ ≤ 10−2 with Bks ≥ 12, which becomes even
more challenging than the calculations presented previously.

An additional issue presents closing cells at the bottom of the fracture. As the
opening reduces continuously (see w[V]

k̂
in (5.2a,b)), and we do not allow for complete

fracture healing, a minimum width activates (Zia & Lecampion 2020; the minimum
width is considered fluid-filled, and we continue solving the width-averaged lubrication
approximation for these cells). In the context of HFs in rocks, such a minimum aperture
relates to the roughness of the fracture. With the current system of closed, fluid-filled cells,
two effects arise. First, elastic contact stress changes the stress distribution. Second, some
fluid volume gets trapped, reducing that available for fracture propagation. Both effects
slow down propagation and ultimately arrest the fracture (Pezzulli 2022). They further
increase the nonlinearity of the system, such that convergence is challenging, leading to a
breakdown of the simulation at late time t � ts. A possible remedy would be to remove
these closed cells from the fracture domain, and re-allocate the fluid that they contain.

5.2. Viscosity-dominated at the end of the release (regions 4–6): Mk � 1
The difference between a buoyant or radial end of the release has been shown to depend on
the dimensionless viscosity at the end of the release Bms (see (3.2), § 3.2). An additional
separation between two possible cases of buoyant fractures at the end of the release is
required to evaluate accurately the emerging shape. Möri & Lecampion (2022) have shown
that whenever a finite fracture toughness is present (e.g. KIc /= 0), lateral growth stabilizes
within a finite time at max

z,t
{b(z, t)} ∝ M2/5

k̂
�b. The time of stabilization is related to a

dimensionless lateral toughness Km̂,x(t) (see their (6.1)), which we can evaluate at the end
of the release:

Km̂s,x = Km̂,x(t = ts) = KIc
Δγ 1/8 t1/3

s

E′19/24V1/8
o μ′1/3

= M1/3
k̂

B25/72
ks . (5.5)

A value Km̂s,x ≥ 1 indicates that lateral growth has ceased, whereas a value below 1
means that the fracture is still growing laterally as b ∼ t1/4 (see (5.4) of Möri & Lecampion
2022).

5.2.1. Viscosity-dominated, buoyant fracture at the end of the release without laterally
stabilized breadth (region 5): Bms ≥ 1 and Km̂s,x � 1

First, we consider the case of zero-fracturing toughness by developing a tail scaling. The
principal hypotheses are buoyant forces, elasticity and viscous energy dissipation at first
order, and an aspect ratio scaling like the respective lateral and horizontal fluid velocities
(�(t)/b(t) ∼ vz(t)/vx(t)):

�
[V]
m̂ = V1/2

o Δγ 1/2 t1/3

E′1/6μ′1/3 , b[V]
m̂ = E′1/4V1/4

o

Δγ 1/4 ,

w[V]
m̂ = V1/4

o μ′1/3

E′1/12 Δγ 1/4 t1/3 , p[V]
m̂ = E′2/3μ′1/3

t1/3 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.6)

Note that Davis et al. (2023) presented the same scaling for fracture length. The finite
volume inherently prevents the infinite lateral growth observed for a continuous release,
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Figure 6. Evolution of (a) fracture length �(t)/�(t = ts) and (b) head breadth bhead(t)/�b for
viscosity-dominated buoyant non-stabilized fractures at the end of the release as a function of the dimensionless
shut-in time t/ts: Mk̂ � 1, Bks ≥ 1, Km̂x,s < 1. Dash-dotted lines with colours identical to simulations
(continuous lines) in (a) show the corresponding late-time, 3-D K̂[V] GG (2014) solution; the blue dashed
line shows the continuous-release buoyant scaling �(t)/�(t = ts) ∼ t5/6; the blue dash-dotted line shows a
numerical zero-toughness fit �(t)/�(t = ts) ≈ 1.62(t/ts)0.33 (matching the M̂[V] scaling). The green dashed
line in (b) indicates the late-time limit of the 3-D K̂ GG (2014) solution for the corresponding simulation.
The blue dashed line indicates the scaling dependence in the M̂[V] scaling bhead(t) ∼ t−1/6. Note that the two
zero-toughness simulations differ by their value of Bms (100 for the dark red simulation and 25 for the light red
simulation).

and b[V]
m̂ is time-independent. Figure 6(b) shows limited lateral growth for all simulations.

It is interesting to note that the scaling predicts a fracture length evolution with a � ∼ t1/3

power law, equivalent to the height evolution in the toughness-dominated case. Figure 6(a)
shows this evolution for various viscosity-dominated simulations. When Mk̂ is sufficiently
large and Km̂s � 1 (in other words, when the fracture is sufficiently far from lateral
stabilization), the 1 : 3 slope predicted by the scaling (5.6) emerges. However, the height
growth quickly departs from the t1/3 power law. The reason is the time-dependent inflow
rate of the head (derived from the scaling (5.6)):

�
head,[V]
m̂ = bhead,[V]

m̂ = E′11/24V1/8
o μ′1/6

Δγ 5/8 t1/6 , whead,[V]
m̂ = V1/4

o μ′1/3

E′1/12 Δγ 1/4 t1/3 ,

phead,[V]
m̂ = E′11/24V1/8

o μ′1/6 Δγ 3/8

t1/6 , Vhead,[V]
m̂ = E′5/6V1/2

o μ′2/3

Δγ 3/2 t2/3 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.7)

revealing a shrinking viscous head.
Considering now a finite fracture toughness, a dimensionless toughness can be obtained

in the head:

K[V]
m̂ (t) = KIc

t1/4

E′11/16V3/16
o Δγ 1/16 μ′1/4

= B5/48
ks M[V]

k̂
(t)−1/4 = B5/48

ks M−1/4
k̂

(
t
ts

)1/4

.

(5.8)

Equation (5.8) indicates that the head will become toughness-dominated at late times as
K[V]

m̂ (t) increases with time. From this observation, we anticipate that the region close
to the propagating head will ultimately follow the 3-D K̂[V] GG (2014) head solution
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(see § 5.1.1) and derive the characteristic time scale of the transition

t[V]
m̂k̂

= E′11/4V3/4
o Δγ 1/4 μ′

K4
Ic

. (5.9)

Evaluating the viscosity-dominated head scaling (see (5.7)) at this characteristic time
gives the scales of the toughness-dominated head (see (5.2a,b)). This observation implies
that even though the shape further away from the head varies, the length scale �(t)[V]

k̂
becomes applicable. Relating the two length scales of buoyant fractures from a finite
volume release,

�
[V]
k̂

(t) = B5/18
ks �

[V]
m̂ (t), (5.10)

shows that �
[V]
k̂

(t) ≥ �
[V]
m̂ (t) for a buoyant fracture (as Bks ≥ 1). The observation of

figure 6(a) shows the fracture deviation from the lower, viscosity-dominated solution
towards the upper, toughness-dominated solution (shown by dash-dotted lines for two
simulations). The observed faster growth in height originates in the narrowing of the
tail, creating a lateral inflow from the stagnant parts of the fracture into a central tube
of the fixed breadth predicted by the 3-D K̂[V] GG (2014) solution. We do not present a
simulation that finishes the transition to the toughness-dominated regime due to its high
computational cost (see the discussion in § 5.1.1).

In (5.4), we have introduced the overrun as a characteristic of the fracture shape. In the
case of viscous fractures with a buoyancy-dominated, laterally non-stabilized end of the
release, such overrun can be estimated from the viscous scaling as

Om̂ = b[V]
m̂ − π−1/3�b

π−1/3�b
= π1/3 E′1/4V1/4

o Δγ 5/12

K2/3
Ic

− 1 = π1/3B5/12
ks − 1. (5.11)

The increase of the overrun with the value of the dimensionless buoyancy Bks is
observable in figure 2.

5.2.2. Viscosity-dominated, buoyant fracture at the end of the release with laterally
stabilized breadth (region 4): Bms ≥ 1 and Km̂s,x ≥ 1

Lateral stabilization of buoyant, viscosity-dominated fractures occurs when the volume of
the fracture head becomes constant, leading to two fixed points, the laterally stabilized
breadth with max

z,t
{b(z, t)} ∼ M2/5

k̂
�b, and the constant-volume, constant-breadth head.

The section of extending fracture breadth in between the two conserves its shape, creating
a fracture where elongation concentrates within the zone of laterally stabilized breadth.
From this observation, one can draw an analogy to a toughness-dominated buoyant fracture
(see § 5.1). The scales of this equivalent toughness-dominated fracture are related through
a factor M2/5

k̂
, such that the behaviour after the end of the release will be the same as

presented in § 5.1, differing only by the starting point (M2/5
k̂

instead of Mk̂).
Because the processes after the end of the release do not differ from

toughness-dominated fractures, we omit a detailed discussion of this case hereafter and
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3-D buoyant hydraulic fractures: finite volume

only list the difference in the shape parameter:

Ostab
m̂ =

M2/5
k̂

�b − π−1/3�b

π−1/3�b
= π1/3M2/5

k̂
− 1. (5.12)

The overrun in the non-stabilized case of viscosity-dominated fractures depends solely
on the dimensionless buoyancy Bks and, as such, on the total released volume and elastic
parameters. In contrast, the governing parameter of the stabilized case is the dimensionless
viscosity Mk̂, and the history of the release (how the total volume gets accumulated)
governs the overrun of the fracture.

5.2.3. Viscosity-dominated fracture with negligible buoyancy at the end of the release
(region 6): Bms � 1

This type of fracture becomes buoyant in the pulse propagation phase as long as its
dimensionless buoyancy Bks (see (3.1)) is larger than 1. This transition from radial to
buoyant propagation is characterized by the dimensionless buoyancy of the viscous pulse
M[V] scaling B[V]

m (t) (see (3.5)) and has a characteristic transition time

t[V]
mm̂ = E′5/4μ′

V3/4
o Δγ 9/4

= B−5/2
ks t[V]

m̂k̂
. (5.13)

The corresponding transition length scale is equivalent to the constant breadth of
a buoyant viscosity-dominated fracture �

[V]
m (t = t[V]

mm̂) = �
[V]
mm̂ = b[V]

m̂ , indicating that the
maximum breadth is reached at the transition. Figure 7(d) shows that for an increasing
dimensionless buoyancy Bks (see (3.1)), the growth of the maximal breadth continues
(solid lines) after transition but remains within the order of magnitude predicted by
the scaling (5.6). Lateral growth ultimately tapers off at approximately 3�

[V]
mm̂ at t ≈

103t[V]
mm̂. The expected overrun becomes equivalent to the case of a non-stabilized, buoyant

viscosity-dominated end of the release (see (5.11)).
The scaling for these fractures is given by (5.6) and (5.7). Despite the distinct

propagation histories, the late-time fracture footprint does not vary significantly (see
figure 8). Similar to the case of a constant release, the fracture first becomes somewhat
elliptical, with a peak in pressure and opening appearing in the fracture head. Propagation
then deviates to the buoyant direction with a continuously shrinking head, and no saddle
point develops between the maximum lateral extent and the head. In the case of finite
fracture toughness, an inflexion point forms in this area, such that the evolution of the
breadth towards the head becomes convex at the transition time t[V]

m̂k̂
(see (5.9)). Note that

the bottom ends of the fractures in figures 7(h,i) seem to be of uniform opening. This
uniform opening results directly from activating the minimum width of the numerical
scheme.

When observing the evolution of the fracture length and head breadth, one observes that
the simulations approach the 3-D K̂[V] GG (2014) solution for cases with finite toughness.
The breadth and length evolution of the 3-D K̂[V] GG (2014) solution in the viscous
buoyant scaling (see (5.6) and (5.7)) depends on the value of Bks such that we indicate only
one of the possible late-time solutions. We pick the one that is most likely to be reached,
corresponding to the smallest value of Bks for the length and the largest for the breadth
with dashed orange lines. The tendency towards those solutions is visible. Reaching them
exactly is, however, associated with too high computational costs (see the discussion in
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Figure 7. Viscosity-dominated fractures with negligible buoyancy at the end of the release: Bks ≥ 1
and Bms � 1. (a) Opening along the centreline w(0, z, t)/w[V]

mm̂ for Mk̂ = ∞, Bks = ∞ and Bms = 10−3

(zero-toughness case). (b) Net pressure along the centreline p(0, z, t)/p[V]
mm̂ for the same case as in (a). (c)

Fracture length �(t)/�[V]
mm̂ for large viscosity Mk̂ ∈ [5.1 × 105, ∞] simulations. The blue dashed line is a fit

of the zero-toughness simulation �(t) ∝ t0.33. (d) Fracture breadth b(t)/�[V]
mm̂ (solid lines) and head breadth

bhead(t)/�[V]
mm̂ (dashed lines) for the same simulations. Purple dashed lines indicate the M[V] solution (Möri &

Lecampion 2021); orange dashed lines indicate the 3-D K̂[V] GG (2014) solution for the highest value of Bks.
(e–i) Evolution of the fracture footprint from radial (e) towards the late-time shape (h,i) for the zero-toughness
simulation. For the definition of the transition scales ·[V]

mm̂, see table 4.

§ 5.1.1). The evolution of fracture opening and net pressure is plotted along the centreline
(e.g. x = 0) in figures 7(a,b). The head is identified once it departs from the source before
it subsequently shrinks. This shrinking makes the head volume negligible compared to the
overall fluid volume after sufficient buoyant propagation. When this moment is reached,
the fracture propagates in the viscosity-dominated regime (see also the nearly self-similar
footprint reported in the supplementary material). The supplementary material shows that
the opening along the centreline approaches the 2-D solution of Roper & Lister (2005).
An approximated solution may be possible when combining the zero toughness head
(cf. figure 7 of Möri & Lecampion 2022) with the tail solution of Roper & Lister (2007)
(see their (6.7)), but this is left for further study.
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Mk̂ = 1.0 × 10–2

Bks = 1.03

Mk̂ = 5.0 × 102

Bks = 2.72 × 102

Mk̂ = 5.0 × 103

Bks = 1.75 × 102

Mk̂ = 1.0

Bks = 2.0

Mk̂ = ∞
Bks = ∞

(a) (b) (c) (d ) (e)

Figure 8. Phenotypes of possible buoyant HFs of finite volume emerging from a point source (Bks ≥ 1).
(a) Toughness-dominated finger-like fracture (region 3 in figure 1). (b) Intermediate fracture with a stable
breadth and negligible overrun. (c) Viscosity-dominated buoyant end of the release with stabilized breadth
(region 4 in figure 1). (d) Viscosity-dominated buoyant end of the release without stabilized breadth (region 5
in figure 1). (e) Zero-toughness case with a buoyant end of the release (Bms = 102). Here, (a,b) are scaled by
�b (Lister & Kerr 1991), and (c–e) by �

[V]
mm̂ (see table 4).

5.3. Late-time fracture shapes
The governing mechanisms delimiting the different regions of the parametric space of
figure 2 give rise to different phenotypes of fracture shape. Figure 8 displays the late-time
shapes of buoyant fractures in different regions (3–5) of the parametric space. Figure 8(a)
shows the characteristic shape of a toughness-dominated buoyant fracture at the end of the
release (region 3). The footprint is finger-like with a constant breadth and head volume.
Already early in the propagation, the bulk of the released volume is located in the head
(indicated by the colour code). Except in the source region and for the expanding head,
no change in breadth is observed, and the overrun O (see (5.4)) is zero. For fractures
with a uniform breadth, not validating the toughness solution (e.g. Mk̂ ∈ [10−2, 102]
and Bks ≥ 1, between regions 3 and 4), the bulk of the fluid volume is similarly in
the head. One difference is the change in breadth observed close to the source region
related to the end of the release, giving rise to a small, non-zero overrun. When the
fractures are more viscosity-dominated (see figures 8c–e), the overrun becomes more
pronounced, and the opening distribution is more homogeneous along the fracture length.
For example, figure 8(c) shows a viscosity-dominated, buoyant fracture with a stabilized
breadth at the end of the release (region 4) with a barely visible head (light red area
at the propagating edge). The red-coloured part extending long into the tail shows that
the tail opening is much closer to the head opening than in the toughness-dominated
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cases of figures 8(a,b). The particularity of this phenotype is its uniform breadth over a
finite height due to lateral stabilization (associated with a finite fracture toughness value).
Figure 8(d) (region 5) emphasizes the approach to the late-time 3-D K[V] GG (2014)
solution of viscosity-dominated fractures by the thinning of the breadth along the fracture
length towards its head. The head breadth of this simulation still exceeds the limiting
solution by a factor of about 4.7, and the opening distribution along the fracture is still
too homogeneous. In other words, a significant proportion of the volume remains in the
tail (compare the grey colour in figure 8(a) with the green colour in figure 8(d)). The last
phenotype, in figure 8(e), represents the case of a zero-toughness simulation with a buoyant
end of the release. Comparing this shape to the zero-toughness simulation with negligible
buoyancy at the end of the release (cf. figures 7h,i) reveals no significant difference. All
zero-toughness simulations, independent of the state at the end of the release, will show
this particular shape. Only if a finite fracture toughness is present will the fracture tend to
the late-time 3-D K[V] GG (2014) solution, and the shape will resemble figure 8(d) (see
also figure 1(b) of Davis et al. 2023).

6. Discussion

6.1. Implications for industrial treatments
We consider a single stage of a multistage fracturing treatment in a horizontal well, taking
the fluid properties as the ones of slickwater (Economides & Nolte 2000; Lecampion &
Zia 2019) with density ρf ≈ 1000 kg m−3 and viscosity μ ≈ 0.005 Pa s. We consider a
relatively compliant rock with Young’s modulus E ≈ 10 GPa, Poisson’s ratio ν ≈ 0.1,
density of ρs ≈ 2300 kg m−3, and fracture toughness KIc ≈ 2 MPa m1/2. Assuming that
the reservoir and fracturing fluids have similar densities (ρF ≈ ρf ), the effective density
contrast (2.8) becomes Δγ = α(ρs − ρf )g. Typical injection rates are of the order of Qo ≈
0.1–0.3 m3 s−1, with total fluid volume Vo ≈ 1500–5700 m3. With this set of material,
fluid and injection parameters, the critical volume for buoyant propagation as a function
of the lateral Earth pressure coefficient α reads Vlim(α) ≈ 0.90α−5/3 (see (2.12)). For
the fluid release with the smallest volume Vo ≈ 1500 m3 to become buoyant, the lateral
Earth pressure coefficient must exceed α � 0.012. When using a lateral Earth pressure
coefficient at rest α = ν/(1 − ν) = 0.11, the fracture becomes buoyant with dimensionless
buoyancy Bks ≈ 9.51 (3.1). It is necessary to reduce the horizontal stress gradient by
about 90 % (through tectonic relaxation or other processes) to prevent buoyant propagation
under these conditions. Note that the corresponding dimensionless viscosity is of the
order of Mk̂ ≈ 0.60–10.0 (see (2.10)) for the release rates considered. The emerging
buoyant fractures are thus situated somewhere in between the toughness-dominated region
3 (§ 5.1), and the viscosity-dominated regions 4 and 5 (§§ 5.2.2 and 5.2.1).

6.2. Comparison with experiments
We compare recent laboratory experiments with our scalings and numerical simulations.
We use three sets of parameters from experiments performed by Smittarello (2019) and
reported in Davis et al. (2023) (see table 2). Table 2 lists the resulting dimensionless
parameters. These fractures appear to be toughness-dominated (experiment 1837) or in the
transition with a uniform breadth (experiments 1945 and 1967). We report the evolution
of fracture height with time in figure 9 (data from the experiments of figure 5(a) of
Davis et al. 2023). Along with the three experiments, we show our simulation closest
to experiments 1945 and 1967 as well as the limiting solutions derived by Garagash &
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Unit Exp. 1837 Exp. 1945 Exp. 1967

μf Pa s 1.74 × 10−3 48 × 10−3 970 × 10−3

E Pa 1345 426 944
ν — 0.5 0.5 0.5
KIc Pa m1/2 23.1 7.3 16.2
Δγ Pa m−1 2600 1600 1500
Vo m3 2 × 10−5 1 × 10−5 1 × 10−5

Qo m3 s−1 1.23 × 10−7 8.33 × 10−7 1.11 × 10−7

ts s 162 12 90
Mk̂ — 1.20 × 10−3 1.11 0.76
Bks — 2.28 2.93 1.24
Bms — 57.7 3.85 1.49

Table 2. Material parameters and the released volume Vo are taken from table 3 of Davis et al. (2023) (based
on the work of Smittarello 2019). We extract the shut-in time from figure 5(a) of Davis et al. (2023) and
calculate the release rate as Qo = Vo/ts.

Germanovich (2014). The toughness-dominated experiment (experiment 1837) displays a
linear fracture height growth with time, expected from the continuous release scaling.
Surprisingly, the end of the release does not lead to a significant reduction in height
growth (cf. the simulation with Mk̂ = 10−2 in figure 4b), which continues linearly until
it reaches the top of the tank (end of the data stream). We expect this to be related to
free-surface effects attracting the fracture, a hypothesis supported by observations of the
other two experiments. The fractures of the other experiments grow without showing any
scaling-based power laws. This behaviour is typical for many laboratory experiments,
which unfortunately appear to be ‘in between’ limiting regimes. Additionally, the extent
of the HFs created often suffers from detrimental effects associated with the finite size of
the sample, making any comparison with theoretical and numerical predictions difficult.

The fact that the release rate in laboratory experiments is often not constant presents an
additional inconvenience. Indeed, at early time, the interplay between compressibility of
the injection line and fracture initiation leads to a non-constant entering flux (Lecampion
et al. 2017). In addition, for many experiments related to buoyancy, the fluid is injected
manually using a syringe, which is likely the case here. Especially in viscosity-dominated
fracture propagation regimes, this has a significant influence on fracture growth via Mk̂.
Another possible effect is given by the ‘oriented’ fluid release with a syringe from the
bottom of the tank rather than perpendicular to the fracturing plane. Such a difference
notably influences the early propagation phase, which should be radial and reproduced
accurately (note that PyFrac has been shown to reproduce laboratory experiments of
initially radial HFs with success; Zia & Lecampion 2019; Peruzzo 2023).

The complete parametric space characterizing 3-D finite-volume buoyant HFs described
in this paper should help to better design experiments within well-defined propagation
history.

7. Conclusions

We have shown that finite-volume hydraulic fractures (HFs) are characterized
entirely by a dimensionless buoyancy Bks = Δγ E′3/5V3/5

o /K8/5
Ic relating the total

released Vo to the minimum volume necessary for self-sustained buoyant propagation,
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Figure 9. Fracture height evolution as a function of dimensionless time for the experiments listed in table 2.
Data extracted from figure 5(a) of Davis et al. (2023) based on experiments reported in Smittarello (2019). The
black line shows a simulation with dimensionless numbers similar to experiments 1945 and 1967. Purple dots
mark the moment when the fracture becomes toughness-dominated (e.g. t = tmk), and dashed lines indicate the
limiting solutions derived by Garagash & Germanovich (2014): green for a continuous release, orange for the
release of a finite volume.

Vhead
k̂

= K8/3
Ic /(E′ Δγ 3/5), namely Bks = (Vo/Vhead

k̂
)3/5, and a dimensionless viscosity

Mk̂ = μ′QoE′3 Δγ 2/3/K14/3
Ic representative of the ratio between the energy dissipation

through viscous flow and the creation of new surfaces at the change from radial to buoyant
propagation. Although the emergence (or not) of a self-sustained buoyant fracture depends
solely on Bks – in other words, on the total volume released and material and fluid
parameters – the details of the release (duration and injection rate) have a first-order impact
on the shape and propagation rates of the fracture through the dimensionless viscosity Mk̂.
Combining these two dimensionless numbers (Bks, Mk̂) reveals six regions corresponding
to distinct propagation histories (see figure 2 and table 1).

For a finite value of the material fracture toughness (KIc /= 0), the toughness-dominated
pulse solution of Garagash & Germanovich (2014) characterizes the late-time buoyant
head and the fracture breadth in its vicinity (bhead = π−1/3�b). Note that such a late-time
solution may appear only at very late times and that it does not describe the complete
fracture shape. In the zero-toughness case (KIc = 0), the fracture head continues to lose
fluid such that its volume approaches zero asymptotically. Due to the finiteness of the
released volume, the maximum lateral breadth stabilizes at a finite value even for the
zero-toughness case. It is thus possible to relate the limiting breadth close to the head,
given by the solution of Garagash & Germanovich (2014), to the stabilized maximum one.
We define this parameter as the overrun O, and derive its value for the different regions of
the parametric space. Note that this parameter gives only an idea of the shape: a similar
overrun does not imply that the fracture has the same overall shape. When the fracturing
toughness is zero, the head breadth tends to zero (e.g. �b = 0 → bhead = 0), resulting in an
infinite overrun. It is important to note that this does not imply unbounded lateral growth,
as lateral growth is limited by the finite volume rather than fracture toughness.
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The identified late-time behaviour further fixes the late-time ascent rate to
the toughness-dominated solution as �̇

[V]
k̂

(t) ∼ V2/3
o Δγ 7/9/(K4/9

Ic μ′1/3t2/3) ∝ t1/3. An
important observation is that the time power-law dependence of the ascent rate for
a viscosity-dominated buoyant fracture is equivalent (e.g. �̇

[V]
m̂ ∼ V1/2

o Δγ 1/2/(E′1/6

μ′1/3t2/3) ∝ t1/3). During its history, a buoyant HF can first ascend in a viscosity-
dominated manner as �̇

[V]
m̂ (t), and then transition to the limiting ascent rate dictated by

the late toughness solution �̇
[V]
k̂

(t). The late-time ascent rate of the toughness limit is

always faster than (or at least equal to) that of the viscosity-dominated limit (�̇[V]
k̂

(t) =
B5/18

ks �̇
[V]
m̂ (t), with Bks ≥ 1 for a self-sustained buoyant fracture). Fractures transitioning

when the fluid release is still ongoing can show even higher velocities during their
propagation history. Estimations or averaging of vertical growth rates must be done with
great care and must necessarily account for both Mk̂ and Bks. In other words, both the
details of the release history (rate and duration) do significantly impact the ascent rate
even long after the end of the release. The dependence on the release history implies that
for realistic cases (as well as laboratory experiments), the details of the release matter such
that a more complicated evolution of the release (compared to the simple constant release
rate / finite duration) will undoubtedly impact the growth of buoyant fractures.

Notably, most parameter combinations for anthropogenic HFs would lead to
self-sustained buoyant propagation between the well-distinct regions of the parametric
space depicted in figure 2. Additionally, the time required to reach the late-time solution at
the propagating edge, and the fracture size when doing so, naturally clash with sample
sizes in the laboratory or the scales of heterogeneities in the upper lithosphere. We
emphasize that even though theoretically buoyant fractures emerge (see § 6.1), to our
knowledge, nearly no cases of buoyant fractures from hydraulic fracturing treatments
reaching the surface have been reported. We expect this to originate from the interaction
with heterogeneities, fluid leak-off, confining stress jumps, and other possible arrest
mechanisms not considered in this paper.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.711.
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Appendix. Recapitulating tables of scales

We list all the characteristic scales used within this paper in tables 3 and 4, for
completeness. A Wolfram Mathematica notebook containing their derivation and the
different scalings is also provided as supplementary material.

972 A20-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.711
https://doi.org/10.5281/zenodo.7788051
https://orcid.org/0000-0002-7951-1238
https://orcid.org/0000-0002-7951-1238
https://orcid.org/0000-0001-9201-6592
https://orcid.org/0000-0001-9201-6592
https://doi.org/10.1017/jfm.2023.711


A. Möri and B. Lecampion

R
ad

ia
l

E
lo

ng
at

ed

M
[V

]
K

[V
]

M̂
[V

]
(t

ai
l)

M̂
[V

]
(h

ea
d)

K̂
[V

]
(t

ai
l)

K̂
[V

]
(h

ea
d)

�
[V

]
∗

E
′1/

9 V
1/

3
o

t1/
9

μ
′1/

9
E

′2/
5 V

2/
5

o

K
2/

5
Ic

V
1/

2
o

Δ
γ

1/
2

t1/
3

E
′1/

6 μ
′1/

3
E

′11
/
24

V
1/

8
o

μ
′1/

6

Δ
γ

5/
8

t1
/
6

V
2/

3
o

Δ
γ

7/
9

t

K
4/

9
Ic

μ
′1/

3
�

b

b[V
]

∗
�

[V
]

∗
�

[V
]

∗
E

′1/
4 V

1/
4

o

Δ
γ

1/
4

�
he

ad
,[

V
]

∗
�

b
=

K
2/

3
Ic

Δ
γ

2/
3

�
∗

w
[V

]
∗

V
1/

3
o

μ
′2/

9

E
′2/

9 t
2/

9

K
4/

5
Ic

V
1/

5
o

E
′4/

5
V

1/
4

o
μ

′1/
3

E
′1/

12
Δ

γ
1/

4
t1

/
3

w
ta

il,
[V

]
∗

V
1/

3
o

μ
′1/

3

K
2/

9
Ic

Δ
γ

1/
9

t1
/
3

K
4/

3
Ic

E
′ Δ

γ
1/

3

V
[V

]
∗

V
o

V
o

V
o
−

V
he

ad
,[

V
]

∗
E

′5/
6 V

1/
2

o
μ

′2/
3

Δ
γ

3/
2

t2
/
3

V
o
−

V
he

ad
,[

V
]

∗
K

8/
3

Ic

E
′ Δ

γ
5/

3

p[V
]

∗
E

′2/
3 μ

′1/
3

t1
/
3

K
6/

5
Ic

E
′1/

5 V
1/

5
o

E
′2/

3 μ
′1/

3

t1
/
3

E
′11

/
24

V
1/

8
o

μ
′1/

6
Δ

γ
3/

8

t1
/
6

E
′ Δ

γ
5/

9
V

1/
3

o
μ

′1/
3

K
8/

9
Ic

t1
/
3

K
2/

3
Ic

Δ
γ

1/
3

P[V
]

s
K[V

]
m

=
(t

/
t[V

]
m

k
)5/

18
M

[V
]

k
=

(t
/
t[V

]
m

k
)−

1
K[V

]
m̂

=
(M

[V
]

k̂
)−

1/
4 B

5/
48

ks
M

[V
]

k̂
=

μ
′V

oE
′3

Δ
γ

2/
3

K
14

/
3

Ic
t

B[V
]

m
=

(t
/
t[V

]
m

m̂
)4/

9
B[V

]
k

=
Δ

γ
E

′3/
5 V

3/
5

o

K
8/

5
Ic

—
—

—
—

Ta
bl

e
3.

C
ha

ra
ct

er
is

tic
sc

al
es

(a
nd

go
ve

rn
in

g
di

m
en

si
on

le
ss

pa
ra

m
et

er
s)

in
th

e
di

ff
er

en
ts

ca
lin

gs
.

972 A20-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.711


3-D buoyant hydraulic fractures: finite volume

t[V
]

�
[V

]
∗

=
b[V

]
∗

w
[V

]
∗

p[V
]

∗

M
[V

]
→

K
[V

]
t[V

]
m

k
=

E
′13

/
5 V

3/
5

o
μ

′

K
18

/
5

Ic

�
[V

]
m

k
=

E
′2/

5 V
2/

5
o

K
2/

5
Ic

w
[V

]
m

k
=

K
4/

5
Ic

V
1/

5
o

E
′4/

5
p[V

]
m

k
=

K
6/

5
Ic

E
′1/

5 V
1/

5
o

M
[V

]
→

M̂
[V

]
t[V

]
m

m̂
=

E
′5/

4 μ
′

V
3/

4
o

Δ
γ

9/
4

�
[V

]
m

m̂
=

E
′1/

4 V
1/

4
o

Δ
γ

1/
4

w
[V

]
m

m̂
=

V
1/

2
o

Δ
γ

1/
2

E
′1/

2
p[V

]
m

m̂
=

E
′1/

4 V
1/

4
o

Δ
γ

3/
4

M̂
[V

]
→

K̂
[V

]
(t

ai
l)

t[V
]

m̂
k̂

=
E

′11
/
4 V

3/
4

o
Δ

γ
1/

4
μ

′

K
4 Ic

�
[V

]
m̂

k̂
=

E
′1/

4 V
1/

4
o

Δ
γ

1/
4

w
[V

]
m̂

k̂
=

K
4/

3
Ic

E
′ Δ

γ
1/

3
p[V

]
m̂

k̂
=

K
4/

3
Ic

E
′1/

4 V
1/

4
o

Δ
γ

1/
12

M̂
[V

]
→

K̂
[V

]
(h

ea
d)

—
�

he
ad

,[
V

]
m̂

k̂
=

�
b

=
K

2/
3

Ic

Δ
γ

2/
3

w
he

ad
,[

V
]

m̂
k̂

=
w

[V
]

m̂
k̂

phe
ad

,[
V

]
m̂

k̂
=

K
2/

3
Ic

Δ
γ

1/
3

Ta
bl

e
4.

Tr
an

si
tio

n
sc

al
es

be
tw

ee
n

re
gi

m
es

.T
he

tr
an

si
tio

n
sc

al
es

of
th

e
M

[V
]
→

K
[V

]
tr

an
si

tio
n

co
rr

es
po

nd
to

th
e

K
[V

]
sc

al
es

,a
nd

th
e

tr
an

si
tio

n
sc

al
es

of
th

e
M̂

[V
]
→

K̂
[V

]
(h

ea
d)

to
th

e
K̂

[V
]

sc
al

es
of

th
e

he
ad

,g
iv

en
re

sp
ec

tiv
el

y
as

K
[V

]
an

d
K̂

[V
]

(h
ea

d)
in

ta
bl

e
3.

972 A20-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.711


A. Möri and B. Lecampion

REFERENCES

DAHM, T. 2000 On the shape and velocity of fluid-filled fractures in the Earth. Geophys. J. Intl 142 (1),
181–192.

DAVIS, T., RIVALTA, E. & DAHM, T. 2020 Critical fluid injection volumes for uncontrolled fracture ascent.
Geophys. Res. Lett. 47 (14), e2020GL087774.

DAVIS, T., RIVALTA, E., SMITTARELLO, D. & KATZ, R.F. 2023 Ascent rates of 3-D fractures driven by a
finite batch of buoyant fluid. J. Fluid Mech. 954, A12.

DETOURNAY, E. 2016 Mechanics of hydraulic fractures. Annu. Rev. Fluid Mech. 48, 311–339.
ECONOMIDES, M.J. & NOLTE, K.G. 2000 Reservoir Stimulation. John Wiley & Sons.
GARAGASH, D.I. & GERMANOVICH, L.N. 2014 Gravity driven hydraulic fracture with finite breadth.

In Proceedings of the Society of Engineering Science 51st Annual Technical Meeting (ed. A. Bajaj,
P. Zavattieri, M. Koslowski & T. Siegmund). Purdue University Libraries Scholarly Publishing Service.

GARAGASH, D.I. & GERMANOVICH, L.N. 2022 Notes on propagation of 3D buoyant fluid-driven cracks.
arXiv:2208.14629.

JEFFREY, R.G., CHEN, Z., MILLS, K.W. & PEGG, S. 2013 Monitoring and measuring hydraulic fracturing
growth during preconditioning of a roof rock over a coal longwall panel. In ISRM International Conference
for Effective and Sustainable Hydraulic Fracturing, p. 22. International Society for Rock Mechanics and
Rock Engineering.

LECAMPION, B., DESROCHES, J., JEFFREY, R.G. & BUNGER, A.P. 2017 Experiments versus theory for the
initiation and propagation of radial hydraulic fractures in low permeability materials. J. Geophys. Res. 122,
1239–1263.

LECAMPION, B. & ZIA, H. 2019 Slickwater hydraulic fracture propagation: near-tip and radial geometry
solutions. J. Fluid Mech. 880, 514–550.

LISTER, J.R. & KERR, R.C. 1991 Fluid-mechanical models of crack propagation and their application to
magma transport in dykes. J. Geophys. Res. 96 (B6), 10049–10077.

MÖRI, A. & LECAMPION, B. 2021 Arrest of a radial hydraulic fracture upon shut-in of the injection. Intl J.
Solids Struct. 219–220, 151–165.

MÖRI, A. & LECAMPION, B. 2022 Three-dimensional buoyant hydraulic fractures: constant release from a
point source. J. Fluid Mech. 950, A12.

PEIRCE, A.P. & DETOURNAY, E. 2008 An implicit level set method for modeling hydraulically driven
fractures. Comput. Meth. Appl. Mech. Engng 197 (33–40), 2858–2885.

PERUZZO, C. 2023 Three-dimensional hydraulic fracture propagation in homogeneous and heterogeneous
media. PhD thesis, EPFL thesis no. 10105, Lausanne, available at http://infoscience.epfl.ch/record/302100.

PEZZULLI, E. 2022 Simulating hydraulic fracture propagation in crustal processes. PhD thesis, ETH Zürich.
RIVALTA, E., TAISNE, B., BUNGER, A.P. & KATZ, R.F. 2015 A review of mechanical models of dike

propagation: schools of thought, results and future directions. Tectonophysics 638, 1–42.
ROPER, S.M. & LISTER, J.R. 2005 Buoyancy-driven crack propagation from an over-pressured source.

J. Fluid Mech. 536, 79–98.
ROPER, S.M. & LISTER, J.R. 2007 Buoyancy-driven crack propagation: the limit of large fracture toughness.

J. Fluid Mech. 580, 359–380.
SALIMZADEH, S., ZIMMERMAN, R.W. & KHALILI, N. 2020 Gravity hydraulic fracturing: a method to create

self-driven fractures. Geophys. Res. Lett. 47 (20), e2020GL087563.
SAVITSKI, A. & DETOURNAY, E. 2002 Propagation of a penny-shaped fluid-driven fracture in an impermeable

rock: asymptotic solutions. Intl J. Solids Struct. 39 (26), 6311–6337.
SMITH, M.B. & MONTGOMERY, C.T. 2015 Hydraulic Fracturing. CRC Press.
SMITTARELLO, D. 2019 Propagation des intrusions basaltiques. PhD thesis, Université Grenoble Alpes.
SMITTARELLO, D., PINEL, V., MACCAFERRI, F., FURST, S., RIVALTA, E. & CAYOL, V. 2021

Characterizing the physical properties of gelatin, a classic analog for the brittle elastic crust, insight from
numerical modeling. Tectonophysics 812, 228901.

SPENCE, D.A., SHARP, P.W. & TURCOTTE, D.L. 1987 Buoyancy-driven crack propagation: a mechanism for
magma migration. J. Fluid Mech. 174, 135–153.

TADA, H., PARIS, P.C. & IRWIN, G.R. 2000 The Stress Analysis of Cracks Handbook, 3rd edn. ASME Press.
TANIKELLA, S.S., SIGALLON, M.C. & DRESSAIRE, E. 2023 Dynamics of fluid-driven fractures in the

viscous-dominated regime. Proc. R. Soc. Lond. A 479 (2271), 20220460.
VERNIK, L. 1994 Hydrocarbon-generation-induced microcracking of source rocks. Geophysics 59 (4),

555–563.
WEERTMAN, J. 1971 Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath

oceanic ridges. J. Geophys. Res. 76 (5), 1171–1183.

972 A20-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2208.14629
http://infoscience.epfl.ch/record/302100
https://doi.org/10.1017/jfm.2023.711


3-D buoyant hydraulic fractures: finite volume

ZIA, H. & LECAMPION, B. 2019 Explicit versus implicit front advancing schemes for the simulation of
hydraulic fracture growth. Intl J. Numer. Anal. Meth. Geomech. 43 (6), 1300–1315.

ZIA, H. & LECAMPION, B. 2020 PyFrac: a planar 3D hydraulic fracture simulator. Comput. Phys. Commun.
255, 107368.

972 A20-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.711

	1 Introduction
	2 Preliminaries
	2.1 Arrest of a finite-volume radial HF without buoyancy
	2.2 Buoyant HF under a continuous release
	2.3 Hydrostatically loaded radial fracture

	3 Arrest at depth versus self-sustained propagation of buoyant HFs
	3.1 Toughness-dominated at the end of the release
	3.2 Viscosity-dominated at the end of the release 
	3.2.1 Dominant buoyancy at the end of the release 
	3.2.2 Viscosity-dominated fracture with negligible buoyant forces at the end of the release 

	3.3 Structure of the solution for a finite volume release

	4 Fractures arrested at depth 
	5 Self-sustained finite-volume buoyant fractures: 
	5.1 Toughness-dominated, buoyant fractures at the end of the release (region 3): 
	5.1.1 Numerical limitations

	5.2 Viscosity-dominated at the end of the release (regions 4--6): 
	5.2.1 Viscosity-dominated, buoyant fracture at the end of the release without laterally stabilized breadth (region 5): 
	5.2.2 Viscosity-dominated, buoyant fracture at the end of the release with laterally stabilized breadth (region 4): 
	5.2.3 Viscosity-dominated fracture with negligible buoyancy at the end of the release (region 6): 

	5.3 Late-time fracture shapes

	6 Discussion
	6.1 Implications for industrial treatments
	6.2 Comparison with experiments

	7 Conclusions
	Appendix. Recapitulating tables of scales
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


