
APPLICATION PAPER

Identifying compound weather drivers of forest biomass loss
with generative deep learning

Mohit Anand1,2 , Friedrich J. Bohn3, Gustau Camps-Valls4, Rico Fischer5, Andreas Huth5,
Lily-belle Sweet1 and Jakob Zscheischler1,2

1Helmholtz Centre for Environmental Research—UFZ, Department of Compound Environmental Risks, Leipzig, Germany
2Technische Universität Dresden, Dresden, Germany
3Helmholtz Centre for Environmental Research—UFZ, Department of Computational Hydrosystems, Leipzig, Germany
4Image Processing Laboratory (IPL), Universitat de València, València, Spain
5Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Leipzig, Germany
Corresponding author: Mohit Anand; Email: mohit.anand@ufz.de

Received: 10 March 2023; Revised: 22 November 2023; Accepted: 11 January 2024

Keywords: compound events; extreme events; forest mortality; generative deep learning; variational autoencoder

Abstract

Globally, forests are net carbon sinks that partly mitigates anthropogenic climate change. However, there is evidence
of increasing weather-induced tree mortality, which needs to be better understood to improve forest management
under future climate conditions. Disentangling drivers of tree mortality is challenging because of their interacting
behavior over multiple temporal scales. In this study, we take a data-driven approach to the problem. We generate
hourly temperate weather data using a stochastic weather generator to simulate 160,000 years of beech, pine, and
spruce forest dynamics with a forest gap model. These data are used to train a generative deep learning model
(a modified variational autoencoder) to learn representations of three-year-long monthly weather conditions
(precipitation, temperature, and solar radiation) in an unsupervised way. We then associate these weather represen-
tations with years of high biomass loss in the forests and derive weather prototypes associated with such years. The
identified prototype weather conditions are associated with 5–22% higher median biomass loss compared to the
median of all samples, depending on the forest type and the prototype. When prototype weather conditions co-occur,
these numbers increase to 10–25%. Our research illustrates how generative deep learning can discover compounding
weather patterns associated with extreme impacts.

Impact Statement

Tree mortality is a complex phenomenon involving multiple processes at different temporal scales. Here, we rely
on very long simulations of a forest model and develop a method based on generative deep learning to find the
relationship between complex weather patterns and treemortality. The generative nature of themethod allows for
the generation of new realistic weather conditions outside of the provided samples, which are associated with
high biomass loss in a forest. Furthermore, themethod can be applied to different weather-driven impacts, adding
to the growing pool of explainable/interpretable data-driven methods for Earth system sciences.
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1. Introduction

Forests are the predominant atmospheric carbon sink on land that play a crucial role in mitigating
anthropogenic climate change. Forests sequestered 7.6 GtCO2e/yr on average between 2000 and 2019
(Harris et al., 2021), which amounted to 22% of the total fossil CO2 emissions during 2020 (Friedlingstein
et al., 2022). Additionally, forests regulate microclimates, sustain biodiversity, and provide ecosystem
services such as the production of timber, edible wild plants and fungi, pest control, and increasing
nitrogen availability (Felipe-Lucia et al., 2018). However, sudden and unexpected weather-related forest
mortality events have been observed in recent years across the globe, including in ecosystems that were
not previously considered at risk (Hartmann et al., 2022). In the EuropeanUnion, the net carbon sink from
forest land decreased by 12% between 2010 and 2018 (Pilli et al., 2022).Weather conditions often interact
with disturbances such as insect outbreaks, diseases and forest fires to cause forest mortality (Sturrock
et al., 2011;Millar and Stephenson, 2015; Jain et al., 2022).Withweather extremes expected to increase in
intensity and frequency in the future (Seneviratne et al., 2021), an improved understanding of the weather
drivers of forest mortality is necessary for the development of effective forest conservation and manage-
ment strategies.

Understanding the influence of weather drivers on large-scale tree mortality is challenging because
forest mortality depends on complex interactions between weather events, the presence of pests and
diseases, and forest characteristics such as canopy height, tree cover, biomass, and diversity (Bastos et al.,
2023). The forest structure and diversity determine forest resistance to climatic or biotic stressors (for
example, a forest with less biomass requires less water for its growth), and this structure, in turn, depends
on previous weather conditions (López-Serrano et al., 2005; Bequet et al., 2011; Ježík et al., 2011; Rais
et al., 2021; Mahecha et al., 2022; Li et al., 2023). This means that present-day tree mortality can be
influenced by weather conditions from previous years. Extreme climate events such as droughts and
heatwaves are common drivers of tree mortality (Allen et al., 2010; Anderegg et al., 2013; McDowell
et al., 2013; Park Williams et al., 2013; Choat et al., 2018; Senf et al., 2018; Brodribb et al., 2020).
However, due to the complex interactions between climatic, biotic, and forest state factors, forest
mortality events can also be driven by the temporally compounding effects of multiple weather events,
such as observed in sequential droughts (Zscheischler et al., 2018, 2020; Sánchez-Pinillos et al., 2022;
Bastos et al., 2023).

Modeling forests with process-basedmodels can aid in improving the scientific understanding of forest
dynamics. There is a long tradition in ecology of using individual-based forest models to answer a wide
range of scientific questions (Shugart et al., 2018), which simulate each tree’s growthwithin a forest stand.
These forest gapmodels were first developed for North America and have become one of the most widely
used model types in ecology (Bugmann, 2001). Various process-based models are currently employed,
each with different strengths and weaknesses (Mahnken et al., 2022).

Due to the complexity of the simulated processes and their convolution through time, it is challenging
to disentangle weather conditions associated with high forest mortality, even in a model environment.
Hence, a better understanding of such processes is needed (Bugmann et al., 2019). Currently, two widely
used approaches exist to identify the drivers of tree mortality in forests. First, one can gain insight through
forward simulations from models (Taccoen et al., 2019; Scheel et al., 2022). Forcing the model with
perturbed weather data and analyzing the output in a conventional sensitivity analysis setting has two
main challenges. Due to the long-range temporal dependency of weather variables, the forcing data have
many input features. The large number of features translates into an even larger number of combinations
of weather, making a comprehensive analysis computationally infeasible. Furthermore, defining ways to
modify multivariate weather data so that the modified data are physically realistic is not trivial due to
structured correlation within the variables. Nevertheless, forward simulations are helpful in analyzing
individual events. Second, statistical methods such as linear regression, generalized additive models,
principal component analysis, and random forests can be used to understand the impact of weather drivers
(ParkWilliams et al., 2013; Matusick et al., 2018; Xu et al., 2018; Crouchet et al., 2019; Senf et al., 2020;
Forzieri et al., 2022; Jaime et al., 2022; Le Grix et al., 2023). Linear methods typically fail to capture
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complex nonlinear forest dynamics, and conventional machine learning methods like random forests or
support vector machines require predefining predictors from an often extensive set of potential
candidates.

Deep learning (DL)methods can capture the complex temporal dynamics in high-dimensional data and
have been extensively used for time series forecasting and classification problems (Wang et al., 2017;
Zhao et al., 2017; Wu et al., 2020; Lim and Zohren, 2021; Marcolongo et al., 2022). Despite high
predictive accuracy, DLmethods are often criticized for their lack of explainability.Most current weather-
induced impact research utilizes post hoc methods, which interpret an existing, trained model (for
example SHapley Additive exPlanations (SHAP) values, Layer-wise Relevance Propagation (LRP),
feature importance analysis, and regression activationmaps (Wolanin et al., 2020; Labe andBarnes, 2021;
Yan et al., 2022; Liu et al., 2023; Mamalakis et al., 2023; Sweet et al., 2023; Wadoux et al., 2023). The
advantage of post hoc methods is that they can be used with any model architecture and, therefore, do not
require a trade-off of predictive model performance. However, such approaches explain model decisions
on specified data points and do not provide a holistic view of the entire decision function (Bordt et al.,
2022). An alternative approach is to use intrinsically explainable machine learningmodels (Rudin, 2019).
A method in this approach is to learn a lower-dimensional representation of the input and relate it to the
output with a more explainable function (Alvarez-Melis and Jaakkola, 2018; Kim et al., 2018; Chen et al.,
2019; Varando et al., 2021; Yang et al., 2021; Gautam et al., 2022). A generative DL architecture like the
variational autoencoder (VAE) is one way to learn a lower-dimensional explainable data representation.
VAEs learn a lower-dimensional representation (latent variables) of a very high-dimensional dataset by
minimizing a reconstruction error and constraining the latent distribution.

In this study, we develop a VAE-based methodology to generate lower-dimensional representations of
complex and correlated weather conditions.We apply and evaluate its performance on simulated data as a
proof-of-concept, making use of long simulations ofmultiple forest types driven by synthetic weather data
from a weather generator. By using modeled data, we are able to compare our results to the known
processes of the model and thereby validate our novel, data-driven approach. With the help of the
developed method, we can search for representations (weather prototypes) that are associated with high
biomass loss events and thereby identify compound weather drivers of tree mortality. We also explore the
relationship between compounding weather prototypes and biomass loss. Our developed methodology
could, in future, be applied to real-world data (such as inventory datasets from national forest inventories),
for which no ground truth is typically available for method validation.

2. Data and methods

An overview of the methodology is shown in Figure 1. We use simulated weather from a weather
generator to run a parameterized forest model for the Hainich beech forest in Germany at 51.08° N and
10.43° E. We use composites and logistic regression analysis to obtain a general overview of the weather
and biomass loss relationships. Next, a VAE is used to learn a low-dimensional representation of weather
conditions. These representations are then used to identify weather prototypes associated with high levels
of biomass loss based on the forest simulation for three different types of forests, namely beech, pine, and
spruce.

2.1. Weather simulation

AWE-GEN is an advanced stochastic weather generator that can generate realistic high-resolution
(hourly) weather variables (Fatichi et al., 2011). It can reproduce low- and high-frequency characteristics
of weather variables, such as the interannual variability of precipitation and temperature, and has been
widely used in hydrology and ecological modeling (Mastrotheodoros et al., 2020; Meili et al., 2020;
Hirschberg et al., 2021; Marcolongo et al., 2022). For this study, AWE-GEN is calibrated on 40 years
(1979–2019) of bias-adjusted ERA5 reanalysis data designed explicitly for impact studies (Cucchi et al.,
2020) for the location of the Hainich forest. AWE-GEN requires precipitation, cloud cover, air
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temperature, shortwave radiation, relative humidity, wind speed, and atmospheric pressure at hourly time
step for calibration. For the cloud cover, a single level of hourly ERA5 data is used (Hersbach et al., 2020).
We compute relative humidity and specific humidity from pressure and temperature. Ultimately,
200,000 years of hourly stationary weather is generated after calibration.

The simulation’s mean annual temperature and precipitation are 8.5 C and 693 mm, respectively. The
monthly seasonal cycle of temperature and precipitation is well captured by AWE-GEN, with slightly too
warm temperatures in the weather generator (Figure 2a). Reanalysis data show strong negative correl-
ations between monthly radiation and precipitation throughout the year and positive correlations between
radiation and temperature during the summer (Figure 2b). The weather generator generally captures these
correlations, albeit with weaker magnitude (Figure 2c).

2.2. Simulation of forest dynamics

We simulate forest dynamics with the forest gap model FORMIND, a process-based, individual-oriented,
grid-based forest growth model (Fischer et al., 2015, 2016). It describes forest succession in small-scale
forest patches (20 m × 20 m). The main processes considered are tree growth, mortality, recruitment, and
competition; the trees within a forest patch compete for space, light, and water.

Figure 1. Illustration of the methodology. ERA5 data are used to calibrate AWE-GEN. AWE-GEN is used
to generate realistic weather conditions. AVAE is used to learn low-dimensional weather representations
and generate prototypes. Based on simulated weather conditions, FORMIND simulates forest dynamics,
including mortality and biomass loss. FORMIND-derived biomass loss is used to select weather
prototypes associated with high biomass loss. The explainable AI method used here consists of the
training of VAE together with the generation of weather prototypes relevant for high biomass loss induced
by forest mortality.

Figure 2. (a) Monthly mean temperature (red) and precipitation (blue) of the bias-adjusted ERA5 (dotted
line) and simulated by AWE-GEN (continuous line). Correlation between monthly means across all three
variable combinations for all months for the bias-adjusted ERA5 data (b) and data simulated by AWE-
GEN (c).
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Carbon balance-based ecophysiological processes, such as photosynthesis, respiration, and carbon
allocation, are used to calculate individual tree growth. Photosynthesis is related to temperature with a
bell-shaped curve, whereaswater shortage linearly reduces photosynthesis. In addition, deciduous species
only sequester CO2 during the temperature-dependent growing season. Maintenance respiration is also
modified by temperature following the well-established Q10 approach (full model description in Bohn
et al., 2014).

In the FORMIND model, mortality processes occur due to competition for space and reduced growth
rate. Space–competition mortality occurs under optimal growing conditions when crowns occupy more
space than is available. The model then randomly removes trees until the remaining crowns have
sufficient space. In addition, temperature also affects Net Primary Productivity (NPP) through mainten-
ance respiration. NPP is used to calculate the diameter increment of each tree. The increment in diameter
affects the biomass loss as there is stochastic diameter increment-dependent mortality included in
FORMIND (Bohn et al., 2014, www.formind.org). FORMIND has been frequently used to simulate
temperate forest dynamics (Bohn et al., 2014; Rödig et al., 2017; Bohn et al., 2018; Bugmann et al., 2019;
Holtmann et al., 2021).

Here, we conduct three simulations, each time simulating only beech, pine, or spruce trees. Beech trees
are late-successional, shade-tolerant, and deciduous, whereas pine is a fast-growing, light-demanding,
evergreen needle-leaf tree. Spruce is a moderately fast-growing, shade-tolerant, evergreen, needle-leaf
tree. The 200,000 years of AWE-GEN-generated precipitation and temperature data, together with solar
irradiance (computed as a fraction of shortwave radiation), are used as an input to FORMIND. The
specific parameters of the model are derived from various sources. For instance, we use yield tables to fit
allometric and growth functions. Other parameters are obtained by taking the average over several field
measurements, like wood density or leaf area index. For more details, see Bohn et al. (2014). The
simulations are conducted for 200 hectares of land to reduce the internal stochasticity of the model. The
forest model starts simulating the growth of trees from barren land and thus requires a spin-up period of
roughly 2,000 years to reach a quasi-equilibrium. The simulations are conducted in chunks of
10,000 years for computational efficiency. Therefore, we do not analyze the first 2,000 years for each
of these parts and are finally left with 160,000 (8,000 × 20) years of forest data. Only the 160,000 years of
weather is then used for further analysis. The simulations, even though potentially strongly differing from
real-world behavior, have enough complexity to validate our proof-of-concept.

FORMIND simulates multiple variables at a daily and yearly time scale. For this analysis, we use
biomass loss (BL) on a yearly scale. Instead of the fraction of trees dying yearly, BL refers to the fraction of
biomass lost yearly. For example, the BL may be low when some young (therefore small) trees die but
high when the same number of old (therefore giant) trees die. BL combines different types of mortality,
namely background mortality, which depends on the genus; size-dependent mortality, which accounts for
themortality of young trees; and diameter increment-dependent mortality, which accounts for the fact that
older trees have a higher mortality rate. We also consider five forest structure variables at a yearly time
scale: age, stem volume, cumulative leaf area index, height, and diameter of each tree. The information on
the state variables is condensed as histograms with 51 bins.

As this study focuses on extreme biomass loss, we convert BL to a binary value by thresholding at the
90th percentile. To understand extreme BL (yt), the weather conditions in the current year and the two
previous years (xdt�2,x

d
t�1,x

d
t ) are considered in the analysis. By definition, x

d
t has a dimension of 12× 3 for

12 months and three variables (temperature, precipitation, and radiation). The forest structure variables at
the end of the third year before the considered BLyear (xst�3) are also used in some of our analyses. xst thus
refers to the five forest structure variables described by 51 binned distributions each.When the subscript is
not specified, xd (36× 3) refers to xdt�2,x

d
t�1,x

d
t

� �
, xs (51× 5) refers to xst�3 and y (1× 1) refers to yt.

2.3. Composites and logistic regression

Composites are the difference of the mean weather for years with extremely high BL with respect to the
mean weather conditions for all the years. We first construct three years of extreme BL weather
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composites (BL ≥ 90th percentile) to identify general weather conditions associated with high BL. We
also train a logistic regression model, which can be used to identify meteorological drivers of large
impacts (Bevacqua et al., 2021; Vogel et al., 2021):

ℙ BL≥ 90thpercentileð Þ¼ 1
1+ e� wxT + bð Þ

where ℙ BL≥ 90thpercentileð Þ is the probability of extremely high BL and x¼ vectorize xd
� �� �

or
x¼ vectorize xd

� �
,vectorize xsð Þ� �

. The logistic regression model is used to understand the relationship
between three years of monthly weather (xd) and BL y at the end of the third year. In addition to dynamic
weather conditions (xd), the BL also depends on the forest structure. Therefore, we also train a logistic
regression model with the forest structure variables (xs) to quantify their importance. We assess the
goodness of fit of the regression models using the Critical Success Index (CSI, Donaldson et al., 1975),
F1-Score and Average Precision (with definitions provided in Appendix B).

2.4. Variational autoencoder as a generative model

Avariational autoencoder (VAE) is a form of DL model that can extract nonlinear feature representations
from high-dimensional data, which has been widely used in Earth sciences, weather applications and
remote sensing (Camps-Valls et al., 2021; Tibau et al., 2021). AVAE is a generative model that can learn
low-dimensional representations of complex data in an unsupervised way. It comprises an encoder, with
the parameters ϕ, that estimates the latent representation and a decoder part, with parameters θ, that
reconstructs the input samples from the latent dimensions. Overall, the aim is to estimate the log-
likelihood of some observed data x.

This can be done by using variational Bayesian inference.We are interested in the posterior distribution
p zjxð Þ, where x are our observations and z are latent variables. However, this posterior is often intractable
because we cannot compute the evidence or denominator of Bayes’ theorem, p xð Þ, because the latent
variables, z, must be marginalized out. The central concept of variational inference (VI) is to use
optimization to find a more tractable distribution q zð Þ from a family of distributions Q such that it is
close to the desired posterior distribution p zjxð Þ. In VI, proximity is defined using the Kullback–Leibler
Divergence (DKL k½ �), so the goal is to retrieve an optimal q zð Þ that minimizes DKL q zð Þ∥p zjxð Þ½ �, which
can be interpreted as minimizing the relative entropy between the two distributions. Mathematically, this
is equivalent to maximizing the evidence lower bound (ELBO) (also sometimes called the variational
lower bound or the negative variational free energy) (Kingma and Welling, 2013):

logpθ xjzð Þ≥ �DKL qϕ zjxð Þ∥p zð Þ� �
+Eqϕ zjxð Þ log pθ xjzð Þ½ � ¼ELBO,

where x and z represent the input data and latent variables respectively. The ELBO has two components.
The KL-Divergence term enforces how close the latent dimensions z distribution should be to a specified
prior distribution pθ zð Þ, while the other term aims to minimize reconstruction error, logpθ xjzð Þ. In the
case of β-VAE, the hyperparameter β weighs the KL-Divergence term of the loss function:

LVAE θ,ϕð Þ¼ βDKL qϕ zjxð Þkp zð Þ� ��Eqϕ zjxð Þ log pθ xjzð Þ½ �: (1)

Therefore, a value of β > 1 pushes themodel to learn a latent distribution closer to the specified distribution
at the cost of a higher reconstruction error (Higgins et al., 2017) and vice versa for β < 1. Different latent
distributions can be learned through VAE (Bond-Taylor et al., 2022), and here we choose a normally
distributed prior with a diagonal covariance matrix with zero mean and unit variance. This particular
choice of prior helps compute the KL-Divergence analytically. The input data (x¼ xd) consists of three
weather variables, each a monthly time series of three years (Section 2.2).

We have modified the standard β-VAE by making a shared decoder for each weather variable
(Figure 3). This is because each weather variable is a time series, and we expect the decoder to learn
the general features of time series data. The encoder outputs two 32-dimensional vectors, one for themean
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and the other for the log variance. Then, 32-dimensional latent values (following a multivariate normal
distribution) can be sampled from these parameters. The decoder always takes in 16-dimensional latent
variables to reconstruct one of the weather variables. The decoder takes eight weather-specific and eight
shared dimensions and returns one reconstructed weather variable. This is done for each weather variable,
and to obtain the full reconstructed output, three passes of the decoder are required. The eight shared
dimensions capture the correlation between the weather variables (Figure 2b). As a design choice, the first
eight dimensions are selected to represent radiation, the next eight for precipitation, the next eight for
temperature, and the last eight are shared between all variables.

The encoders and decoders can have different architectures. In the encoder, a convolution layer is used to
learn the different patterns in the data, increasing the number of dimensions, followed by max-pooling
(Scherer et al., 2010), which reduces the number of dimensions. Batch normalization (Ioffe and Szegedy,
2015) is used, followed by LeakyReLU (Maas et al., 2013) as the nonlinear function. This step is repeated
twice for 256 and 512 feature kernels. After reshaping the output, two dense layers generate the mean and
the log variance vector. Samples from the latent dimensions are then fed to the decoder. First, a dense layer
increases the dimensions to reshape it into 9× 1× 32. This is followed by upsampling, transposed
convolution (Zeiler et al., 2010), and batch normalization with Leaky-ReLU as an activation function.
Like in the encoder, this is repeated twice, leading to an output of dimensions 36× 1× 1. Finally, a
convolutional layer is used without any activation function to get the output (see Figure 3 for more details).

The entire network is trained through backpropagation (Rumelhart et al., 1986). The inputs are
normalized based on the statistics of the training set. Adam optimizer is used with a learning rate of
0.0001, the upsampling and downsampling size is 2,1ð Þ, and the kernel size is 3,1ð Þ with stride as
1. LeakyReLU is used with the value α¼ 0:3. The train, validation, and test split is 80%, 10%, and 10%,
respectively. The total sample size available for training is 126,976. The model is trained for 150 epochs
with a β¼ 1:5 (cf. Equation 1), and the batch size is 256. The computation was done on NVIDIA A100
GPU using TensorFlow v2.9 (TensorFlow Developer (2022)). The model training time is less than
20 minutes.

36 X 3 36 X 3 X 256

18 X 3 X 256 18 X 3 X 512

9 X 3 X 512

13824 X 1

32 X 1

32 X 1

N
(
,

2 )

32 X 1

16 X 1

16 X 1

16 X 1

4608 X 1

9 X 1 X 512

18 X 1 X 512 18 X 1 X 256

36 X 1 X 256 36 X 1

36 X 1

36 X 1

36 X 1

Encoder Decoder

2D Convolutions
Max Pooling
Batch Normalization
Leaky ReLU

Reshape Dense 2D Upsampling
Transposed Convolutions
Batch Normalization
LeakyReLU

Figure 3. The VAE architecture with encoder and decoder blocks. The encoder takes in 36× 3
dimensional weather variables and outputs two 32-dimensional vectors of mean and log variance of a
normal distribution, which define the latent space. The decoder takes samples in the latent variable space
associated with specific weather variables in the input space (distinguished by different colors) to
generate reconstructions of each of the individual weather variables. Three passes of the decoder are
required to reconstruct all three weather variables.

Environmental Data Science e4-7

https://doi.org/10.1017/eds.2024.2 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.2


2.5. Identifying climate prototypes associated with extremely high BL

To find the latent dimensions that are associated with extremely high BL, for each latent dimension, we
compute the mean over samples that are associated with high BL and the mean over the remaining
samples. We consider latent dimensions relevant for increasing BL when the difference between the two
sample means exceeds half of the standard deviation (0.5).

We create weather prototypes associated with high BL based on the identification step above. For each
identified latent dimension of interest, we change its value by a fixed amount s in the direction that
increases the BL while setting all other dimensions to 0. If the absolute magnitude of the correlation
between two dimensions is greater than 0.3. In that case, we also change the value of the correlated
dimension, assuming a bivariate Gaussian distribution with a covariance that results in this correlation.
Finally, we use the decoder to generate the climate prototypePi∣s for a given change s in dimensions i of the
latent space. Compound climate prototypes are generated similarly by selecting the two latent dimensions
of interest and changing both in the direction that increases BL, thus generating prototypes Pi∧j. We
generate univariate prototypes with s¼ 2σ and compound prototypes with s¼ 2σ/number of dimensions,
denoted by Pi∣2σ and Pi∧j∣σ , respectively.

We further test whether samples corresponding to the prototypes are associated with generally higher
levels of BL. To this end, we assignweather conditions in the original input space to a univariate prototype
if, in the latent space, the value of the corresponding latent dimension exceeds s, i.e., two standard
deviations. Similarly, a sample corresponds to a compound prototype if, in latent space, values in the two
corresponding latent dimensions concurrently exceed s, i.e., one standard deviation.

3. Results

3.1. Composites and logistic regression

The median BL is 1.8%, 2.4%, and 3.3% per year for beech, pine, and spruce, respectively (Figure 4).
The BL distribution is highly right-skewed, with a few years of experiencing extremely high BL values.
Excess kurtosis for BL values is 24.8, 17.4, and 8.4 for beech, pine, and spruce forests. Generally, a lower
BL is associated with lower radiation and temperature averaged over the preceding three years but higher
precipitation, and vice versa for higher BL.

When we increase the temporal resolution of the composites to monthly values, we find that
extremely highBL is associatedwith dry conditions in all forests, especially over the previous 18months
(Figure 5a,c,e). Another prominent feature is the strong positive temperature anomaly from May to
September of the BL year. For beech, composites show no temperature anomalies in Octobert but
positive anomalies in Novembert and Decembert. For pine and spruce, the signal is reversed for these

Figure 4. Probability density estimate of biomass loss (left axis), along with three-year average
standardized temperature (red), radiation (yellow) and precipitation (blue) (right axis). Vertical lines
indicate the median, mean, and 90th percentile of the biomass loss distribution.
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three months; anomalies are strongly positive in Octobert but negative in Novembert and Decembert.
Radiation has an overall weaker signal that is negatively correlated with precipitation.

Predicting BL based on monthly weather predictors reaches average precision values between 0.64
(beech) and 0.70 (pine) when no structure variables are included (Table 1). Including structure variables as
predictors increases accuracy substantially, reaching values between 0.76 and 0.85. Generally, the
performance of the linear model is similar for pine and spruce forests and higher than for the beech
forest. The coefficients of the logistic regression (without structure variables) generally mirror the
behavior of the composites (Figure 5b,d,e). Coefficients associated with precipitation for high BL years
are negative, increasing in magnitude until Mayt�1 and staying constant until Julyt, finally decreasing
until the end of the time series. The coefficients for temperature are relatively small, except betweenAprilt
and Septembert. The coefficients associated with radiation are close to zero most of the time. The logistic
regression coefficients and composite plots show similar trends in all the variables except for radiation in
yeart.

Figure 5. Composite of monthly standardized weather anomalies associated with the 90th percentile of
biomass loss (left) for beech (a), pine (c), and spruce (e). Coefficients of logistic regression without
structure variables (right) for beech (b), pine (d), and spruce (f).

Table 1. Performance metrics for the logistic regression with weather variables only (xd) and with
structure variables (xd and xs)

Metrics CSI F1-score Average precision

Beech logistic regression with xd 0.43 0.60 0.64
Beech logistic regression with xd and xs 0.52 0.68 0.76
Pine logistic regression with xd 0.46 0.64 0.70
Pine logistic regression with xd and xs 0.60 0.75 0.85
Spruce logistic regression with xd 0.46 0.63 0.68
Spruce logistic regression with xd and xs 0.59 0.74 0.84
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3.2. Weather representations via β-VAE

Initial tests with vanilla β-VAE with similar layers showed better reconstruction for the correlated
variables (precipitation and radiation) under-representing temperature. The modified β-VAE achieves
similar reconstruction errors for all three weather variables (Table 2) by introducing a shared decoder
(Section 2.4). Losses and mean standard errors are similar between training, validation, and test datasets,
suggesting that the model does not overfit.

We explore the latent dimensions zið Þ of the trained β-VAE. Each three-year input sample is associated
with one point in the 32-dimensional latent space. We test whether certain dimensions of this space are
associatedwithweather conditions that lead to higher BL.Generally, we find high variability in the shift in
distribution between the samples associated with extremely high BL and the remaining samples across the
32 dimensions (Figure 6, left). For all forests, z14 exhibits the largest absolute difference in the means
(Figure 6, right) followed by z22 and z12. Here, z12 shows a higher absolute mean difference than z14 for
beech and vice versa for pine and spruce. All three dimensions show significant (p< 0:01) mean absolute
differences between years with extreme and nonextreme BL > 0:5 for all forests and are selected to
construct the prototypes of weather patterns associated with the high BL in the following. We also test

Table 2. Training, validation and test losses and mean standard errors (MSE) for β-VAE

Name Total loss KLD loss
Reconstruction

MSE
Radiation
MSE

Precipitation
MSE

Temperature
MSE

Training 37.76 24.65 0.79 0.79 0.78 0.79
Validation 37.73 24.63 0.79 0.79 0.78 0.79
Test 37.83 24.70 0.79 0.79 0.78 0.79

Figure 6.Absolute mean difference between samples in the latent dimensions representative of three-year
periods leading to extreme and nonextreme BL for beech (a), pine (c), and spruce (e). The latent
dimensions are sorted in descending order with respect to the absolute mean difference. Box plot of three
latent dimensions with the highest absolute mean difference associated with nonextreme (orange) and
extreme BL (purple) for beech (b), pine (d), and spruce (f).
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whether extremeBL is predictable when only relying on these three dimensions using a logistic regression
model. Prediction accuracy is much lower than when monthly weather predictors are used, reaching
average precision between 0.30 and 0.34, but is substantially higher than random (compare Table 3 with
Table 1). When relying only on these three dimensions, beech and pine BL are better explained by the
latent dimensions than spruce BL.

Our VAE architecture allows us to generate precipitation, temperature, and radiation independently
from a sample in the latent space. Still, correlations exist between weather variables in the input space
(Section 2.1). These correlations propagate to correlations between latent dimensions.We observe that the
latent dimensions responsible solely for radiation (z1:8) are negatively correlated (correlation < �0:3)
with the latent dimensions responsible solely for precipitation (z9:16), respectively (FigureA1 inAppendix
A). All other dimensions are not correlated.

3.3. Weather prototypes and link to BL

The three selected dimensions z14, z12 and z22 are used to generate weather prototypes P14∣2σ , P12∣2σ , and
P22∣2σ . By construction, z14 and z12 only affect the reconstruction of precipitation (Section 2.4). However,
because of the correlation between z14 and z6, as well as z12 and z4 (Figure A1), changing z14 and z12 also
requires changing the values of z6 and z4 to obtain realistic prototypes. The prototype based on z22 is
generated by only changing z22.

Prototypes generated from the selected latent dimensions represent basic weather conditions associated
with increasedBL (Figure 7). PrototypeP14∣2σ andP12∣2σ , by design, only show changes in precipitation and
radiation. Both prototypes feature negative precipitation anomalies and positive radiation anomalies that are

Table 3. Logistic regression with z14, z22 and z12

Type of forest CSI F1-score Average precision

Beech 0.24 0.39 0.33
Pine 0.24 0.39 0.34
Spruce 0.22 0.36 0.30

Figure 7.Weather prototypes. Note that the y-axis ranges differ between the univariate prototypes (first
three rows) and the compound prototypes (last two rows).
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correlated. P14∣2σ is characterized by negative precipitation anomalies in all three summers, coincident with
higher radiation. Precipitation is also lower in the autumn of the second year. The lowest precipitation values
occur in the yeart followed by the yeart�2 and the yeart�1. P12∣2σ has a different pattern and is characterized
by two periods of negative precipitation anomalies. The first one occurs betweenMarcht�2 and Julyt�1 and
is less pronounced than the negative anomaly in the second period, which occurs in the first five months of
the last year.We only see slightly positive precipitation anomalies in the last half of yeart. In both prototypes,
maximum precipitation anomalies are around 0.5 mm/d. Prototype P22∣2σ only features temperature
variations, with positive temperature anomalies in three periods. The first period starts from Marcht�2 to
Augustt�2, the second from theMarcht�1 and continues for the entire year. The last high-temperature period
starts fromMarcht and ends in Septembert. There is a short period at the beginning of the last year where we
see negative temperature anomalies. Based on their anomaly patterns, we call prototypes P14∣2σ Dry
Summers, P12∣2σ Dry Winters and P22∣2σ Hot Summers.

We generate two compound prototypes based on the selected three mortality-influencing latent
dimensions, namely P12∧22∣σ and P14∧22∣σ . While the univariate prototypes are created by moving two
standard deviations along a single latent dimension in the direction of increasing BL, compound
prototypes are created by moving one standard deviation in two latent dimensions (Section 2.5).
P14∧22∣σ corresponds to dry and hot summers, while P12∧22∣σ corresponds to dry winters and hot summers.
Weather conditions associated with compound prototypes occur more frequently in the training dataset
(2.5–3.4% of all samples) than those associated with univariate prototypes (1.7–2.2%).

Weather conditions that are associated with any of the prototypes (Section 2.5) are generally associated
with a higher BL in all forest types when compared to all weather conditions (Figure 8). The effect is
particularly strong in the tail of the distribution; the 90th percentile in the BL distribution is about twice as
large for the prototypes compared to all samples (Table 4). From the univariate prototypes, P14∣2σ (Dry
Summers) is associated with the highest increase in both median and 90th-percentile BL across all forest
types (10.4–21.5% and 29.8–107.3%, respectively). Weather conditions associated with the compound
prototypes P14∧22∣σ and P12∧22∣σ are generally associated with higher BL compared to weather conditions
associated with any of the univariate prototypes, with P14∧22∣σ (Dry and Hot Summers) leading to slightly
higher median BL (9.7–24.0%) compared to P12∧22∣σ (dry winters and hot summers, 10.8–24.6%).

4. Discussion

This study illustrates how novel VAE-based architectures can learn weather prototypes associated with
high BL in a simulated forest setting based on theweather for a given time period.Workingwith simulated

Figure 8. Biomass loss density plot for all samples (top), samples contributing to univariate prototypes
(2nd to 4th row) and samples contributing to compound prototypes (last two rows) for beech (left), pine
(middle), and spruce (right). Vertical dashed and dash-dotted lines represent the median and 90th
percentile in each distribution.
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data allows us to avoid the complexities of real-world data arising from nonstationarity and confounders’
influence. Applicability of these methods beyond stationary weather requires careful validation and
potential modifications to the developedmethodology, which is beyond the scope of this paper. Lastly, the
reconstruction errors, though small and similar for all the weather variables, impact generating realistic
weather prototypes. Very high reconstruction errors would lead to reconstructions different from the
input. Within these limits, we test the applicability of our approach. The method could further be adapted
for use with observational data in future research.

Here, we learn the weather representations in a completely unsupervised setting and then try to find the
latent dimensions associated with high BL. Our generative model can produce realistic weather proto-
types. Of the three univariate prototypes generated, dry summers and dry winters feature negative
precipitation anomalies and positive radiation anomalies, while hot summers feature positive temperature
anomalies in summers. All identified weather prototypes are associated with higher BL overall, particu-
larly in the tail of the BL distribution. Dry Summers lead to the highest increase inBLwithin the univariate
prototypes. However, when combined, dry and hot summers lead to the highest increase in BL overall.
Gazol and Camarero (2022) also found that European forest mortality frequently cooccurs with dry and
hot summers. Vegetation models and Earth system models also generally support this finding
(Zscheischler et al., 2014a, 2014b; Bastos et al., 2021; Tschumi et al., 2022, 2023). Our analysis shows
that compoundweather prototypes lead to higher BL than univariate weather prototypes despite occurring
more frequently. This is consistent with real-world observations, where concurrent hot and dry conditions
have often been identified as primary drivers of forest mortality (Allen et al., 2010; Anderegg et al., 2013;
Crouchet et al., 2019; Hammond et al., 2022; Yi et al., 2022).

Someweather variables used are correlated (Figure 2), so wemodify the traditional β-VAE architecture to
work well with correlated time series. In particular, we design our encoder to take multivariate, high-
dimensionalweather data and learn three sets of eightweather-specific latent dimensions, each corresponding
to one of precipitation, radiation, and temperature. The final eight latent dimensions contain information
about all three weather variables. The decoder takes 16 (eight weather-specific and eight shared) latent
dimensions andoutputs oneof theweather variables. The rationale is that our decoder only learns the structure
of the weather time series, and the latent representation has all the information about the time series. While
working with correlated weather variables, our architecture helps us learn unbiased weather representations
(Table 2). In earlier testswith the standard β-VAE architecture,we found that the twomore correlatedweather
variables (precipitation and radiation) were better represented than the less correlated ones (temperature).
Though we expected all the correlations between weather variables to be captured in the eight shared latent
dimensions, this was not the case. We find a one-to-one correlation in all latent dimensions related to solar
radiation and precipitation (z1:8 and z9:16, Figure A1). The correlations in latent dimensions highlight that
radiation and precipitation are correlated for most months of the year. Our method respects this correlation
when generating prototypes (Section 2.5). Autoencoders have been used to learn representations of weather
variables (Guevara et al., 2021;Heinze-Deml et al., 2021;Oliveira et al., 2022;Ahn et al., 2023).However, so
far, most work focuses on learning spatial representations of weather variables or univariate spatiotemporal
representations instead of a multivariate temporal latent representation of variables. Huamin et al. (2020) try

Table 4. Percentage increase in the median and the 90th percentile biomass loss for different weather
prototypes and different types of forests

Median 90th percentile

Genus P14∣2σ P12∣2σ P22∣2σ P14∧22∣σ P12∧22∣σ P14∣2σ P12∣2σ P22∣2σ P14∧22∣σ P12∧22∣σ

Beech 21.5 12.9 11.5 24.6 24.0 107.3 81.7 87.8 119.0 111.0
Pine 15.5 13.6 10.6 24.5 23.6 62.1 61.3 55.2 76.9 76.3
Spruce 10.4 5.9 6.0 10.8 9.7 29.8 23.7 23.5 31.6 31.3
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to learn time series representation, but only after transforming the time series to a recurrence plot, learning the
latent representation of 2-D images for a univariate time series. Themethodwe develop in this study can learn
representations ofmultivariate time series and separate the representations specific toweather variableswhile
considering the correlation between the variables.

The latent variables can capture the patterns in the weather variables, but they have no inherent
information about forest structure or BL. Thus, they do not learn representations specific to high BL or
given forest structures. In unsupervised settings, VAEs cannot learn the disentangled representation
without inductive biases (Locatello et al., 2019). Including BL and forest structure information would
introduce an inductive bias and possibly improve representation learning. In contrast, by not including
forest structure, we identify weather prototypes leading to higher overall BL rather than conditioned to
specific forest structures. The use of β-VAE may also be a limitation, as the reconstruction error is higher
than that of standard VAE for β > 1 (in Equation 1), possibly due to a trade-off of reconstruction error
against disentanglement aligned with human intuition (Burgess et al., 2018). Fil et al. (2021) show how
β > 1 does not always yield the best qualitative disentanglement for complex datasets. There is no clear
consensus on the correct choice of β, and one must subjectively balance the trade-off between disen-
tanglement and reconstruction error.

Compared to simple composite analysis and logistic regression, the VAE allows us to understand better
the diverseweather patterns associatedwith highBL. In particular, we identify threeweather prototypes and
their possible combinations, which would not be possible using simple analysis. Nevertheless, the
composite plots and logistic regression coefficients also give interesting insights. The composites of
anomalies (Figure 5) show drier weather on average before BL years alongside higher temperatures in
the last year. Unlike pine and spruce, we see negative temperature anomalies for beech forests in October,
which rise in November and December of the previous year. This may be explained by the difference in
vegetation period between the forest types. In the FORMIND beech forest model, the dynamic vegetation
period ends when the ten-day mean air temperature falls below 9 °C. Therefore, a negative temperature in
October would lead to an early end of the vegetation period. Higher temperatures after this may lead to high
BL by increasing maintenance respiration and inducing plant water stress. For needle-leaf forests like pine
and spruce, the simulated vegetation period is year-round, so the effect of lower temperature leading to
higher BL dominates. In general, temperature has both positive and negative effects on plant productivity.
Increasing temperature has been reported to increase phenology-driven carbon uptake for temperate forests
(Keenan et al., 2014), and the higher the carbon uptake, the healthier the forest. At the same time, high
temperatures increase maintenance respiration for plants and can increase the atmosphere’s evaporative
demand (Millar and Stephenson, 2015), leading to water stress.

Using a DLmodel that can capture high-dimensional relationships enables us to study the relationship
between BL and the preceding years of weather in more detail. There is strong evidence that it is essential
to consider multiple years of weather when analyzing tree mortality in the real world. For instance, an
assessment of many different forest mortality events across the globe showed that those are typically
associated with negative precipitation anomalies two years before the mortality year (Hammond et al.,
2022). In response to the Europe-wide 2003 drought, mortality peaked two years after the driest year (Senf
et al., 2020; George et al., 2021). On the other hand, the drought in 2018 led to peak forest mortality in the
same year (George et al., 2021). We chose the weather of the previous two years along with the current
year to analyze the BL in the current year. Accounting for three years of weather emerged as a good trade-
off between model complexity and accuracy in our model simulations.

Adding information about the forest structure (xs) alongside the weather variables (xd) increases the
predictive accuracy for all forest types (Table 1). It is well known that forest structures play an essential
role in forest mortality (van Mantgem et al., 2009; Lines et al., 2010; Young et al., 2017; Restaino et al.,
2019). Our VAE does not use any information about the forest structure or forest mortality in the current
setting, which may limit its usability. Adding this information to the input or the latent space might lead to
a better representation learning for characterizing the extreme BL years.

In our study, we run FORMIND for 200 ha, for which we then see a somewhat deterministic response
of forest dynamics to weather conditions. For smaller areas, stochasticity dominates forest mortality (Eid
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and Øyen, 2003; Vanderwel et al., 2013). It is important to highlight that in this study, each simulated
forest contains only one variety of trees. Most forests are more diverse and include multiple plant
functional types. Thus, our interpretations of weather drivers apply to extensive homogeneous forests
with a particular kind of tree.

5. Conclusion

In this study, we develop an interpretable machine learning-based method to identify compound weather
drivers of BL in forests using generative DL on simulated forest dynamics. The proposed method is
designed to work well with correlated time series variables, which are often present in climate-related
data. In our application, where we use simulations of beech, spruce, and pine forests in a temperate
climate, we find that sequential hot summers, sequential dry summers, and dry winters are the weather
patterns chiefly associated with high BL. Furthermore, we demonstrate that combinations of these
weather patterns are associatedwith even higher BL. The approach thus enables us to generate hypotheses
for compound drivers of extreme impacts, which can then be verified by using, for instance, real-world
observations. In principle, the method is able to generate new realistic weather conditions associated with
high BL. Overall, the method is a step toward an improved understanding of the weather drivers of
significant impacts by using deep generative models.
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A. Figures

Figure A1. Pearson’s correlation coefficients among all latent dimensions.
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B. Metrics
Three metrics are used for measuring the performance of the logistic regression models. CSI is equal to the total number of correct
events predicted (true-positives) divided by the total number of events predicted (true-positives + false-positives) plus the number of
misses (false-negatives).

CSI ¼ TP

TP +FP +FN
:

F1-score is the harmonic mean of precision and recall, which can also be written as a function of true-positives, false-positives, and
false-negatives.

F1‐Score¼ 2TP
2TP +FP +FN

:

Average Precision is the area under the precision and recall curve. It is typically used for imbalanced datasets. CSI, F1-Score and
Average Precision range between 0 and 1, with higher values indicating a better model.
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