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1. Introduction

For bounded operators, the theory of the joint numerical range has been developed
by various authors [1,2,3,4,5]. Especially, the properties of commuting normal n-tuples
are discussed in detail. Our purpose here is to show that many results in the above
references still hold in the case of unbounded normal operators (see Theorem 2.3,
Corrollary 3.5, Theorem 4.1, Theorem 4.2). Besides, the operator algebras are closely
related to the theory of joint spectrum and joint numerical ranges in the bounded case
(cf. [1,3]). How about unbounded operators? It seems that one must consider
unbounded operator algebras. Some work has been done in this direction for the joint
spectrum of unbounded normal operators [9]. In the last section of this paper, we
provide some intimate relations between the joint numerical range and the unbounded
operator algebras for unbounded normal operators.

Throughout this note, H will be a complex Hilbert space with the scalar product ( , ).
A closed operator T on H is said to be normal if T is densely defined and T*T = TT*
(cf. [10]). We say an n-tuple of normal operators A = (Alt An) is commuting if their
spectral measures are commutative. The joint spectrum Sp(/4) of A is defined as the
support of £ = n?= i £>> where £; is the spectral measure of Ah i= 1,...,n.

The definitions here have their background in the multiparameter spectral theory
(Sleeman [6]), and are closely connected with Taylor's joint spectrum of A (see [9] and
Section 5).

2. Convexity of the joint numerical range

Definition 2.1. Let A = (Al,...,An) be a commuting n-tuple of normal operators, the
joint numerical range of A is the set W(A) in C such that

where D(Aj) is the domain of Ah i= 1,...,n.
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We remark that D(A) is a dense subspace of H since it contains E(A)H, where E is the
product spectral measure of A and A is any compact subset of C .

As far as we know, W(A) is convex when A is a commuting n-tuple of bounded
normal operators or an n-tuple of Toeplitz operators [2,5]. In the following, we show
that this is also true for a commuting n-tuple of unbounded normal operators.

Lemma 2.2. Suppose that A=(A1,...,An) is a commuting n-tuple of normal operators.
Then there exists a family {(C, pa): a e A} of measure spaces such that each Ak is unitary
equivalent to the maximal operator of multiplication by zk on © < Z 6 A ^ 2 ( C " ; P J , k=l,...,n.
That is

aeA aeA

and

Q, for (/JeD(>y, /c=]

Proof. There exists the product spectral measure E of A since A = (Au...,An) is
commuting and normal. It easily follows that

Ak=\zkdE, k=l,...,n.
C"

The detailed proof is similar to that for single self-adjoint operators, we omit it here
(cf. [10]).

Theorem 2.3. Let A=(Au...,An) be a commuting n-tuple of normal operators. Then
the joint numerical range W{A) is convex.

Proof. Without loss of generality, we may assume A = (A1,...,An) to be the maximal
operators of multiplication by z = (z1,...,zn) on ©aEAL2(Cn;pa) by using Lemma 2.2.

Suppose that / = ( / J , g = (gx) e D(A) = f)?=, D(At) and | | / | | = ||g|| = l, then for any
t e [ 0 , l ] fixed, let n = («J = ((t|/a|2 + (l- t) |ga | 2)1 / 2) . Since for any fe = l , . . . ,n and aeA,

we have h = (ha)eD(A)t Furthermore, it is clear that
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which implies

t({AJ,f),...,(Anf,f))+V-t)((Alg,g),...,(Ang,g))

= ({A1h,h),...,(AJhh))eW(A).

Hence W{A) is a convex set in C . This completes the proof.

3. A characterization of the joint numerical range

Definition 3.1. A point z = (zl,...,zn) of C" is in the joint approximate point
spectrum an(A) of A if there exists a sequence {x,} of unit vectors in D(A) = (~)"=i D{A)
such that

\\(zk - Ak)Xi\\ -»0 (i-» co), k = 1,2,..., n.

A point z = (zi,...,zn) of C is in the joint point spectrum op(A) of A if there exists a
nonzero vector x in D(A) such that

Lemma 3.2. Let A=(A1,...,AI) be a commuting n-tuple of normal operators. Then
and zoeap(A) if and only if £({zo})f 0 (cf. [9]).

Lemma 3.3. / / A is a convex set in C and n is a nonnegative Borel measure defined
on A such that fi(A) = 1, then

J zd/i(z) e A (cf. [7]).

Now we proceed to prove the main result of this section.

Theorem 3.4. Let E be the product spectral measure of a commuting n-tuple of normal
operators A=(Au...,An), and let S be the family of all the convex Borel sets A in C"
satisfying E(S) = I. Then

AeS

Proof. We denote V(A) = f)AeS A.
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(i) For any AeS and xeD(A), \\x\\ = 1, f,Azd||£(z)x||2 is a Bochner integration about the
probability measure /ix = ||£(-)x||2. By Lemma 3.3 we have

x),..., I znd(En(zn)x,x)
Sp(/In)

= Uz, d(E(z)x, x),..., J zn d(£(z)x, x))
\A A /

= Jzd||£(z)x||2eA.

This proves that W(A) c V(A).

(ii) Now we shall show that V(A) c W(A).

It is known that Sp(A) = an(A) (Lemma 3.2) and W(A) is convex (Theorem 2.3), so we
have conv(Sp(/l))c= W(A). Suppose zoe V(A), it is clear that z0 e conv (Sp (A)).

If £({z0}) + 0, then z0 e ap(A) <= W{A).
If z0eint(conv(Sp(/l))), then zoeint W(A)<=W(A) since W(A) is convex.
It remains to consider the case when z0 is a boundary point of conv(Sp(/4)) and

£({zo}) = 0.
Considering C" as a real linear space of dimension 2«, we know that there exists a

hyperplane n of dimension 2n — 1 which supports conv (Sp (A)) at z0. Taking z0 as
origin, we shall establish a real rectangular coordinates system for U2n as follows.

First we can fix the xx-axis such that the equation of n is xx = 0 and conv(Sp(/4)) is
at the side of x^ ^0 .

In x1=0, if for every open half-space e one has £(e) =/=(), then there must exist a
compact convex set Ace such that £(A)^=0. Hence we can pick a unit vector
xeE(A)H(=D(A). By Lemma 3.3 we have

Since e is an arbitrary half-space in n, we can choose some points of kind ke circles z0.
It follows from Theorem 2.3 that z0 e W(A).

On the other hand, if there exists a half-space e in n for which E(e) = 0, then we fix
the x2-axis such that e = {x1 = 0,x2<0}. Replacing {xj=0} by {x1 = 0,x2 = 0}) we
continue the procedure above. Then either for some step we obtain z0 e W{A) or
eventually we get

£({x1<0})=0,

£({x1=0,x2<0}) = 0,

= x2 = - = x 2 n _ 2 = 0, x2n_1<0})=0.
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Let S1 = {x1 = --- = x2n_1=0, x2n<0}, S2 = {x1 = --- = x2n.1=0, x2n>0}. We may assert
that £(S,) = 0, j=l ,2. Indeed, notice that £({zo}) = 0, E(S1)=0 would imply E(M) = I,
where

M = {x1>0}u{x1=0,x2>0}u--u{x1=--- = x2n_1=0,x2n>0}.

This is impossible since M is convex and zo = (0,...,0)£M. So we have proved EiSJ^O.
Similarly, £(S2) =/=(). Then there must exist two compact convex sets A1cS1 and A2<=S2

such that £(A,) = 0, i = l,2. Thus we can pick unit vectors x( e £(A,)H c D(A) and by
Lemma 3.3 we have

nt = ((AiX,-, xt),..., (Anxh x,)) e A; c Sh i = 1,2.

Therefore, z0econ\ {r\ut]2} c W(A). The proof is complete.

Corollary 3.5. If A = (A1,...,An) is a commuting n-tuple of normal operators, then

W(A)=conv(Sp(A)).

Proof. It immediately follows from the proof of Theorem 3.4.

4. Boundary points of the joint numerical range

By using Theorem 3.4, we can generalize some properties of the boundary points of
W{A) which were described in [4,5] for the bounded case.

Theorem 4.1. Let A = (AU...,An) be a commuting n-tuple of normal operators. If X

belongs to Ext W{A) (the extreme points of W(A)), then X e Sp (.4).

Proof. Suppose XeExt W(A). If X does not belong to Sp(A), then there is a ball
neighbourhood 0x of {X} such that £(0A)=0. One easily sees that M' = con
is a convex Borel set of C" and E(M') = I. By Theorem 3.4 we have Xe W(/4)<=M7=M'.
But the facts X e 0; and X e Ext W(A) imply X does not belong to M'. This is a
contradiction.

Theorem 4.2. Let A=(AU...,A^ be as above. If Xe W(A)nExt W{A), then Xeap{A).

Proof. Suppose Xe W(A)nExt W(A). If X does not belong to ap{A), then £({>*})= 0.
It follows that E(W(A)\{X}) = I. We see that W(A)\{X} is still convex since XeExt W(A)
and W(/4) is convex. It follows from Theorem 3.4 that XeW(A)\{X}. But this is a
contradiction. This completes the proof.

https://doi.org/10.1017/S0013091500022665 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022665


230 H. DANRUN

5. Connections with unbounded operator algebras

In this section, we shall consider some relations between the joint numerical range
and the unbounded operator algebras for normal operators.

As before A=(Alt...,An) is a commuting n-tuple of normal operators and E the
product spectral measure of A. Denote by 2F the family of all continuous functions on
Sp(/4). Consider the following set of operators:

= f fdE-.feA,
SpM) J

We know already from [9] that si is a GB*-algebra as defined in G. Allan [8], whose
topology is given by a collection of seminorms:

where Tesi and {A1cA2<=- ••} is a sequence of compact subsets in C" which
monotonically increase to C". Let @ = (~)fsSF Dom (£(/)), we also showed in [9] that 3)
is a common core for si and <% = si\B is an EC*-algebra defined by A. Inoue [12]. We
shall call si and °U the GB*-algebra and the EC*-algebra generated by A = (Au...,An)
respectively.

In [9] we proved the following

Sp£(/1) = {(x(Ai),..., x(An)): X is the extended multiplicative
linear functional on si},

and Sp(A) = Sp^/1) n C", where Sp^A) denotes the extended Taylor's joint spectrum of A.
Correspondingly, we have the following results referring to the joint numerical range

of A
First we recall that a functional 0 on a GB*-algebra si is called a state if <j> is

positive in the sense $(T*T)^0 for any Tesi and </>(/) = 1. Now we have

Theorem 5.1. Let A=(AU...,/4n) be a commuting n-tuple of normal operators and si
the GB*-algebra generated by A. Let

U(A) = {(</>(A,),...,<P(An)):4> is state on si),

then we have W(A) = U(A).

Proof. Let 2 = P)/e5r Dom(£(/)) as above, one easily sees from the proof of 3.4 that

Ws(A)={((Alx,x),...,(AnX,x)):xe2>,\\x\\ = l}

= (}=W{A).
A E S
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Since for any x e S , ||x|| = l, T-*{Tx,x) is a vector state on s/, we have W(A) =
Ws,(A)czU(A).

Conversely, if there exists a state <t> on si such that Ao = <I>(A) £ W(A), where <p(A) =
j),..., cj>(An)), then we can find a real hyperplane n in R2n = C which strictly

separates Ao and W(A) since, from Theorem 2.3, W(A) is a closed convex subset of C .
Now let {Am} be a sequence of compact sets in C" which monotonically increase to C

(see the first paragraph of this section). Obviously Am = E(Am)A=(E{AJAi....,E(Am)An)
is a commuting n-tuple of bounded normal operators and

Sp(/lJ=(AmnSp(A))C/{(0,...,0)}.

There is no loss of generality in assuming that (0,..., 0) e Sp(/4), since W(A), U(A) and
Sp(/1) are all linear in A. Thus we have Sp(Am) <= Sp(A), m = l,2,.... It follows by
Corollary 3.5 that

= conv(Sp(AJ) c conv(Sp(^)) = W(A).

Let C*(Am) be the unital C*-subalgebra of J / generated by Am. Since Theorem 5.1 is
known to be true for the bounded case [3] and 4> is still a state when acting on C*(AJ,
TO = 1,2,..., we have <j> is still a state when acting on C*(Am), TO =1 ,2 , . . . , and
(j)(Am)£ W(A^) c W(A). Besides, we can see that limm_00£(Am)/l1 = ,4;, i=l,...,n, under
the topology in s? defined above. Since any positive linear functional on a complete
symmetric unital algebra, whose topology is given by a countable family of seminorms,
is continuous [13], we have $(>4m)->$(/4) = A0. But this is impossible because that k0

and W{A) are separated strictly by the hyperplane n in C". Thus we have proved
U(A) c W(A) and combining this with W(A) <= U(A) we get U(A) = W(A). The proof is
complete.

Remark. Theorem 5.1 generalizes the result in [3] since U(A) is clearly a compact
set when A=(Al,...,An) are bounded.

Finally, we shall characterize W(A) by means of the weakly continuous linear
functional on °U which is induced by A. Inoue [12].

Lemma 5.3. Let <j> be a positive linear functional on the EC*-algebra "U on Si. Then
the following conditions are equivalent.

(1) (p is weakly continuous;
(2) 0(r) = £r=i (TZhQ for some £,e®, i=l , . . . ,m, and Te%.

This lemma comes from A. Inoue [12] and immediately leads to the following
consequence.

Theorem 5.4. Let A = {Au..., An) be a commuting n-tuple of normal operators. % is the
EC*-algebra generated by A. Let

JT = {<j)\(j) is weakly continuous positive functional on "U, <f>(l) = 1}.
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Then W(A) = {(<p(Al),...,<p(An)):<peJf}. {Strictly, </>(/!,) should be written as <p(A,\a).)

Proof. By Lemma 4.3, any <petf can be written in the form #(T) = £™=1(T£,-,£j) for
some iieSi, i=l,...,m, where Teffl.

Since <p(I) = Y?=i ||< î||2 = l> o n e easily sees that

So we have {{(p(Ai),...,(t)(An)):(peX'} c W(A). The inverse inclusion is obvious. Thus
the proof is complete.

The author would like to thank Professors Cheng Qixiang and Zhang Dianzhou, for
their advice and encouragement during the preparation of this material. Thanks are also
due to the referee for his or her valuable suggestions.
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