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We present the linear theory of two-dimensional incompressible magneto-Rayleigh–
Taylor instability in a system composed of a linear elastic (Hookean) layer above
a lighter semi-infinite ideal fluid with magnetic fields present, above and below the
layer. As expected, magnetic field effects and elasticity effects together enhance
the stability of thick layers. However, the situation becomes more complicated for
relatively thin slabs, and a number of new and unexpected phenomena are observed.
In particular, when the magnetic field beneath the layer dominates, its effects compete
with effects due to elasticity, and counteract the stabilising effects of the elasticity.
As a consequence, the layer can become more unstable than when only one of these
stabilising mechanisms is acting. This somewhat unexpected result is explained by
the different physical mechanisms for which elasticity and magnetic fields stabilise
the system. Implications for experiments on magnetically driven accelerated plates
and implosions are discussed. Moreover, the relevance for triggering of crust-quakes
in strongly magnetised neutron stars is also pointed out.
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1. Introduction
Rayleigh–Taylor (RT) instability is a well-known phenomenon in hydrodynamics

that occurs whenever a denser medium lays on top of a lighter one in a uniform
gravitational field g or, equivalently, when the denser medium is pushed and
accelerated by the lighter one with an acceleration −g (Rayleigh 1883, Taylor
1950). This instability has been widely studied for the case of semi-infinite media
(Chandrasekhar 1961), but much less attention has been paid to cases involving
finite-thickness media, especially when these media are not in contact with rigid walls.
In fact, the presence of rigid surfaces reduces the number of boundary conditions
and simplifies the mathematical treatment considerably. This has usually been the
case when considering the RT instability in more complex situations as, for instance,
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Magneto-Rayleigh–Taylor instability in an elastic medium 1013

when viscous fluids (Mikaelian 1982) or elastic media (Mora et al. 2014, Ricobelli
& Ciarletta 2017) are involved.

However, in most of the experiments on high-energy-density physics (Barnes et al.
1974, Kalantar et al. 2000, Park et al. 2010), applications to inertial confinement
fusion (Davies et al. 2017, Seyler, Martin & Hamlin 2018), as well as in the contexts
of astrophysics (Blaes et al. 1990, 1992, Mock & Joss 1998), and Earth and planetary
science (Tahir et al. 2006, 2017, 2018; Burov & Molnar 2008), the heavier medium
is in contact with lighter fluids or it has free surfaces. This is also the scenario in
some recent laboratory experiments (Adkins et al. 2017) involving viscous fluids,
a situation that has also been studied theoretically by Piriz, Piriz & Tahir (2018)
and previously, for some particular limits, by Lister & Kerr (1989) and Wilcock &
Whitehead (1991). For the case of finite-width elastic media with no presence of
rigid boundaries, RT instability has been studied by Bakhrakh et al. (1997), Plohr &
Sharp (1998) and Piriz, Piriz & Tahir (2017a,b).

When magnetic fields are present the instability is known as the magneto-Rayleigh–
Taylor (MRT) instability. To our knowledge, the case concerning finite-thickness media
has only been studied when the involved media are ideal fluids or plasmas (Harris
1962, Lau et al. 2011). In some research, a viscous fluid has also been considered,
but it was assumed to be limited by rigid walls (Awasthi 2014). On the other hand,
for the MRT instability involving an elastic medium, it seems to have been studied
only for the simplest configuration of two semi-infinite media (Sun & Piriz 2014).

However, the more interesting situation in which the heavy medium is a slab with
elastic properties is of great relevance to many experiments on high-energy-density
physics involving magnetically accelerated flyer plates that still retain its mechanical
properties when it is impacted on a target sample (Lemke, Knudson & Davis 2011,
Martin et al. 2012). In addition, this problem is of interest in the recently proposed
approach to inertial confinement fusion known as magnetic inertial fusion, in which a
magnetic field is used to mitigate the thermal conduction losses from the compressed
fusion fuel, so that the ignition requirements are relaxed (Davies et al. 2017; Seyler
et al. 2018). The presence of such an interior magnetic field will also play a role in
the implosion stability, especially when the initial field becomes compressed during
the implosion and its intensity is considerably increased.

Besides, MRT in elastic media may also be of importance in the crust-quakes taking
place in strongly magnetised neutron stars known as magnetars, which are considered
to be at the origin of the emissions from soft γ -rays and X-ray pulsars (Cheng et al.
1995, Kaminker et al. 2009). In fact, it has been shown that pycnonuclear and electron
capture reactions forced by the mass accretion from the interstellar medium can lead
to the development of a density inversion in the crust of a neutron star (Blaes et al.
1990, 1992, Bildsten & Cumming 1998, Mock & Joss 1998). However, in order that
such a density inversion can drive the RT instability in the neutron star crust, its
magnitude must exceed some minimum value imposed by the crust elasticity (Blaes
et al. 1990, Piriz et al. 2017b). Since the maximum density inversion, as determined
by the dynamics of the crust, has been shown to be unable to reach such a minimum
(Mock & Joss 1998), the crust will remain stable unless the stabilising effect of
elasticity can be somehow reduced.

It is not at all intuitive that the presence of magnetic fields may alter this scenario
by eliminating the instability threshold imposed by the elasticity of the crust. This is
especially so if we take into account that the addition of magnetic fields and elasticity
effects in semi-infinite media leads to the enhancement of system stability (Sun &
Piriz 2014). However, we show in this work that when a sufficiently thin elastic slab
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FIGURE 1. Schematic of the two-corrugated-interfaces system formed by an
incompressible elastic slab with average thickness h laying above a lighter semi-infinite
incompressible ideal fluid with horizontal magnetic fields at both sides of the slab.

is considered, a competition phenomenon takes place between magnetic fields and
elasticity for which the effectiveness of the elasticity is progressively diminished as the
magnetic field intensity increases until the instability threshold completely disappears.
This competition phenomenon may also become an issue for the magnetic inertial
fusion aiming to use solid slabs in combination with magnetic fields to mitigate the
effects of the MRT instability during the acceleration process.

2. Linear MRT instability
2.1. Fundamental equations

We consider the situation of the two-dimensional system schematically described in
figure 1, in which a Hookean medium of thickness h, density ρ2 and shear modulus
G occupies the magnetic-field-free region −h6 y6 0. The slab overlays an ideal fluid
of density ρ1<ρ2 occupying the region y> 0, which is filled with a uniform magnetic
field B1 = B1ex (ex is the unitary vector in the direction of the x-axis). In the region
over the slab, y6−h, we assume a medium with density ρ3= 0 (physically, it would
be a tenuous ideal medium such that ρ3� ρ2, ρ1) that is also filled with a uniform
magnetic field B3=B3ex. The whole system is under the action of the uniform gravity
acceleration field g = gey = −∇ϕ (ey is the unitary vector in the vertical direction
and ϕ is the gravitational potential). In each region we consider that the medium is
incompressible and perfectly conducting, and that there are no free charges. The media
are also considered to be immiscible.

We start the analysis of the MRT instability with the equations for mass and
momentum conservation in the following general form:

dρn

dt
+ ρn

∂vni

∂xi
= 0, (2.1)
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Magneto-Rayleigh–Taylor instability in an elastic medium 1015

ρn
dvni

dt
=−

∂pn

∂xi
+ ρngδiy +

∂σ
(n)
ik

∂xk
+ εijkJnjBnk, (2.2)

where n = 1, 2, 3 refer, respectively, to the bottom, middle and top regions, and we
have used index notation for Cartesian vectors and tensors so that i= 1, 2, 3 indicate
the space coordinates x, y, z. Furthermore εijk is the Levi-Civita pseudo-tensor
(εijkJnjBnk = (Jn × Bn)i); Jn is the current density; Bn is the magnetic field as
defined above in the region n; vni, ρn and pn are, respectively, the ith velocity
component, density and pressure; and σ

(n)
ik is the deviatoric part of the stress

tensor Σ (n)
ik = −pnδik + σ

(n)
ik of the medium n (δik is the Kronecker δ). We will

use interchangeably vector and index notation as appropriate for the presentation of
calculations. Also, dΘ/dt represents the material derivative of any magnitude Θ:

dΘ
dt
=
∂Θ

∂t
+ (v · ∇)Θ. (2.3)

The previous equations have to be complemented with the Maxwell equations.
Namely, the current density Jn is related to the magnetic field Bn by means of
Ampere’s law. In a medium with no free charges, it reads

∇×Bn =µnJn, (2.4)

where µn is the magnetic permeability of the n-medium. Then, the Lorentz force
F(n)

L = Jn ×Bn is

F(n)
L =

(∇×Bn)×Bn

µn
, (2.5)

which can be written in terms of the magnetic stress tensor M ik by using Gauss’s law
for the magnetism ∇ ·Bn = 0:

F(n)
Li =

∂M(n)
ik

∂xk
, M(n)

ik =−
BnjBnj

2µn
δik +

BniBnk

µn
. (2.6a,b)

On the other hand, the magnetic field Bn is related to the material velocity vn through
Faraday’s law:

∂Bn

∂t
=−∇×En =∇× (vn ×Bn), (2.7)

where we have taken into account Ohm’s law Jn = ηn(En + vn × Bn) (ηn is the
electrical conductivity) for media with very high conductivity (ηn → ∞) or with
Jn= 0, so that we have En=−vn×Bn. The previous equation can also be written in
the following alternative form:

dBni

dt
=
∂vni

∂xj
Bnj, (2.8)

which shows that the magnetic field is ‘frozen’ in the fluid and it moves as a material
substance (Chandrasekhar 1961).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.193


1016 S. A. Piriz, A. R. Piriz and N. A. Tahir

From (2.6b), the momentum conservation equation (2.2) can be rewritten in a more
symmetric form as follows:

ρn
dvni

dt
=−

∂pn

∂xi
+ ρngδiy +

∂(σ
(n)
ik +M(n)

ik )

∂xk
. (2.9)

In addition, for a Hookean medium, σ (n)ik is given by the following expression:

∂σ
(n)
ik

∂t
=Gn

(
∂vni

∂xk
+
∂vnk

∂xi

)
. (2.10)

Then, we can solve the linear stability problem by considering small-amplitude
perturbations about the solution for a flat slab. Since in equilibrium the deviatoric
part of the stress tensor vanishes, and we are assuming an incompressible medium,
we obtain the following hydrostatic solution:

p(y)=


0 y 6−h,
B2

3

2µ3
+ ρ2g(y+ h) −h 6 y 6 0,

p1 + ρ1gy y > 0,

(2.11)

where p1 = ρ2gh+ (B2
3/2µ3)− (B2

1/2µ1).
In order to close the problem we need to impose the boundary conditions

corresponding to our physical situation in which the top surface of the linear elastic
slab is a free surface in contact with an empty region filled with the horizontal
uniform magnetic field B3, while the bottom surface is in contact with an ideal
fluid which is embedded in the uniform magnetic field B1. Integrations of (2.1)
and (2.9) along the vertical coordinate y, across the bottom and the top interfaces,
respectively, yield the following jump conditions representing the continuity of the
normal velocities, and of the normal and tangential stresses at such interfaces:

‖−pnδik + σ
(n)
ik nk +M(n)

ik nk‖ = 0, (2.12)
‖−vny‖ = 0 (2.13)

(with i= y or x), where ‖Q‖ =Q(y0 + 0+)−Q(y0 − 0+), with y0 = 0 or y0 =−h, and
0+→ 0.

2.2. Linearised equations
In order to linearise the previous set of equations we express every magnitude Θ as
Θ = Θ0 + δΘ , where Θ0 and δΘ � Θ0 are, respectively, the equilibrium value of
the magnitude and its perturbation. Then, by considering incompressible perturbations
(δρn = 0), we get the linearised equations for momentum and mass conservation:

ρn
∂(δvni)

∂t
=−

∂(δpn + ρnδϕn)

∂xi
+
∂(S(n)ik + T (n)

ik )

∂xk
, (2.14)

∂(δvni)

∂xi
= 0, (2.15)
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Magneto-Rayleigh–Taylor instability in an elastic medium 1017

where for simplicity we have defined δσ
(n)
ik ≡ S(n)ik , δM(n)

ik ≡ T (n)
ik , and they are given,

respectively, by the following relationships:

∂S(n)ik

∂t
=Gn

[
∂(δvni)

∂xk
+
∂(δvnk)

∂xi

]
, (2.16)

T (n)
ik =−

BnjδBnj

µn
δik +

BniδBnk

µn
+

BnkδBni

µn
, (2.17)

where the magnetic field perturbation turns out from (2.7) or (2.8):

∂(δBni)

∂t
= Bnk

∂(δvni)

∂xk
. (2.18)

For the present case (2.17) can be rewritten by taking into account that Bnj = Bnδjx:

T (n)
ik =

Bn

µn
(−δBnxδik + δBnkδix + δBniδkx). (2.19)

To obtain suitable equations for the description of the perturbed velocity field, we
use the Helmholtz decomposition (Lamb 1945, Eringen & Susuhi 1975, Menikoff
et al. 1978, Thorne & Blandford 2017) whereby the velocity field can be written as
the sum of an irrotational part plus a solenoidal part, in terms of the scalar potential φn

and the vector potential ψn, which for the two-dimensional perturbation we consider
here will be written as ψn=ψnez (ez is the unitary vector in the direction of the z-axis).
Therefore, we have

δvn =∇φn +∇× (ψnez). (2.20)

By introducing (2.20) into (2.14) and (2.15), we get

∇

{
∂

∂t

(
ρn
∂φn

∂t
+ δpn + ρnδϕn

)
+

B2
n

µn

[
∂(δvnx)

∂x
−
∂2φn

∂x2

]}
+∇×

[(
ρn
∂2ψn

∂t2
−Gn∇

2ψn −
B2

n

µn

∂2ψn

∂x2

)
ez

]
= 0, (2.21)

∇
2φn = 0. (2.22)

In our present problem, G1 = G3 = 0, G2 ≡ G and B2 = 0, so that the second
term of (2.21) is equal to zero. Then, by using the so-called Bernoulli gauge (Lamb
1945, Menikoff et al. 1978, Thorne & Blandford 2017), we can choose φn and ψn as
solutions of the following system of equations:

γφn +
δpn

ρn
+ δϕn = 0, ∇2φn = 0, (2.23a,b)

ψ1 =ψ3 = 0, γ 2ψ2 =
G
ρ2
∇

2ψ2, (2.24a,b)

where δϕn=−gδvny/γ , γ is the asymptotic instability growth rate and we have taken
two-dimensional perturbations of the form
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φn ∝ e(γ t+qy) sin kx, (2.25)
ψ2 ∝ e(γ t+q′y) cos kx. (2.26)

In addition, consistently with (2.23b) and (2.24b):

q=±k, q′ =±λ, λ=

√
k2 +

γ 2ρ2

G
. (2.27a−c)

On the other hand, perturbations of the deviatoric stress tensor S(2)ik , of the magnetic
stress tensors T (n)

ik and of the magnetic fields δBni are given by (2.16), (2.17) and
(2.18), respectively. Similarly, the velocity field is obtained from (2.20):

δvnx =
∂φn

∂x
+
∂ψn

∂y
, δvny =

∂φn

∂y
−
∂ψn

∂x
. (2.28a,b)

On the other hand, the linearised boundary conditions at each interface are

‖ − δpnδik + S(n)ik nk + T (n)
ik nk‖ = 0, (2.29)

‖ − δvny‖ = 0 (2.30)

(with i= y or x), where ‖Q‖=Q(y0+ 0+)−Q(y0− 0+) (with y0= ξa or y0=−h+ ξb,
where 0+→ 0, and ξa= ξa(x, t) and ξb= ξb(x, t) are the perturbation amplitudes of the
bottom and top interfaces, respectively), and we have to take into account that both
S(n)ik and T (n)

ik are symmetric tensors. By taking into account that in the linear regime
we are considering nx = ∂ξa,b/∂x ∼ kξa,b � 1 and ny ∼ 1, we can rewrite (2.29) as
follows:

‖−δpnδyi + S(n)yi + T (n)
yi ‖ = 0. (2.31)

Therefore, the required boundary conditions read

δv1y(0)= δv2y(0)= γ ξa, δv2y(−h)= δv3y(−h)= γ ξb, (2.32a,b)

− δp1(0)+ T (1)
yy (0)=−δp2(0)+ S(2)yy (0), −δp2(−h)+ S(2)yy (−h)= T (3)

yy (−h),
(2.33a,b)

T (1)
xy (0)= S(2)xy (0), S(2)xy (−h)= T (3)

xy (−h), (2.34a,b)

where S(2)ik is obtained from (2.16), T (n)
ik is obtained from (2.17) and (2.18) and δpn is

given by (2.23a):

− δpn =−ρng
δvny

γ
+ ρnγφn. (2.35)

Before using these equations for solving the problem presented in figure 1, let
us first retrieve the results of Lau et al. (2011) for the MRT instability in ideal
media (G= 0), and consider also the case of the MRT instability in two semi-infinite
(h→∞) media studied by Sun & Piriz (2014) in which the heaviest one is an elastic
medium. Later, these cases can be used for comparisons with the present problem
and to aid the physical interpretations.
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3. Brief overview of some previous relevant results
3.1. Ideal fluid slab atop a lighter semi-infinite ideal fluid

In this case ψ2= 0, and the velocity field is derived from the solution of the Laplace
equation (2.22). The resulting velocity potentials φn in the corresponding regions are
conveniently written in the following form:

φ1 = aM1e−kyeγ t sin kx (y > 0), (3.1)

φ2 =
aM2 cosh ky+ bM2 cosh k(h+ y)

sinh kh
eγ t sin kx (−h 6 y 6 0), (3.2)

φ3 = aM3ek(h+y)eγ t sin kx (y 6−h), (3.3)

where the constants aMn and bM2 will be determined together with the instability
growth rate γ from the boundary conditions at y = 0 and y = −h given by
(2.32)–(2.34). In this case, since the heavier medium (n = 2) is also ideal, we
have S(2)ik = 0, and those boundary conditions read as follows:

δv1y(0)= δv2y(0), δv2y(−h)= δv3y(−h), (3.4a,b)

− δp1(0)+ T (1)
yy (0)=−δp2(0), −δp2(−h)=−δp3(−h)+ T (3)

yy (−h), (3.5a,b)

where the perturbations of the magnetic tensor are given by (2.17) and (2.18):

T (n)
yy =

B2
nk2

γµn
aMn. (3.6)

Then, (3.4) and (3.5) produce the following set of equations:

aM1 =−bM2, aM2 =−aM3, (3.7a,b)

γρ2

( aM2

sinh kh
+ bM2 coth kh

)
−
ρ2kg
γ

bM2 = ρ1

(
γ +

kg
γ

)
aM1 +

B2
1k2

γµ1
aM1, (3.8)

γρ2

(
aM2 coth kh+

bM2

sinh kh

)
+
ρ2kg
γ

aM2 =
B2

3k2

γµ3
aM3. (3.9)

The solution of this system yields the dispersion relation for the growth rate γ :

γ 4

(
1+

ρ1

ρ2
coth kh

)
+ γ 2

{
2k2

ρ2
(GM1 +GM3) coth kh+

ρ1

ρ2

[
2k2

ρ2
GM3 + kg(1+ coth kh)

]}
−

[(
1−

ρ1

ρ2

)
kg−

2k2

ρ2
GM1

] (
kg+

2k2

ρ2
GM3

)
= 0, (3.10)

where we have used the following definition:

GMn ≡
B2

n

2µn
. (3.11)
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It may be worth noticing that for GM1=GM3=0, (3.10) yields the growth rate obtained
by Mikaelian (1982) and Goncharov et al. (2000) for the case of an ideal fluid slab
with no magnetic fields:

γ =

√
(ρ2 − ρ1)kg
ρ2 + ρ1 coth kh

. (3.12)

Later, this result will be useful for comparisons.
For the analysis of the dispersion relation (3.10) it is convenient to introduce the

following dimensionless magnitudes:

κM =
k

k0M
, σM =

γ
√

k0Mg
, k0M =

ρ2g
GM1

. (3.13a−c)

Then, we get

σ 4
M

(
1+

1− AT

1+ AT
coth αMκM

)
+ σ 2

M

{
2(1+ βM)κ

2
M coth αMκM +

1− AT

1+ AT
[2βMκ

2
M + κM(1+ coth αMκM)]

}
− 2κ2

M

(
AT

1+ AT
− κM

)
(1+ 2βMκM)= 0, (3.14)

where

βM =
GM3

GM1
, αM = k0Mh, AT =

ρ2 − ρ1

ρ2 + ρ1
, (3.15a−c)

and AT is the Atwood number. We have presented the dispersion relation (3.14) in
a somewhat different manner from Lau et al. (2011), which is more suitable for
our present purposes. The dimensionless growth rate σM is shown in figure 2 for
two values of the Atwood number (AT = 1 and 0.3), for three values of the ratio
βM =GM3/GM1 between the magnetic pressures above and below the dense layer, and
for different values of its dimensionless thickness αM indicated by the labels on the
curves.

Three features have to be noticed that will be worth comparing later on with
the results involving an elastic slab in § 4. Firstly, the cut-off wavenumber kMc is
independent of the slab thickness and it is determined only by the magnetic pressure
GM1 = B2

1/(2µ1) acting on the bottom surface of the slab:

kMc =
AT

1+ AT

ρ2g
GM1

. (3.16)

Secondly, the maximum growth rate is smaller for the thinner slabs, and this is true for
all values of AT , whereas, as shown by (3.12), when no magnetic fields are present the
thinner slabs are more stable only if AT 6= 1. As was discussed by Piriz et al. (2018),
the latter behaviour is explained by the fact that the fluid in the region y > 0 exerts
a force (per unitary surface) ρ1gξa which opposes the slab fall, and it depends only
on the bottom surface deformation ξa. Instead, the force ρ2g1h driving the slab fall
is given by the slab-thickness change 1h= ξa− ξb. Therefore, since 1h is smaller for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.193


Magneto-Rayleigh–Taylor instability in an elastic medium 1021

0.5

0.4

0.3

åM = ®2gh/GM1
ıM = GM3/GM1

0.2

1000

1000

1000
1000

1000

1000

1

1

1 1

1

1

0.3

0.3

0.3
0.3

0.3

0.3
0.1

0.1

0.1 0.1

0.1

0.10.1

0.4

0.3

0.2

0.1

ßM

ßM

ßM

AT = 1
ıM = 0

AT = 1
ıM = 1

AT = 1
ıM = 1000

AT = 0.3
ıM = 1

AT = 0.3
ıM = 1000

AT = 0.3
ıM = 0

0 0.1 0.2 0.3 0.4 0.5 0.6

0.025

0.020

0.015

0.010

0.005

0.12

0.08

0.04

0.012

0.008

0.004

0 0.05 0.10 0.15
˚M

0.20 0.25
˚M

0 0.05 0.10 0.15 0.20 0.25

0 0.05 0.10 0.15 0.20 0.25

0.15

0.10

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

(a) (b)

(c) (d)

(e) (f)

FIGURE 2. Ideal MRT instability. Dimensionless growth rate σM = γ /
√

k0Mg as a function
of the dimensionless wavenumber κM = k/k0M (k0M = ρ2g/GM1, and GMn = B2

n/(2µn)),
for two Atwood numbers (AT = 1 and AT = 0.3), and for three typical cases in which,
respectively, the bottom magnetic field dominates (a,d), both fields are equal (b,e) and the
top magnetic field dominates (c, f ), and for different values of the dimensionless thickness
αM (indicated by the labels on the curves).

thinner slabs, and the same force ρ1gξa is available to support any slab, the thicker
ones are less stable. For the same reason, no reduction of the growth rate occurs for
AT = 1, when no fluid is present below the slab for supporting it.
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However, the fact that in the presence of magnetic fields the thinner slabs turn out to
be more stable even for AT = 1 can be explained in a similar manner. In fact, uniform
magnetic fields which are known to act as a surface tension (Chandrasekhar 1961)
resist the slab deformation to an extent that depends on the local deformations ξa at
y= 0, and ξb at y=−h (in (3.6) it is aM1/γ = ξa and aM3/γ = ξb). Instead, the weight
increase of the slab is once again determined by 1h= ξa − ξb, which is smaller for
thinner slabs. The stabilising effect of the magnetic field is then more effective for
the thinner slabs for any AT .

Finally, we note that for a given value of AT , the magnetic field atop the layer also
acts to reduce the maximum growth rate. This means that the presence of magnetic
fields at any side of the slab has a stabilising effect.

3.2. Magneto-Rayleigh–Taylor instability in semi-infinite media. An elastic medium
atop an ideal fluid

In this case h→−∞, and ψ2 6= 0 is given by (2.24). Then, the potential functions
that determine the velocity field read as follows:

φ1 = as1e−kyeγ t sin kx (y > 0), (3.17)
φ2 = as2ekyeγ t sin kx (y 6 0), (3.18)
ψ2 = cs2eλyeγ t cos kx (y 6 0), (3.19)

where λ is given by (2.27c).
In this case, the boundary conditions must be imposed only at y = 0. Therefore,

(2.32) to (2.34) read now as follows:

δv1y(0)= δv2y(0), (3.20)

−δp1(0)+ T (1)
yy (0)=−δp2(0)+ S(2)yy (0), (3.21)

T (1)
xy (0)= S(2)xy (0). (3.22)

These equations yield the following system for obtaining the constants asn and cs2,
and the growth rate γ :

− as1 = as2 + cs2, as2 =−
[(λ2
+ k2)G− 2k2GM1]

2k2(G−GM1)
cs2, (3.23a,b)

ρ1

(
γ +

kg
γ

)
as1 +

2GM1k2

γ
as1 = ρ2γ as2 −

kg
γ
ρ2(as2 + cs2)+

2G
γ
(k2as2 + λkcs2). (3.24)

From (3.23) and (3.24) we can find the dispersion relation for the growth rate:

γ 2
− ATkg=

1+ AT

2
4k2G
ρ2

−1+
kG
ρ2γ 2

√k2 +
γ 2ρ2

G
− k

(1−
GM1

G

) . (3.25)

Notice that by doing the transformation G/γρ2 → ν in the previous equation with
GM1 = 0 we recover the growth rate given by Chandrasekhar (1961) for the case of
a semi-infinite viscous fluid of kinematic viscosity ν overlaying a semi-infinite ideal
fluid (Robinson & Swegle 1989).
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Magneto-Rayleigh–Taylor instability in an elastic medium 1023

After some straightforward algebra, (3.25) can be rewritten in the following suitable
form:

γ 2
− ATkg=−

1+ AT

2
4k2

ρ2

(λG+ kGM1)

λ+ k
. (3.26)

In the irrotational approximation considered by Sun & Piriz (2014), k2
� γ 2ρ2/G, and

then λ≈ k, so that (3.26) reduces to the irrotational solution.
From (3.26) we can easily see that marginal stability (γ = 0) occurs for the cut-off

wavenumber kc:

kc =
AT

1+ AT

ρ2g
G+GM1

. (3.27)

As was noticed by Sun & Piriz (2014), in this case magnetic pressure acts practically
in the same manner as elasticity to enhance the stability of the interface, and both
stabilising effects are added up.

To represent graphically the dispersion relation for this case it is more convenient
to write (3.25) in dimensionless form by using the following definitions:

κ =
k
k0
, σ =

γ
√

k0g
, k0 =

ρ2g
G
, β1 =

GM1

G
. (3.28a−d)

Then, it turns out

σ 2
= ATκ + 2(1+ AT)κ

2
{
−1+

κ

σ 2

[√
κ2 + σ 2 − κ

]
(1− β1)

}
. (3.29)

This expression is represented in figure 3 for two values of the Atwood number (AT =

1 and 0.3) and for three different values of the ratio β1 (0, 0.5 and 1.5).

4. Elastic slab atop an ideal fluid in the presence of magnetic fields
4.1. Dispersion relation

This is the case schematically represented in figure 1 in which the regions y6−h and
y > 0 are filled with uniform magnetic fields, and the elastic slab in between (−h 6
y6 0) is a Hookean medium. Then ψ2 6= 0 and the potential functions are conveniently
written in the following form:

φ1 = a1e−kyeγ t sin kx (y > 0), (4.1)
φ3 = a3ek(h+y)eγ t sin kx (y 6−h), (4.2)

φ2 =
a2 cosh ky+ b2 cosh k(h+ y)

sinh kh
eγ t sin kx (−h 6 y 6 0), (4.3)

ψ2 =
c2 sinh λy+ d2 sinh λ(h+ y)

sinh λh
eγ t cos kx (−h 6 y 6 0), (4.4)

and the velocity field is calculated from (2.28).
The required boundary conditions are those ones given by (2.32) to (2.34). These

six boundary conditions produce the following system of linear equations:

− a1 = b2 + d2, −a3 = a2 + c2, (4.5a,b)
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FIGURE 3. Magneto-Rayleigh–Taylor instability in semi-infinite media with an elastic
medium atop an ideal fluid. Dimensionless growth rate σ = γ /

√
k0g as a function of the

dimensionless wavenumber κ = k/k0 (k0=ρ2g/G) for three values of the ratio β1=GM1/G
(GM1 = B2

1/(2µ1)) indicated by the labels on the curves, and for two Atwood numbers:
(a) AT = 1 and (b) AT = 0.3.

a1 =−
G[2k2b2 + (λ

2
+ k2)d2]

2k2GM1
, (4.6)

a3 =−
G[2k2a2 + (λ

2
+ k2)c2]

2k2GM3
, (4.7)

γρ2

( a2

sinh kh
+ b2 coth kh

)
+

2kG
γ

[
k
( a2

sinh kh
+ b2 coth kh

)
+ λ

( c2

sinh λh
+ d2 coth λh

)]
−
ρ2kg
γ
(b2 + d2)= ρ1

(
γ +

kg
γ

)
a1 +

2k2GM1

γ
a1, (4.8)

γρ2

(
a2 coth kh+

b2

sinh kh

)
+

2kG
γ

[
k
(

a2 coth kh+
b2

sinh kh

)
+ λ

(
c2 coth λh+

d2

sinh λh

)]
+
ρ2kg
γ
(a2 + c2)=

2k2GM3

γ
a3. (4.9)

After some algebra the previous six-equation system can be reduced to the following
two-equation system:

a2(A1 + E1)+ b2

[
C1 − B+

ρ1

ρ2

(
B+

γ 2ρ2

γ

)]
= 0, (4.10)

a2(C3 + B)+ b2(A3 − E3)= 0, (4.11)

where

An = (1− βn)A+ βn(λ
2
+ k2)csch kh, (4.12)
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Magneto-Rayleigh–Taylor instability in an elastic medium 1025

Cn = (1− βn)C+ βn[(λ
2
+ k2)coth kh+ 2k2

], (4.13)

En =
4k3λ(λ2

+ k2
− 2k2βn)

λ2 − k2
E0, (4.14)

B=
ρ2kg

G
, (4.15)

and we have used the following definitions:

E0 =

(
1− β1

λ2 + k2 − 2k2β1
−

1− β3

λ2 + k2 − 2k2β3

)
coth λh; βn =

B2
n

2µnG
, (4.16a,b)

A=
(λ2
+ k2)2csch kh− 4k3λcsch λh

λ2 − k2
, (4.17)

C=
(λ2
+ k2)2coth kh− 4k3λcoth λh

λ2 − k2
. (4.18)

We note that En = 0 when β1 = β3 and also when γ = 0. In addition, when β1� 1
or β3� 1, then En/An < γ

2ρ2/(2k2G) < 1. Therefore, En will have some slight effect
only on the maximum growth rate for the latter extreme cases and can be neglected in
all the situations of interest. Then, by neglecting hereafter such terms, the dispersion
relation turns out from the solution of the system (4.10) and (4.11) as

C1C3 − A1A3 = B2
−
ρ1

ρ2

(
B+

γ 2ρ2

G

)
(B+C3)− B(C1 −C3). (4.19)

4.2. Marginal stability conditions
Before proceeding with the calculation of the instability growth rate γ , it is very
useful to study the conditions for marginal stability by solving (4.19) for the case
with γ (k = kc) = 0 (kc is a cut-off wavenumber). Then, and by using the L’Hôpital
rule, we find that for γ → 0, (4.12) and (4.13) yield

An =
2k2

c [kch(1− βn) cosh kch+ sinh kch]
(sinh kch)2

, (4.20)

Cn =
C′

h2
+ 2k2

cβn, (4.21)

where

C′n =
( w

sinh w

)2
[2w(1− βn)+ sinh 2w], w= kch. (4.22a,b)

Then, (4.19) leads to the following equation for the marginal stability conditions:

2AT

1+ AT
α2
− αH1(w)−H2(w)= 0, (4.23)

where α = ρ2gh/G and

H1 =
(1− AT)w

1+ AT

[
2w(1− β3)+ sinh 2w

(sinh w)2
+ 2β3

]
+ 2(β1 − β3)

[
w−

( w
sinh w

)2
]
, (4.24)
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H2 = 4w2

[
1−

(1− β1)(1− β3)w2

(sinh w)2

]
+ 4w2β1β3 + 2(β1C′1 + β3C′3), (4.25)

where C′n is given by (4.22a).
It is worth noticing that in the limit w� 1, α� 1 (very thick slabs), (4.23) gives

κc =
w
α
=

AT

(1+ AT)(1+ β1)
=

k
k0
, k0 =

ρ2g
G
. (4.26a,b)

That is, in the limit of very thick slabs we retrieve the result of § 3.2 whereby the
cut-off wavenumber is determined only by the magnetic field B1 beneath the slab and
is not affected by the field B3 atop it.

However, in the opposite limit, w� 1, (4.23) gives place in general to a variety
of different behaviours of the marginal stability curves depending on the values of βn
and AT . In such a limit, (4.24) and (4.25) reduce to the following forms:

H1(w)≈
1− AT

1+ AT
[2(1− β3)+ 2+ 2wβ3] − 2(β1 − β3)(1−w), (4.27)

H2(w)≈ 4w2

[
1− (1− β1)(1− β3)

(
1−

w2

3

)]
+ 4w[β1(2− β3)+ β3(2− β1)].(4.28)

It is convenient to analyse this limit of w� 1 separately for the most representative
cases.

4.2.1. β1 > 0, β3 = 0
In this case, by putting β3 = 0 in (4.27) and (4.28) we find that (4.23) reduces to

2AT

1+ AT
α2
− 2α

[
2(1− AT)

1+ AT
− β1(1−w)

]
= 8wβ1 + 4w2

[
1− (1− β1)

(
1−

w2

3

)]
.

(4.29)

Then, for AT = 1 and provided that β1 6= 0, we get (w� 1, α� 1)

α = 4w, or κc =
w
α
=

1
4
. (4.30a,b)

Instead, when β1 = 0, we recover the results of Bakhrakh et al. (1997) and Plohr &
Sharp (1998):

κc =

(
3
4

)1/4 1
√
α
. (4.31)

When AT 6= 1 we can see from (4.29) that two different behaviours are obtained
depending on the values of β1. In fact, the cut-off wavenumber becomes

κc =

(
1
4

)(
1−

2
β1

1− AT

1+ AT

)
, (4.32)

provided that β1 > 2(1− AT)/(1+ AT). If not, a critical value αcr exists below which
the system is stable for any perturbation wavenumber:

αcr =
1+ AT

AT

(
2

1− AT

1+ AT
− β1

)
, (4.33)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.193


Magneto-Rayleigh–Taylor instability in an elastic medium 1027

15

10

5

0 0.5 1.0 1.5 2.0 2.5 3.0

å = ®2gh/G

å = ®2gh/G
˚c = kc/k0

˚c

˚c = AT/(1 + AT)
(1 + ı1)

ı3 = 0
AT = 1

ı3 = 0
AT = 1

ı3 = 0
AT = 0.3

ı3 = 0
AT = 0.3

å

0
0

5

5

10

0.25
0.25

1
12

20

15

10

5

0 0.5 1.0 1.5 2.0

101

100

10-1

10-2

100

10-1

10-2

0

0.5

0.05

1
2

10

101100 10210-1

å = k0h
101100 102

˚c = (1/4)(1- (2/ı1)(1 - AT/1 + AT))

10-1

å = k0h

0

1
2

4

10åcr = ((1 + AT)/AT)
(2(1 - AT)/(1 + AT) - ı1)

(a) (b)

(c) (d)

FIGURE 4. Marginal stability curves for the case with no magnetic field atop the slab,
β3= 0 (βn=B2

n/(2µnG)), for two Atwood numbers (AT = 1 and AT = 0.3), and for several
values of β1 (indicated by the labels on the curves). (a,b) Dimensionless slab thickness α
as a function of w= kch. (c,d) Dimensionless cut-off wavenumber κc=w/α as a function
of the α.

from which we retrieve the result of Piriz et al. (2017b) when β1= 0 and no magnetic
field is present.

The general results for β3 = 0 are represented in figure 4 for AT = 1 and AT = 0.3.
Figure 4(a,b) shows the dimensionless thickness α as a function of w = kch, and
figure 4(c,d) shows the dimensionless cut-off wavenumber κc as a function of the
dimensionless slab thickness α = ρ2gh/G. It is seen that, in accordance with (4.32)
and (4.33) for w� 1 (α� 1), when AT 6= 1 the cut-off wavenumber becomes larger
as the dimensionless magnetic pressure beneath the slab increases, and that the slab is
completely stable for β1 < 2(1− AT)/(1+ AT). When AT = 1 the cut-off wavenumber
always decreases as β1 increases, but the effect becomes progressively weaker for the
thinner slabs, in such a way that for very thin slabs it becomes independent of β1 and
κc→ 1/4.

In other words, contrary to the behaviour for α� 1 in which the effects of elasticity
and magnetic field are added together for enhancing the stability, for the thinner slabs
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the presence of the magnetic pressure in the region beneath the slab makes the system
less stable than when only one of these, otherwise stabilising, mechanisms is present.
This rather unexpected result is less evident for AT ∼ 1 (figure 4c), but it already
indicates that the presence of the magnetic field is not significantly affecting the cut-
off wavenumber for the thinner slabs. However, the effect becomes very evident for
AT < 1 (figure 4d). This means that when the stabilising effect of the magnetic field
is present it enters into competition with the stabilising effect of elasticity in such a
manner that the former acts in opposition to the latter.

This competition phenomenon is connected with the fact that the stabilising effect of
the magnetic field is determined by the local strain kξa at y= 0, while the stabilising
effect of the elasticity depends on the total strain which, for relatively thin slabs, is of
the order of (ξa− ξb)/h (Piriz et al. 2017a,b). For the very thick slabs the total strain
coincides with the local one, and the stabilising effects of the magnetic field add to
the ones of the elasticity. However, for the thinner slabs, the total strain is affected
by the presence of the magnetic field which acts to reduce the local deformation ξa.
This leads to a reduction of ξa − ξb, which, for a given slab thickness h, reduces
the effectiveness of the stabilising effect of elasticity. Such a reduction is stronger for
thinner slabs and for higher magnetic pressures.

In addition, elasticity tends to resist the stabilising effect of the magnetic field
mitigating the deformation ξa of the interface at y = 0. As a result the system may
become less stable than when only one of these mechanisms is present. As is seen
in figure 4(d), there is some specific value α∗ ≈ 4.73 whereby the stabilising effects
and the competition between magnetic field and elasticity mutually compensate each
other, and κc becomes independent of β1 (κc≈ 0.1). For α <α∗ the elasticity and the
magnetic field act against each other, while in the opposite case they act in the same
sense until for α� 1 they are linearly added up.

Such results can be of concern for some experiments on high-energy-density physics
in which flyer plates are accelerated in such a manner to keep the plates in the solid
state with the aim of increasing the acceleration stability (Lemke et al. 2011, Martin
et al. 2012). In such cases, AT ≈ 1 and assuming that the plate is driven exclusively
by the magnetic pressure, we have α= β1. In fact, the equilibrium condition imposes
the following relationship at the bottom interface (y= 0), given by (2.11):

ρ2gh= p1 +
B2

1

2µ1
−

B2
3

2µ3
, or α =

p1

G
+ β1 − β3, (4.34a,b)

so that for p1= 0 and β3= 0 it turns out that α=β1. We have indicated this particular
case with crosses in figure 4(c).

The existence of this competition phenomenon is of relevance for the generation
of crust-quakes in strongly magnetised neutron stars known as magnetars. It is to be
noted that, although enormous magnetic fields exist on the surface of magnetars, there
are evidences of much stronger magnetic fields beneath the neutron star crust (Cooper
& Kaplan 2010, Ryu et al. 2012, Mereghetti, Pons & Melatos 2015). Besides, it has
been shown that in the absence of magnetic fields, the elasticity of the crust imposes
an instability threshold that depends on the magnitude of the density inversion in the
neutron star crust (Blaes et al. 1990, 1992, Piriz et al. 2017b). This density inversion
produced by pycnonuclear and electron capture reactions in the crust (Blaes et al.
1990, 1992, Bildsten & Cumming 1998, Mock & Joss 1998) leads to a maximum
Atwood number close to 0.02, and it was shown to be insufficient for overtaking the
purely elastic instability threshold (Mock & Joss 1998). The presence of magnetic
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fields was not taken into account in those works probably because, on the basis of
the current knowledge on thick media, it was assumed that it would further increase
the instability threshold. However, the present results show a different scenario in
which a magnetic field such that B2

1/(2µ1) ∼ G can completely remove such an
instability threshold and lead to the crust instability for any arbitrary small density
inversion. Since a reasonable value for the shear modulus of a neutron star crust
is G ∼ 1018 Mbar (Lander et al. 2015), a magnetic field B1 ∼ 1016 Gauss would be
sufficient to make the crust unstable for any perturbation. Such a value of B1 is well
within the range of values expected for the internal fields in magnetars. We will see
later than the presence of a magnetic field on the crust surface (β3 6= 0) does not alter
this conclusion.

4.2.2. β1 = 0, β3 > 0
By putting now β1 = 0 in (4.27) and (4.28) we get for w� 1

H1(w)≈ 2
1− AT

1+ AT
(2− β3)+ 2β3(1−w), (4.35)

H2(w)≈ 8β3w. (4.36)

Then, from (4.23) we obtain the value of the dimensionless slab thickness α for
w= 0:

α(w= 0)=
2(1− AT)

AT
+ 2β3. (4.37)

This is the minimum value of α below which the system is stable for any perturbation
wavenumber provided that dα/dw|w=0 >0. Otherwise, there is a minimum value αmin 6
α(w= 0) that determines the critical value αcr for the instability threshold. It is not
difficult to see that

dα
dw

∣∣∣∣
w=0

=
(1+ AT)β3(2− β3)

ATβ3 + 1− AT
, (4.38)

so that there exists a minimum value αmin 6 α(w= 0) provided that β3 > 2.
We show α(w) in figure 5(a,b) for two different values of the Atwood number and

for the several values of β3 indicated by the labels on the curves. As can be seen in
figure 5(a), for AT =1 one has α(w=0)=2β3, for which an instability threshold exists
only for β3 > 0, as indicated by (4.37). And we can also appreciate the appearance
of a minimum for β3 > 2. Instead, for AT = 0.3 there is always a threshold for any
value of β3, and, once again, a minimum smaller than α(w= 0) appears for β3 > 2.

Figure 5(c,d) shows the same cases as before but for the marginal stability
wavenumber κc as a function of dimensionless thickness α. The behaviour is
qualitatively the same for any Atwood number except for the fact that, for the
purely elastic case (β3 = 0), there is no instability threshold when AT = 1 (Plohr &
Sharp 1998, Piriz et al. 2017a,b).

Figure 5(a,b) also shows that there are two cut-off wavenumbers for a given value
of α when β3 > 2. This situation resembles the results found by Mora et al. (2014)
and Ricobelli & Ciarletta (2017) for the case of an elastic slab in contact with a rigid
surface. We can analytically find the curve α(w) for the limiting case β3→∞:

α∞(w)=
1+ AT

2AT

w(2w2
+ 2w+ sinh 2w)

(sinh w)2 −w
. (4.39)
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FIGURE 5. Marginal stability curves for the case with no magnetic field beneath the slab,
β1= 0 (βn=B2

n/(2µnG)), for two Atwood numbers (AT = 1 and AT = 0.3), and for several
values of β3 (indicated by the labels on the curves). (a,b) Dimensionless slab thickness α
as a function of w= kch. (c,d) Dimensionless cut-off wavenumber κc=w/α as a function
of α.

This curve has a minimum value for wm ≈ 2.487, and the minimum value of α∞ is

α∞(wm)≈ 6.722
1+ AT

2AT
. (4.40)

The previous results are similar to the ones obtained for the case of an elastic slab
with rigid wall boundary conditions. However, even for a very strong magnetic field,
the case involving rigid walls is never retrieved. This is because, although the normal
velocity perturbation at y = −h, δv2y(−y)→ 0 for β3 →∞, the tangential velocity
δv2x(−h) remains finite. Instead, in a rigid wall the no-slipping boundary condition
imposes that δv2x(−h) must also be equal to zero. Nevertheless, the behaviour found
here for β3 > 2 may also indicate the possibility of a bifurcation leading to two
different paths in the nonlinear evolution, in which the left branch of figure 5(a,b)
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may lead to some kind of creasing instability like the one observed by Liang & Cai
(2015), or to some other new instability.

Besides, it is interesting to note that in this case the system stability increases with
the intensity of the magnetic field B3, such as shown by (4.37) and figure 5(c,d). Such
a behaviour is just the opposite to the one discussed in § 4.2.1 for β3= 0 and β1 > 0.
However, it can be qualitatively explained in the same terms as before. In fact, now
the presence of the magnetic field reduces the deformation ξb of the upper surface of
the slab, and such a reduction leads to an increase of the total strain (ξa − ξb)/h for
the thinner slabs. Therefore, the stabilising effect of elasticity is now reinforced by
the magnetic field. In the case of a thicker slab, on the other hand, the effect of the
magnetic field atop the slab is not felt and the system behaves like a purely elastic
semi-infinite medium laying atop an ideal fluid.

4.2.3. β1 = β3 ≡ β0

In this case, (4.24) and (4.25) reduce to the following expressions:

H1(w)=
1− AT

1+ AT

{
w[2w(1− β0)+ sinh 2w]

(sinh w)2
+ 2wβ0

}
, (4.41)

H2(w)= 4w2

[
1−

(1− β0)
2w2

(sinh w)2

]
+ 4w2β2

0 + 4w2β0
[2w(1− β0)+ sinh 2w]

(sinh w)2
. (4.42)

For w� 1 these equations yield, respectively, H1 ≈ 2w(1+ β0) and H2 = [2w(1−
β0)]

2, so we get the usual limit for thick slabs:

κc ≈
AT

(1+ AT)(1+ β0)
. (4.43)

In the opposite limit w� 1, we get

H1(w)≈ 2
1− AT

1+ AT
[2− β0(1−w)], (4.44)

H2(w)≈ 4w2

[
1− (1− β0)

2

(
1−

w2

3

)
+ β2

0

]
+ 8wβ0(2− β0). (4.45)

These limits show that (4.23) describes several different behaviours depending on the
values of β0 and AT which are discussed below:

(i) For AT = 1 and β0= 0 we retrieve, as expected, the pure elastic case with a cut-
off given by (4.31) (Bakhrakh et al. 1997, Plohr & Sharp 1998, Piriz et al. 2017a,b)
(see figure 6a, and (4.31))

(ii) For AT = 1 and 0<β0 < 2, it turns out that H1(w)= 0 and H2 ≈ 8wβ0(2− β0),
and we get

κc =
α

8β0(2− β0)
. (4.46)

This shows that κc decreases as β0 increases provided that β0 6 1 (figure 6a). In this
case, the behaviour is qualitatively similar to that observed for the case with β1 = 0
(figure 5a), indicating that for the smallest values of the magnetic fields the system
response is dominated by the field atop the slab (for α� 1).
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FIGURE 6. Marginal stability curves for the case with equal magnetic field intensities
atop and beneath the slab, β1 = β3 ≡ β0 (βn = B2

n/(2µnG)), for two Atwood numbers
(AT = 1 and AT = 0.3), and for several values of β0 (indicated by the labels on the curves).
(a,b) Dimensionless cut-off wavenumber κc = w/α as a function of α for AT = 1 and
for β0 6 1 and β0 > 1, respectively. (c) Dimensionless cut-off wavenumber κc = w/α as
a function of α for AT = 0.3. (d) The function w0 = w0(β0) given by (4.48) for which
α(w0)= 0.

Instead, for β0 > 1 (figure 6b) the behaviour is inverted and κc increases as the
magnetic field increases (β0 < 2). This case, instead, is similar to that for β3 = 0
shown in figure 2(d), indicating that as β0 increases beyond β0> 1 the system stability
becomes dominated by the magnetic field beneath the slab.

(iii) For β0= 2 and arbitrary AT , we have H1(w)≈ 2wβ0= 4w and H2(w)≈ 4w2β2
0 =

(4w)2 (w� 1), and the cut-off wavenumber reads (figure 6b,c)

κc =
AT

2(1+ AT)
. (4.47)

This value, for AT = 1, is larger than the one given by (4.46) for β0 < 2, indicating
that κc continues to increase with β0.
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(iv) For β0 > 2 and arbitrary AT , we can see that there exists a value w0 of w such
that α(w0)= 0. From (4.23) we can see that this means that H2(w)= 0. This condition
is only satisfied for some particular values of β0, so that the function w0(β0) is given
by the implicit function obtained by solving the equation H2(w0)= 0:

β0(w0)=
(w0 + sinh w0)(1+ cosh w0)

w0(1+ cosh w0)− (sinh w0)2
. (4.48)

Actually β0(w0) is more easily obtained by putting C0 = A0 (C1 = C2 ≡ C0 and A1 =

A2≡A0) in (4.12) and (4.13). The function w0(β0) has been represented in figure 6(d),
and it shows that w0(β0) has an asymptotic value w0∞≈ 1.616 for β0→∞. Then, for
w0 =w0(β0) one has α� 1 and the cut-off wavenumber reads

κc =
w0(β0)

α
, (4.49)

which is again larger than the value given by (4.47) for β0 = 2, and κc continues to
increase with β0 up to the asymptotic value κc∞ ≈ 1.616/α.

(v) For 06 β0 6 2 and AT 6= 1, we have, in the limit w� 1, H1(w)≈ 2(2− β0) and
H2(w)≈ 8β0(1− β0)w. Thus, (4.23) leads to the existence of a critical value αcr for
the slab instability, so that it is stable for α 6 αcr:

αcr =
2(1− AT)

AT

(
1−

β0

2

)
. (4.50)

Similarly to the case β3= 0 discussed in § 4.2.1, there is an instability threshold below
which the slab is stable and such a threshold progressively reduces as β0 approaches
the value β0 = 2, for which it is completely removed.

Therefore, we see that for AT 6= 1 the cut-off wavenumber monotonically increases
with the intensity of the magnetic fields, for the thinner slabs, in a manner similar to
that which we have seen for the case β3= 0. This indicates that the main conclusions
obtained in such a case are still valid when β1 ∼ β3.

4.3. Instability growth rate
We can obtain the instability growth rate γ from (4.12) to (4.19) as a function of the
perturbation wavenumber k, in terms of the thickness h, the density ρ2 and the shear
modulus G of the elastic slab, the density ρ1 of the light medium beneath the slab
and the magnetic fields B1 and B3. For this, it is more convenient to use dimensionless
magnitudes defined in (3.28).

Thus, after some tedious but straightforward algebra, we get the following implicit
equation for σ(κ), with the parameters AT , α, β1 and β2 already defined in previous
sections:

(1− β1)(1− β2)
{
(2κ2
+ σ 2)4 + 16κ6(κ2

+ σ 2)

− 8κ3
√
κ2 + σ 2(2κ2

+ σ 2)2
[
coth ακ coth α

√
κ2 + σ 2

− cschακcschα
√
κ2 + σ 2

]}
+β1β2σ

4
{[(2κ2

+ σ 2) coth ακ + 2κ2
]

2
− [(2κ2

+ σ 2) cschακ]2}
+ [β1(1− β3)+ β3(1− β1)]σ

2
{C[(2κ2

+ σ 2) coth ακ + 2κ2
]
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−A[(2κ2
+ σ 2)cschακ]}

= κ2σ 4
−

1− AT

1+ AT
σ 2(κ + σ 2){κσ 2

+ (1− β3)C + β3σ
2
[(2κ2

+ σ 2) coth ακ + 2κ2
]}

− κσ 2(β3 − β1){C − σ 2
[(2κ2

+ σ 2) coth ακ + 2κ2
]}, (4.51)

where

A= (2κ2
+ σ 2)2 csch ακ − 4κ3

√
κ2 + σ 2 csch α

√
κ2 + σ 2, (4.52)

C = (2κ2
+ σ 2)2 coth ακ − 4κ3

√
κ2 + σ 2 coth α

√
κ2 + σ 2. (4.53)

Expression (4.51) is a bi-quartic transcendental equation that can be shown to have
a unique real and positive root for any values of the arguments when the slab is
unstable. Besides, it can be shown that σ 2 is always a real number, so that solutions
with oscillating perturbation growth (over-stability) do not exist (see appendix A). On
the other hand, this means that for the unstable cases (k < kc) there is a growing
exponential mode of the form e+|γ |t and a decaying mode of the form e−|γ |t, which
together determine the evolution of the initial transient phase of growth for given
initial conditions. Therefore, the dominant mode |σ | given by (4.51) is sufficient to
characterise all the possible solutions.

For obtaining (4.51) from (4.19) we have done the algebra by hand and have
verified it using the MATHEMATICA software for symbolic calculations (Wolfram
Research, Inc. 2015). The same procedure has been used in the previous long
algebraic manipulations.

We have represented σ(κ) for two different Atwood numbers (AT = 1 and AT = 0.3),
and for the three cases considered in §§ 4.2.1–4.2.3.

4.3.1. β1 > 0, β3 = 0
Figures 7(a) and 7(b) show the instability growth rate for AT = 1 and for α = 1

and α = 10, respectively, and different values of β1 indicated by the labels on the
curves. These two values of α are representative of the two situations for thin and
relatively thick slabs. By following the same tendency as the cut-off wavenumber, the
maximum growth rate always decreases as the value of β1 increases. But the growth
rate reduction is less sensitive to the increase of β1 for α=1, especially for the largest
values. We note that for α= 10 the asymptotic regime corresponding to a semi-infinite
elastic medium has not yet been reached (see figure 4c), which is why the growth rate
is somewhat higher than the one that would be obtained from (3.24).

For AT = 0.3, on the other hand, the behaviour is quite different for the thin and the
thick slabs, such as we have already seen in figure 4(d). In fact, figure 7(c) shows
that for α = 1 the growth rate monotonically decreases with β1, and it becomes
γ = 0 for β1 6 2(1 − AT)/(1 + AT). For α = 10 the growth rate does not decrease
monotonically when β1 increases as the cut-off wavenumber does (figure 7d), but it
considerably decreases for 06 β1 6 1 and then it remains more or less the same with
some increase for the largest values of β1. It is actually difficult to provide a clear
physical explanation for such a behaviour since it depends on the interplay of the
effects due to the presence of the lighter fluid with those of elasticity, magnetic field
and slab thickness that, as we have already seen, may compete among them.
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FIGURE 7. Dimensionless growth rate σ = γ /
√

k0g as a function of the dimensionless
wavenumber κ = k/k0, for the case with no magnetic field atop the slab (β3 = 0), for
two Atwood numbers AT , and for different values of the dimensionless magnetic pressure
β1 (indicated by the labels on the curves) and of the dimensionless slab thickness α: (a)
AT = 1 and α= 1; (b) AT = 1 and α= 10; (c) AT = 0.3 and α= 1; (d) AT = 0.3 and α= 10.

4.3.2. β1 = 0, β3 > 0
In this case, the growth rate follows a monotonic behaviour for any value of AT

and α, in which σ decreases as β3 increases (figure 8). However, for β3 > 2 (α > 4),
a second cut-off appears from the side of the shortest wavenumbers that is clearly seen
in figure 8(b,d) (see also figure 5a,b). When this occurs, the classical growth rate for
the RT instability (γ ∼

√
kg) usually expected for small values of the wavenumber k

is no longer retrieved.
The existence of this short-wavenumber cut-off is related to the behaviour already

observed in figure 5(a,b), and, as was discussed in § 4.2.2, it is somewhat similar to
what was observed by Mora et al. (2014) and Ricobelli & Ciarletta (2017) for an
elastic slab in contact with a rigid wall. But, as we have already seen, although the
effect of the magnetic field above the slab is to reduce the vertical deformation of
the slab top surface, it does not affect the tangential velocity. Therefore, rigid wall
conditions are never retrieved even for β3→∞.
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FIGURE 8. Dimensionless growth rate σ = γ /
√

k0g as a function of the dimensionless
wavenumber κ = k/k0, for the case with no magnetic field beneath the slab (β1 = 0), for
two Atwood numbers AT , and for different values of the dimensionless magnetic pressure
β3 (indicated by the labels on the curves) and of the dimensionless slab thickness α: (a)
AT = 1 and α = 1; (b) AT = 1 and α = 10; (c) AT = 0.3 and α = 10; (d) AT = 0.3 and
α = 14.

On the other hand, the reduction of the deformation ξb of the top surface leads
to an enhancement of the total relative deformation of the slab (ξa − ξb)/h thereby
reinforcing the stabilising elasticity effectiveness. However, such an effect cannot be
felt for the shortest perturbation wavelengths (kh & 1), which cannot ‘see’ the slab
top surface and whereby the total relative deformation is instead kξa. As a result, the
stabilising effect of the magnetic field occupying the region y 6 −h is only felt for
perturbation wavenumbers such that kh . 1, which leads to a short-wavenumber cut-
off.

4.3.3. β1 = β3 ≡ β0

As is seen in § 4.2.3, this case presents some mixed characteristics of the two
previous cases discussed above. In figures 9(a) and 9(b) we show the growth rate for
AT = 1 and α= 1 and α= 10, respectively. As in the previous cases, we also consider
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FIGURE 9. Dimensionless growth rate σ = γ /
√

k0g as a function of the dimensionless
wavenumber κ = k/k0, for the case with equal magnetic field intensities atop and beneath
the slab, β1 = β3 ≡ β0, for two Atwood numbers AT , and for different values of the
dimensionless magnetic pressure β0 (indicated by the labels on the curves) and of the
dimensionless slab thickness α: (a) AT = 1 and α= 1; (b) AT = 1 and α= 10; (c) AT = 0.3
and α = 1; (d) AT = 0.3 and α = 8; (e) AT = 0.3 and α = 20.

several values of β0 indicated by the labels on the curves. The maximum growth
rate follows the same tendency as the cut-off, namely it decreases as β0 increases,
provided that β0 < 1, while inverting this behaviour in the opposite case (see (4.46)).
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For α = 10, σ again follows the behaviour of κc (figure 6a,b) for relatively weak
magnetic fields and it decreases as β0 increases. But for the largest values of β0, the
growth rate starts to increase. It is not completely clear what the physical reason
is for this loss of stability for the most intense magnetic fields occurring in the
regime of intermediate wavenumbers, and it is difficult to determine the details of the
interplay among the different effects. But it seems that for the largest values of β0
the magnetic field beneath the slab becomes more relevant for determining the slab
stability.

For AT = 0.3, we have already seen in § 4.2.3 that the cut-off wavenumber always
increases with β0 provided that the slab is sufficiently thin. And, according to (4.50),
it becomes zero for a given value of α when β0 6 [2 − αAT/(1 − AT)]. Figure 9(c)
shows that for α = 1, the growth rate follows the same tendency as the cut-off. But
in figure 9(d) we see that the behaviour is the contrary for very large values of α,
approaching the case of two semi-infinite media.

However, for the intermediate values of α, the interplay among the different
mechanisms makes the growth rate exhibit a variety of behaviours surely depending
of the relative dominance of each one of them (figure 9d,e). As we have already
discussed, we can only provide physical interpretations for the extreme cases for
which some specific mechanism is seen to be dominant over the others.

5. Concluding remarks

We have presented a linear theory for the two-dimensional MRT instability in
a system that is composed of an elastic layer that lies above a lighter ideal fluid.
Moreover, a uniform magnetic field is present above and below this system, as shown
in figure 1. Consideration of a finite thickness of the elastic layer in this work leads
to the discovery of interesting new aspects of this problem, which have not been
detected in previous studies that involved semi-infinite media, and/or do not consider
Hookean constitutive properties of the slab.

The magnetic field which exists in the region occupied by the lighter fluid could be
expected, on the basis of the results for semi-infinite media, to provide a positive and
supporting contribution to the stabilising effect produced by the elasticity (addition of
the two effects). However, contrary to this expectation, the magnetic field opposes the
elasticity stabilisation effect when the layer is sufficiently thin. This is because, for
relatively thin layers, the total strain that controls the elasticity effects is determined
by the deformation of both slab interfaces, whereas the magnetic field affects mainly
the face on which it is acting (see discussion in § 4.2.1). As a consequence, the
influence of the magnetic field acting below the elastic layer becomes detrimental
to the stabilising effects due to the elasticity which reduces the system stability.
Furthermore, the instability threshold imposed by the layer elasticity is progressively
reduced and even vanishes for a sufficiently large magnetic pressure (∼G).

This situation is very common in many high-energy-density physics experiments and
inertial fusion schemes in which a finite-thickness slab is accelerated, or a cylindrical
shell target is imploded by a magnetic pressure. The slab is maintained in a solid
state with the aim of enhancing the hydrodynamic stability during acceleration. The
new results that we report may be an important issue in such experiments.

In nature, the present problem is also very relevant to the triggering of crust-quakes
in strongly magnetised neutron stars known as megnetars. The mechanism proposed
by Blaes et al. (1990, 1992) requires a minimum inversion density in the crust in
order to overtake the threshold imposed by the elasticity. It has been shown that
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such an inversion density can occur as a consequence of the pycnonuclear and
electron capture reactions forced by the accretion of matter of neutron stars from the
interstellar medium. Nevertheless, it seems quite improbable that it may have enough
magnitude to exceed the instability threshold established by the crust elasticity.
However, the presence of strong magnetic fields generating magnetic pressures of the
order of the shear modulus G can eliminate such a threshold and make the crust
unstable for any arbitrary small density inversion. Therefore, MRT instability can be
an effective process to trigger crust-quakes in magnetars when magnetic pressures of
the order of the shear modulus, G, of the crust are developed.

In a similar manner, the magnetic field on top of the elastic layer acts in support
of the stabilising effects generated by elasticity, but its action on the system is
limited to relatively long perturbation wavelengths (kh & 1). As a consequence, a
short-wavenumber cut-off may exist, below which the system remains stable. This
case exhibits some similarities to the RT instability in elastic layers in contact with
rigid walls. This is because such a magnetic field restricts the velocity perturbation
normal to the interface, while the tangential velocity is not affected and therefore the
rigid wall boundary conditions are never reproduced. Nevertheless, we can speculate
on the possibility that in the nonlinear regime the system may evolve towards two
different instabilities (creasing and wrinkle instabilities) corresponding to each branch
of short and long wavenumbers, as reported by Liang & Cai (2015) for the case of
elastic soft materials.

On the other hand, when magnetic fields on both sides of the elastic slab are
comparable, the resulting picture is a combination of the previous two extreme cases.
In general, for the shortest perturbation wavelengths, the effects of the magnetic field
beneath the slab become dominant, and the effects of the field atop it are felt for the
thinner slabs or the longest perturbation wavelengths.

Finally, it may be worth remarking that the present linear theory assumes that the
deviation from flatness of the slab is always sufficiently small, so that kξa,b� 1 must
be the case.
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Appendix A. Proof that σ 2 is a real number
We start with (2.24b) and its complex conjugate:

γ 2ψ2 =
G
ρ2
∇

2ψ2, (γ 2)∗ψ∗2 =
G
ρ2
∇

2ψ∗2 , (A 1a,b)

where (γ 2)∗ and ψ∗2 are the complex conjugates of γ 2 and ψ2, respectively. By
multiplying the first one by ψ∗2 and the second one by ψ2, and subtracting, we get

[γ 2
− (γ 2)∗]|ψ2|

2
=

G
ρ2
[ψ∗2∇

2ψ2 −ψ2∇
2ψ∗2 ] =

G
ρ2
∇ · (ψ∗2∇ψ2 −ψ2∇ψ

∗

2 ). (A 2)

Integrating over the two-dimensional volume V = h` (` = 2π/k is the perturbation
wavelength), and then using Green’s theorem to transform the volume integral into a
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surface integral over the surface A(V) of such a volume, yields

[γ 2
− (γ 2)∗]

∫
V
|ψ2|

2 dV =
G
ρ2

∫
A(V)
(ψ∗2∇ψ2 −ψ2∇ψ

∗

2 ) · d A. (A 3)

By performing the surface integral by parts over the surface A(V), we have

[γ 2
− (γ 2)∗]

∫
V
|ψ2|

2 dV =
G
ρ2

∫ h

0

(
ψ∗2
∂ψ2

∂x
−ψ2

∂ψ∗2

∂x

)∣∣∣∣x=`
x=0

dy

+

∫ `

0

(
ψ∗2
∂ψ2

∂y
−ψ2

∂ψ∗2

∂y

)∣∣∣∣y=h

y=0

dx. (A 4)

Since from (2.26) we have

ψ2 = eγ tf (y) cos kx, ψ∗2 = eγ
∗tf ∗(y) cos kx, (A 5a,b)

it is straightforward to see that the integrand of the first integral is identically zero,
and that the second integral is proportional to

∫ `
0 cos kx dx = 0. Therefore, it turns

out that γ 2
= (γ 2)∗ and σ 2 is a real number. That is, there are no oscillating growth

solutions, and (4.51) gives all possible solutions for γ (k).
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