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ON NON-LINEAR ELLIPTIC EQUATIONS AND
THE STABILITY OF SOAP FILM

CONG NGHE TRUONG

We use an Inverse Mapping Theorem for Sobolev chains to obtain a number of
existence theorems for non-linear elliptic partial differential equations with general
order. We then apply one of these theorems to prove the stability of a soap film.

0. INTRODUCTION

In this paper smoothness shall always mean C°°-smooth. For simplicity of expo-
sition, our partial differential equations will have real coefficients and be defined on an
open set of an Euclidean space R" rather than on a manifold.

Let ft be an open, convex, bounded subset of R" with boundary d£l, a C°°-
manifold, and let ft be its closure. Let m ^ 1 be an integer and /o, g be two C°°-
functions on ft. We are interested in finding C°°-solutions u(x) of the non-linear elliptic
partial differential equation:

F(x, u(x), Du(x), ..., D2mu(x)) = g(x)

which satisfy the Dirichlet boundary condition:

u(x) = fo(x) for all x € dft,

where F : J2m(ft) -> R is a C°°-map [14].

One of the main methods used to study non-linear elliptic boundary problems is
the topological method based on the degree of non-linear mappings. Another method
for treating non-linear partial differential equations is the direct method of the calculus
of variations. A very successful method for solving non-linear boundary problems is
that of using a priori estimates of the solutions. Yet another method uses non-linear
operators of monotone type. For details of these methods, see Agmon, Douglas and
Nirenberg [1], Bers, John and Schechter [3], Browder [5], Courant and Hilbert [8],
Garabedian [10] and Nirenberg [13]. The natural settings for all these methods are
Banach (or Hilbert) spaces where the inverse Mapping Theorem holds.
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Unfortunately, it has been known for several decades that, for many problems in
non-linear analysis, Banach spaces and Banach manifolds are inadequate. For instance,
they are not suitable for applications to the Cauchy problem of an equation of evolution,
and to the space of C^-diffeomorphisims on a compact manifold. Marsden's note [12]
is a good survey of these and other related matters. In fact, it has long been recognised
that, for these problems and for our boundary problem above, the spaces involved
are the more general Frechet spaces where the Inverse Mapping Theorem is no longer
valid. A counter-example was given by Eels [9] which showed that the Inverse Mapping
Theorem is false for separable Frechet spaces endowed with any reasonable traditional
differentiation in the norms.

In 1975, in an attempt to overcome this difficulty, Yamamuro [20] developed a
differentiation in (non-normed) locally convex spaces for which the Inverse Mapping
Theorem holds. He terms it B F-differentiation. At about the same time, Omori [14], in
working towards a theory of general Lie groups, introduced Inverse Limit Banach (ILB)
and Inverse Limit Hilbert (ILH) Lie groups and proved an Inverse Mapping Theorem for
them. Together with Hamilton's version of the Nash-Moser Inverse Mapping Theorem,
Omori's method is the most fruitful, but it is not very accessible and is of somewhat ad

hoc nature.

In [18], the author of the present paper generalised Yamamuro's differentiation
to give an axiomatic setting for the method of Omori and obtain an Inverse Mapping
Theorem for Sobolev chains. The main idea is to save as much Banach space technique
as possible in the realm of those locally convex spaces that model manifolds of mappings.
It turns out that this Inverse Mapping Theorem can be exploited to obtain a number of
results on the existence and uniqueness of the solutions of boundary value problems for
a general non-linear elliptic partial differential equation with smooth real coefficients,
results which will be given in this paper in Theorems I, II III and IV.

An outstanding example of a non-linear elliptic Dirichlet boundary problem is
Plateau's problem of finding a minimal surface spanned inside a given contour. Closely
related to Plateau's problem is the soap film problem: When a closed contour made of
wire is dipped into a soap film solution, a thin film of soap is formed within the wire.
So far in the literature, by ignoring the difference in pressure on the two surfaces of the
soap film, mathematicians have treated a soap film as a minimal surface and proved its
existence (see, for example, Garabedian [10], Courant [7]). The stability of a soap film
has, however, been neglected. Fortunately, using Theorem I, we shall show that a soap
film, if it exists, will be stable.

The paper consists of three sections. In Section 1 we present our main theorems.
Section 2 is for the proofs of the main theorems. The final section, Section 3, is for
application to the stability of the equilibrium of a soap film.
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1. T H E MAIN THEOREMS

Let fl be an open, convex, bounded subset in R n with boundary dCl, a smooth
manifold. Denote by C°°(JT) the space of all C°°-maps from ft into R . Then C°°(fi)
is a Sobolev chain [18] endowed with a sequence of Banach-norms (or Hilbert-norms) as
defined in Omori [14, p.28]. Let m be an integer ^ 1, let g be an element of C°°(Q)
and consider the following non-linear elliptic partial differential equation of order 2m
with smooth real coefficients:

(1) F{x,u(x),Du(x), ..., D2mu{x)) = g(x)

where F : J 2 m ( f i ) -> R is a C°°-map.

We are interested in finding C°°-solutions which satisfy the Dirichlet boundary

condition

(2) u(x) = fo(x) for all x € dCl

where f0 is in C°°(TT).

Denote by Cf (JTj the affine subspace of C°° (IT) consisting of maps which agree

with /o on dQ, and define:

by:

(3) $(«)(*) = F(x,«(x), Du(x), ...,D2mu(x))

Then (1) can be written as:

(4) *(«) = g.

For each u in Cj°(n), consider the linearised equation of (4):

(5) Au(T)) = {foTt€C°°(n)

where rj € C°° (H) and

(6) A«= E ^ ( ^ « W
|aK2m

Our main theorems are as follows.
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THEOREM I . Suppose that:

(i) For a given go in C°° (Q) , the nonlinear equation $(u) = g0 has a solution

u0 inC%(H);

(ii) The linearised equation AUo(n) - 0 has r) — 0 as the only solution in

Then, for every g sufficiently near g0 in C°° (Q), the non-linear equation $(u) = g

has one and only one solution u near uo in C^(TT). Moreover, the solution u depends

smoothly on g.

THEOREM I I . Suppose that

(i) For a given g0 in C°°(n), the non-linear equation <3>(u) = g0 has a

solution UQ in CJ°(Q);

(ii) For all £ in C°°(Tl), the linearised equation AUo(i]) = £ has a solution

inC§°(?5).

Then for all g sufficiently near go in C°° (fi), the non-linear equation $(u) = g has

a unique solution u near UQ in Cj? (fi). Moreover, the solution u depends smoothly

on g.

Theorems I and II are perturbation theorems similar to the ones given by Courant
and Hilbert [8, p.368] and Agmon, Douglas and Nirenberg [1, p.690], which are both
obtained using Schauder estimates. Our Theorems I and II are, however, stronger in
the sense that the unique solution u depends smoothly on the right-hand-side g. This
strength will be used to prove the stability of the equilibrium of a soap film in Section
3. It should not be too surprising that our Inverse Mapping Theorem has led to a result
similar to that of [1, Theorem 12.6], since this Inverse Mapping Theorem was based on
Garding inequalities which are themselves a o priori estimates.

THEOREM I I I . For almost all g in C°°(ST) (that is, except on a set of first

category) the solution space of the non-linear equation $(u) = g is discrete. In other

words, for almost all g in C°° (TT), solutions of the equation <fr(u) = g are locally

unique.

This Theorem III is a C°°-version of a result given by Smale [15]. It is proved
using a /3F-version of the Smale Density Theorem which is also a direct consequence
of the Inverse Mapping Theorem in [18]. It should be noted that this Inverse Mapping
Theorem has been used in [18] to prove the finite-dimensionality of the solution of
$(u) = g for all g in C°° (fi) , a result of Sunada [16].

THEOREM I V . Suppose that

(i) For all u in Cj?(p) the linearised equation Au(r/) = 0 has ry = 0 as the

only solution in CQ°
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. (ii) For each go in C°° (fi) and for each i ^ n + 6, there exist constants

fci(ffo) > 0, £i(ffo) > 0 such that if u is in Cy?(fi), $(u) = g and

\\9 ~ 9o\\i < £i, then | | u | | j + 2 m < K, wiere ||.||{ is the H-norm defined as

above.

Then, for each g in C°°(Jl), the non-linear equation 3>(u) = g has one and only

one solution u in CS° (fi) .

Theorem FV is an existence and uniqueness theorem which is a C°°-version of a
theorem of Browder [4, Theorem 3].

2. PROOFS OF THE MAIN THEOREMS

The proofs of the main theorems are based on the Inverse Mapping Theorem in
[18]. First let us extend the C^r-maps in [18] to C^r-maps for k ^ 2 or oo.

Let {E, E{ :i^d} and {F, F* : i ^ d) be two Sobolev chains [18], let U C E be

open and / : [ / C £ - > F b e a map and k be an integer ^ 2.

DEFINITION 2.1: We say the / is of class Cpr if and only if:

(i) The map / : U C E -*• F is of class C$r as denned in [18]; and

(ii) The derived map Df : U C E -¥ LpT{E, F) is of class CiT1 with

respect to the calibration f = {fl.^ , ||, \\{) : i > d} for (E, L0r(E, F))

as defined in [18, p.384].

/ is said to be of class C^ if it is of class Cpr for all k ^ 1.

We define /JF-splitting linear maps and /3F-Fredhohn linear maps exactly as in [19]

replacing BT by /3F.

DEFINITION 2.2: A map / : U -> F is called a /?F-Fredholm map of class C^r if

it is a C^p-map on U and, for each a € U, f'(a) is a /3F-Fredholm linear map. For a

/3F-Fredholm map / : U -t F of class C ^ r , the set of all a € U such that / ' ( a ) is not

surjective is called the critical set of / and is denoted by C(f, U).

We are now ready to prove the main theorems. By a translation, we may assume
that /o = 0. Then: $ : Cg°(fi) -> C°°(Tl) where Cg°(n) and C°°(n) are Sobolev
chains [18]. The following lemma plays an essential role in the proofs of our main
theorems. It follows from standard results in Bers, John and Schechter,[3, Part II,
Chapter 5, p.199] and [18]. See also Hormander [11], Smale [15] and Browder [4].

LEMMA 2 . 3 . $ : C£° (f!) -> C°° (fi) is a regular C $ r map if we endow (C£° (fi),

C°°(n)) with the calibration F = { ( | | . | | t + 2 m , Illli) : * ̂  n + 6^ as deGned in [18]. The
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/^-derivative of $ at u € Cfi° (fi) is:

2m f)F

t=O

where »j € Cg°(n).

Furthermore, if F is elliptic then £)$(u) is a f3T-Fredholm operator with index 0.

By (i), (ii) and Lemma 2.3, $ is a regular C^r-map at UQ € Co°(f2) and £>$(u0) S

(n), C°°(n)) . Thus Theorem I follows.

Similarly since the index of J4UO is 0, $ is a regular C^r-map and UQ and Z)$(uo) €

r (C^°(n) , C°°(n)) . Thus Theorem II follows.

In view of Lemma 2.3, Theorem III follows from the following result whose proof

is similar to that of Smale [15] in the case of Banach spaces.

PROPOSITION 2 . 4 . Let £ be a T-family ofSobolev chains. Let E, F € $ and

let U be an open subset of E. Let f :U -¥ F be a f3T-Fredholm map of class C^r

such that k > max(index (u), 0) and / '(a) = u for some a € U. Then there exists an

open neighbourhood W of a such that f[C(f, U) n W] is nowhere dense and closed.

Finally, since $ is a regular Cjjr-map, for each i ^ d, $ extends to a C1-map

$ : Hl
0
+2(Q) -> H{(Tl) between Hilbert spaces where Hl

0
+2(U) (respectively H^Q))

is the completion of Co°(Q) (respectively C°°(JT)) with respect to the norm ||. | | i+2

(respectively H-l^). It then follows that $ is a homeomorphism of HQ+2(JT) onto

i/*(n) for all * ^ d. Therefore $ : Cg°(Q) -> C°°(fi) is a homeomorphism onto. Thus

Theorem IV follows.

3. STABILITY OF THE EQUILIBRIUM OF A SOAP FILM

In [2] the equilibrium of a soap film is discussed on the hypothesis that there is a
certain type of surface energy of mechanical type associated with each element of the
surface. This energy, called the tension-energy, is represented by the integral fjTds

taken over the portion of surface under consideration. T is a constant, called the
surface tension which is not dependent on the shape and size of the film but it does
depend upon the temperature. A soap film is considered as having two surfaces which
are endowed with tension-energy [2].

When a film attached to a wire is in equilibrium under the forces of tension alone,
the total tension-energy is a minimum. Assuming that the z-coordinate of a point on
the surface or rim of the film is a function of x and y, then the total tension-energy E

is:
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Hence the Eulerian equation of the calculus of variations gives

where

(8) H=(l + zl + zl)1/2.

This is the differential equation of a minimal surface.

When the film is subjected to a difference of pressure on the two sides and the fluid
on one side of the film is a closed vessel whose pressure is p\ while the pressure on the
other side of the film is p2, there is a pressure energy (pi - p2) V associated with the
vessel closed by the film, where V is the volume of this vessel (see [2]). Write

V = V0+^ Iwds

where Vo is a constant and w is the perpendicular from the origin to the surface element
ds and consider the variation of the integral

Since CJH = z — xzx — yzy the differential equation for the soap film is:

or, equivalently,

(Q\ d (Zx\ a. d (zv\

where

(10)

It is easy to see that (7) and (9) reduce to non-linear elliptic partial differential equations:

(7') (1 + ZI)ZXX - 2ZxZyZxy + (1 + 4)Zyy = 0

and

(9;) (1 + zl)zXx ~ 2zxzyzxy + (1 + zl)zyv = p.
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A solution of (7') represents a minimal surface whereas a solution of (9') represents
a soap film. Note that when the difference of pressure on the two sides of a soap film
is 0 a soap film becomes a minimal surface. In the literature, mathematicians assumed
no pressure difference and treated a soap film as a minimal surface when proving the
existence of a soap film (see for example, [7, 9]). Soap film experiments have shown
that the equilibrium of a soap film is stable [6]. Mathematically, a soap film z(x,y)

is stable if, whenever the difference-pressure p varies a little, z(x, y) varies a little. In
other words, if zo{x,y) is a solution of (9') corresponding p — Po then there exists
e > 0 such that for all p* such that \p" - po\ < e the equation

(l + Zy)zxX ~ 2ZXZyZxy + (l + zl)Zyy = P*

has a solution z*(x, y) close to z(x,y).

Now using Theorem I and the results in [3], it is easy to prove the following.

PROPOSITION 3 . 1 . Let C be a closed contour in R3 whose projection on a

plane is a smooth curve enclosing a convex domain. Then a soap film spanning C, if it

exists, is stable. Moreover, it depends smoothly on the pressure-difference.

When a soap film is subjected to only a small difference of pressure and is stretched
across a thin flat contour we can, to a sufficient approximation, put H = 1 in (9'). The
resulting equation is:

82z d2z ,

<9> ^ k

where A; is a constant and the boundary condition is z = 0 on the rim. In this case the

existence of a soap film is ensured and we have

PROPOSITI ON 3 . 2 . If C is a thin Sat smooth contour in R3 then there always

exists a soap film spanning C. Moreover, the soap film is stable and depends smoothly

on the pressure-difference.

REFERENCES

[1] S. Agmon, A. Douglas and L. Nirenberg, 'Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions', Comm. Pure
Appl. Math. XII (1959), 623-727.

[2] H. Bateman, Partial differential equations of mathematical physics (Cambridge University
Press, Cambridge, England, 1959).

[3] L. Bers and M. Schechter, Partial differential equations, Lectures in Applied Mathematics
III (John Wiley and Sons, New York, 1964).

[4] F.E. Browder, 'Topological methods for non-linear elliptic equations of arbitrary order',
Pacific J. Math. 17 (1966), 17-31.

https://doi.org/10.1017/S0004972700031750 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031750


[9] Non-linear elliptic equations 361

[5] F.E. Browder, 'Existence theorems for nonlinear partial differential equations', in Global
Analysis, Proceedings of Symposia in Pure Mathematics XVI (American Mathematical
Society, Providence, R.I., 1970).

[6] R. Courant, 'Soap film experiments with minimal surfaces', Amer. Math. Monthly 47
(1940), 167-174.

[7] R. Courant, Dirichlet's principle, conformal mapping and minimal surfaces (Interscience,
New York, 1950).

[8] R. Courant and D. Hilbert, Methods of Mathematical Physics 2 (Interscience, New York,
1961).

[9] J. Eels, 'A setting for global analysis', Bull. Amer. Math. Soc. 72 (1966), 751-807.
[10] P.R. Garabedian, Partial differential equations (John Wiley and Sons, New York, 1964).
[11] L. Hormander, Linear partial differential operators, (Third revised printing) (Springer-

Verlag, Berlin, Heidelberg, New York, 1969).

[12] J.E. Marsden, Hamiltonian mechanics, infinite dimensional Lie groups, Geodesic flows

and hydrodynamics, (Notes at Berkeley, California, 1969).
[13] L. Nirenberg, 'On elliptic partial differential equations', Ann. Scuola Norm. Sup. Pisa Cl.

Sci. 13 (1969), 115-162.
[14] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Mathematics

427 (Springer-Verlag, Berlin, Heidelberg, New York, 1974).
[15] S. Smale, 'An infinite dimensional version of Sard's Theorem', Amer. J. Math. 87 (1965),

861-866.
[16] T. Sunada, 'Non-linear elliptic operators on a compact manifold and an implicit function

theorem', Nagoya Math. J. 57 (1974), 175-200.
[17] C.N. Truong, 'Manifolds of smooth maps', Bull. Austral. Math. Soc. 24 (1981), 1-11.
[18] C.N. Truong, 'An inverse mapping theorem for Sobolev chains and its application', Bull.

Austral. Math. Soc. 27 (1983), 281-394.
[19] C.N. Truong and S. Yamamuro, 'Locally convex spaces, differentiation and manifolds',

Comment. Math. Special Issue 2 (1979), 229-338.

[20] S. Yamamuro, A theory of differentiation in locally convex spaces, Memoirs of the Arnerical
Mathematical Society 212 (American Mathematical Society, Providence, RI, 1979).

School of Quantitative Business Methods and Operations
University of Western Sydney, Nepean
PO Box 10
Kingswood NSW 2747
Australia

https://doi.org/10.1017/S0004972700031750 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031750

