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Dedicated to the memory of George Greaves

Abstract We consider the quadratic polynomial m2 + D and study the asymptotic formula for the
number of integers m, 1 � m � M , for which the values of the polynomial are square-free. We are
interested in particular in the question of how small we can take M in relation to D and still have the
asymptotic hold.
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1. Introduction

George Greaves was greatly interested in the topic of sieve methods and contributed
much to the subject (see, for example, his pioneering work on weighted sieves [3] and
his monograph [4]). One particular aspect that attracted his attention from quite early
on was the application of the sieve to problems involving the sequence of values of a
polynomial (see, for example, [2]).

Among the easiest tasks that one can assign to a sieve is the counting of square-free
numbers, a topic wherein even the original sieve ideas of Möbius inversion are useful in
obtaining some interesting estimates. Almost the very simplest polynomials that could
occur to one to study are quadratic polynomials in a single variable. Yet, even here,
because the sequence of values of the polynomial is so lacunary, our knowledge is quite
incomplete and some basic questions remain unanswered.

We consider the polynomial m2 + D, restrict the variable to integers 1 � m � M

and ask: for how many of these integers is the value of the polynomial square-free? The
demonstration of the asymptotic formula for such polynomials was first established by
Estermann [1], a result which, two years later, was greatly generalized by Ricci [7]. The
problem of counting these integers becomes much more challenging when the quadratic
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polynomial has large coefficients and uniformity in these is wanted. We shall thus be
concerned with the situation where M is relatively small compared with D.

It is easy to predict the asymptotic formula∑
m�M

µ2(m2 + D) ∼ cM, (1.1)

where c = c(D) is given by

c =
∑

d

µ(d)ρ(d2)d−2 =
∏
p

(1 − ρ(p2)p−2), (1.2)

and ρ(q) denotes the number of solutions to ν2 + D ≡ 0 (mod q). Obviously, ρ(p2) � 2 if
p2 � D and ρ(p2) � p if p2 | D, so c is a positive constant.

2. A first result

Using Möbius inversion we get∑
m�M

µ2(m2 + D) =
∑

d

µ(d)|Ad2 |, (2.1)

where
|Ad2 | =

∑
m�M,

m2+D≡0 (mod d2)

1 = ρ(d2)d−2M + O(ρ(d2)). (2.2)

For relatively small d this simple formula does the job. Indeed, we have∑
d�Y

ρ(d2) � τ(D)Y log Y, (2.3)

which shows that (2.2) is valuable for d � Y � MD−ε.
For larger d we do not need an asymptotic formula for |Ad2 |, but need only a rough

upper bound because the squares are so sparse that these terms can only contribute to
the error term. However, establishing sufficient bounds is not easy if M is small. As one
possible approach we can consider the congruence m2 + D ≡ 0 (mod d2) as the norm
equation

d2k − m2 = D (2.4)

in the real quadratic field Q(
√

k) and sum over k � (D + M2)Y −2, obtaining the bound∑
d>Y

|Ad2 | � τ(D)(D + M2)Y −2 log 2DM. (2.5)

Here, τ(D) comes from the estimation of the number of ideals of norm D and the loga-
rithm comes from the estimation of the units. Hence, the total error term is

[MY −1 + Y + (D + M2)Y −2]τ(D) log 2DM, (2.6)

where the first term comes from extending the sum in the main term to all d > Y . Taking
Y = (D + M2)1/3, we arrive at the following result.
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Theorem 2.1. For any D, M � 1 we have
∑

m�M

µ2(m2 + D) = cM + O(τ(D)(D + M2)1/3 log 2DM). (2.7)

Note that (2.7) yields the true asymptotic for M � D1/3+ε.

3. The square sieve

A different approach to (2.4) is to ask for the square values of d2k − D in the relatively
short interval [1, M2]. This combines two different objectives. The detection of integers in
short intervals is amenable to standard Fourier analysis (which here amounts to counting
the lattice points (d, k) in a narrow region). However, the detection of squares is not so
standard. We shall employ the ‘square sieve’, which was introduced by Heath-Brown [5].
What we need from his method is the following.

Proposition 3.1. For an with n � 1 non-negative reals and P � 2 we have

∑
n=�

an � 10P−2
∑

n

an

(( ∑
P<p�2P

(
n

p

)
log p

)2

+ (log n)2
)

.

Here of course, (n/p) denotes the Legendre symbol.

Proof. Since the weights are non-negative, it suffices to check that these are � 1 on
the square values n = m2. Using the inequality a2 + 4b2 � 4

5 (a + b)2 we find that

( ∑
P<p�2P

(
n

p

)
log p

)2

+ (log m2)2 � 4
5

( ∑
P<p�2P,

p�m

log p + log m

)2

� 4
5

( ∑
P<p�2P

log p

)2

� P 2

10
,

which completes the proof. �

Using this square sieve we can sharpen the bound (2.5) and improve (2.7) to the
following.

Theorem 3.2. For 1 � M � D we have
∑

m�M

µ2(m2 + D) = cM + O(τ(D)M3/5D1/10(log 2D)2). (3.1)

Note that (3.1) is a meaningful asymptotic formula for M � D1/4+ε.
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4. Proof of Theorem 3.2

It suffices to establish the result (3.1) for the sum over the dyadic segments M < m � 2M .
We can also assume that

D1/4 � 4M � D1/2,

since otherwise the result either is trivial or follows from (2.7). We shall prove that

∑
d>Y

|Ad2 | � τ(D)
(

MD1/6

Y 2/3 +
D1/3

Y 1/3 +
D1/2

M
+

M2

Y 2 +
M4/3

D1/3

)
(log D)2, (4.1)

which is somewhat better than (2.5) and which, when combined with (2.3), gives (3.1)
on choosing Y = M3/5D1/10.

For the proof of (4.1) we also divide the range of d into dyadic segments ∆ < d � 2∆
with

Y � ∆ � D1/2. (4.2)

Now, by the square sieve we obtain∑
∆<d�2∆

|Ad2 | � 10P−2
∑ ∑

∆<d�2∆,k

M2<|kd2−D|�4M2

[ · · · ] (4.3)

where the content of [ · · · ] is given by
( ∑

P<p�2P

(
kd2 − D

p

)
log p

)2

+ (4 log 2M)2.

Here we can make the restriction p � dD at the cost of an extra term O((log D)2). Next,
before opening the square, we introduce two smoothing factors η(d)ξ(kd2 − D), where
η(v) and ξ(u) are smooth functions supported on v � ∆ and u � M2, respectively, with
vjη(j)(v) � 1 and ujξ(j)(u) � 1 for j = 0, 1, . . . , 4. Then (4.3) yields

∑
∆<d�2∆

|Ad2 | �
(

log P

P

)2 ∑ ∑
P<p1 �=p2�2P,

(p1p2,D)=1

|Sp1p2 | +
(log D)2

P
S1, (4.4)

where

Sq =
∑

(d,q)=1

∑
k

η(d)ξ(kd2 − D)
(

kd2 − D

q

)
.

Next we evaluate Sq using Poisson’s Formula:

Sq =
1
q2

∑
h

∑
�

F

(
h

q
,
�

q

)
Gq(h, �), (4.5)

where F (x, y) is the Fourier integral

F (x, y) =
∫∫

η(v)ξ(uv2 − D)e(−xu − yv) du dv (4.6)
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and Gq(h, �) is the complete character sum

Gq(h, �) =
∑
α(q)

∑∗

β(q)

(
αβ2 − D

q

)
e

(
αh + β�

q

)
. (4.7)

To estimate F (x, y) we make a change of variable and write

F (x, y) =
∫∫

η(v)ξ(u)e
(

− x
u + D

v2 − yv

)
du dv

v2 .

Integrating by parts in the v-variable (zero or four times) and then estimating trivially
in each variable, we derive

F (x, y) � M2

∆

(
1 +

|x|D
∆2 + |y|∆

)−4

� M2

∆

(
1 +

|x|D
∆2

)−2

(1 + |y|∆)−2. (4.8)

This estimate is valid for all x, y except in the region

|x|D � |y|∆3, xy �= 0. (4.9)

In this range the exponential function may have a stationary point at 2xDv−3 = y,
so partial integration in the v-variable is not possible. But we can integrate by parts
with respect to the u-variable (zero or two times). Having done so, we apply the second
derivative test (say, [8, Lemma 4.5] or [6, Lemma 8.10]) and estimate trivially in the
u-variable, obtaining

F (x, y) � M2

∆2

(
1 +

|x|M2

∆2

)−2( ∆4

|x|D

)1/2

=
M2

(|x|D)1/2

(
1 +

|x|M2

∆2

)−2

. (4.10)

We shall apply (4.8) and (4.10) for (x, y) = (h/q, �/q) and sum these estimates for
|F (h/q, �/q)| over all integers h, �. However, before being able to execute such a summa-
tion we require a bound for Gq(h, �) for each q = p1p2. Since our estimates for the Fourier
integrals do not depend specifically on q but only on its order of magnitude (q = 1 or
q � P 2) we may first deal with

E(h, �) =
∑ ∑

P<p1 �=p2�2P,
(p1p2,D)=1

|Gp1p2(h, �)|. (4.11)

As a matter of fact, we could estimate every one of the individual sums Gq(h, �) by an
appeal to the Riemann Hypothesis for curves (Weil’s bound for suitable character sums).
However, we can do the job elementarily by taking advantage of the particular averaging
over p1 �= p2.

Using the twisted multiplicativity

Gp1p2(h, �) = Gp1(p̄2h, p̄2�)Gp2(p̄1h, p̄1�),
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by Cauchy’s inequality we derive

E(h, �) � 2
∑

P<p�2P,
p�D

∑∗

a(mod p)

|Gp(ah, a�)|2.

For the sum of prime modulus we have

Gp(h, �) = Gp(h)Kp(hD, �),

where

Gp(h) =
∑
α(p)

(
α

p

)
e

(
αh

p

)
= εp

√
p

(
h

p

)

is the Gauss sum and

Kp(h, �) =
∑∗

β(p)

e

(
β2h + β̄�

p

)

is a hybrid Gauss–Kloosterman sum. We may assume p � hD and compute as follows:
∑∗

a(p)

|Gp(ah, a�)|2 = p
∑∗

a(p)

|Kp(ahD, a�)|2 � ν(h, �)p2,

where ν(h, �) is the number of solutions of

(β2
1 − β2

2)hD + (β̄1 − β̄2)� ≡ 0 (mod p)

in β1, β2 (mod p), (β1β2, p) = 1. There are p− 1 solutions if β1 ≡ β2. For β1 �≡ β2 we have

(β1 + β2)β1β2 ≡ �hD (mod p).

After a change of variables we need to count the solutions of

γ(γ + 1)β2 ≡ �hD (mod p)

in (βγ, p) = 1, γ �≡ 1. If p | �, then γ ≡ −1 (mod p) and we get exactly p − 1 solutions. If
p � �, then the number of solutions is equal to

∑
γ �≡0,±1

(
1 +

(
�hDγ(γ + 1)

p

))
= p − 3 +

(
�hD

p

) ∑
γ �≡1

(
γ(γ + 1)

p

)

= p − 3 −
(

�hD

p

)(
1 +

(
2
p

))

� p − 1.

Summing the above counts, we find that ν(h, �) � 2(p−1). Hence, we conclude as follows.

Lemma 4.1. For all h, � we have

E(h, �) � 16P 4. (4.12)
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Since the bound (4.12) does not depend on h or �, we can sum the estimates (4.8),
(4.10) for |F (h/q, �/q)| for q = 1 and q � P 2 without any conditions on the frequencies
h, �. We obtain

∑
h

∑
�

|F (h/q, �/q)| � M2

∆

∑
h

(
1 +

|h|D
q∆2

)−2 ∑
�

(
1 +

|�|∆
q

)−2

+ M2
∑ ∑

|h|D�|�|∆3,
h��=0

(
1 +

|h|M2

q∆2

)−2(
q

|h|D

)1/2

.

On the right-hand side the first sum (over h) is � (1 + q∆2D−1), the second sum (over
�) is � (1 + q∆−1) and the third sum (over h� �= 0) is bounded by

M2(qD)1/2∆−3
∑

h

(
1 +

|h|M2

q∆2

)−2

|h|1/2 � q2D1/2M−1.

Hence, we conclude as follows.

Lemma 4.2. We have

∑
h

∑
�

|F (h/q, �/q)| � M2

∆

(
1 +

q∆2

D

)(
1 +

q

∆

)
+ q2 D1/2

M
. (4.13)

Now, combining (4.12) and (4.13), we get by (4.4) and (4.5)

∑
∆<d�2∆

|Ad2 | � (log D)2

P 2

[
M2

∆

(
1 +

P 2∆2

D

)(
1 +

P 2

∆

)
+ P 4 D1/2

M

]

+
(log D)2

P

[
M2

∆

(
1 +

∆2

D

)(
1 +

1
∆

)
+

D1/2

M

]

�
(

M2

∆P
+ P 2 D1/2

M
+

M2

∆2 +
M2∆

D

)
(log D)2.

We choose P = 2 + M(∆D1/2)−1/3 and the bound becomes

� (MD1/6∆−2/3 + D1/3∆−1/3 + D1/2M−1 + M2∆−2 + M2∆D−1)(log D)2.

Here we improve the last term, M2∆D−1, by combining it with D∆−2 in (2.5), obtaining
min{M2∆D−1, D∆−2} � M4/3D−1/3. Having done so, we can see that the worst case
for ∆ is its smallest value, ∆ = Y , giving (4.1). This completes the proof of Theorem 3.2.

Acknowledgements. J.B.F. was supported in part by NSERC Grant no. A5123.
H.I. was supported in part by NSF Grant no. DMS-08-02246.

https://doi.org/10.1017/S0013091508000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000989


392 J. B. Friedlander and H. Iwaniec

References

1. T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Annalen 105 (1931), 653–
662.

2. G. Greaves, Large prime factors of binary forms, J. Number Theory 3 (1971), 35–59.
3. G. Greaves, A weighted sieve of Brun’s type, Acta Arith. 40 (1981), 297–332.
4. G. Greaves, Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenz-

gebiete, Volume 43 (Springer, 2001).
5. D. R. Heath-Brown, The square sieve and consecutive square-free numbers, Math. An-

nalen 266 (1984), 251–259.
6. H. Iwaniec and E. Kowalski, Analytic number theory, Colloquium Publications, Vol-

ume 53 (American Mathematical Society, Providence, RI, 2004).
7. G. Ricci, Ricerche aritmetiche sui polinomi, Rend. Circ. Mat. Palermo 57 (1933), 433–

475.
8. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn (Clarendon Press,

Oxford, 1986).

https://doi.org/10.1017/S0013091508000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000989

