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Varieties of a closed category

B.J. Day

In this article closed variety structures generated by a monoidal

class of identities are examined. This leads to closed

enrichments of various results of Y. Diers [.Ann. Soo. Sci.

Bruxelles Sir. I 90 (1976), 159-172] on varieties of a category.

Introduction

The general concept of a variety of a category relative to a fully

faithful dense functor N : A •* C and a class of iV-identities is due to

Diers [5]. It leads to the generalisation of various results for algebraic

theories by Birkhoff and Mal'cev concerning varieties of algebras, by

Shafaat concerning classes of algebras defined by implications, and by

Hatcher concerning quasi-primitive classes of algebras.

The aim in this article is to introduce the concept of a monoidal

class of /^-identities for a monoidal category A and a fully faithful

dense functor from A to a monoidal biclosed category C . This leads to

the idea of a biclosed ^/-variety and to the operations of taking the

monoidal interior and closure of a class of ff-identities or a class of

N-implications corresponding, by "duality", to taking the biclosed closure

and biclosed interior of an W-variety.

Because most of the work consists of monoidal biclosed enrichment of

the results of Diers [5] we assume some familiarity with this article. We

also assume some familiarity with the basic properties of category theory

and closed category theory (as given, for example, in Mac Lane [S] and

Eilenberg and KeIly [6]).
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I 32 B. J. Day

We note that most of the results treated here remain valid if all the

categorical algebra is relative to a cartesian closed category V having

all small limits and colimits. However we here deal only with the case

V = S , the cartesian closed category of small sets.

1 . Preliminaries

A monoidal category A = (A, I, ®, ) is as defined in Ei lenberg

and KeIly ([6], Chapter II). A monoidal category C is said to be

biclosed if both the functors - ® C : C •+ C and C ® - : C -*• C have

right adjoints

C(B ® C, D) ~ C(C, B\D) ,

C(C ® B, D) ^ C(C, D/B) .

A symmetric monoidal closed category (Ei lenberg and Kelly [6], Chapter III)

is a particular example of a monoidal biclosed category. To each result in

the sequel there will be a corresponding result-with-symmetry which we

shall not state explicitly.

An important structure theorem for monoidal biclosed categories is the

following:

THEOREM 1.1. Let A be a promonoidal category and let N : AOI> -*- C

be a dense functor. Then C admits a monoidal biclosed structure such

that N p : A -*• C p admits enrichment to a strong promonoidal functor if

and only if the following "mean" tensor products and cotensor products

exist in C for all A, A' € A and C, C t C ,

Q(AA') = PiAA'X) ° NX ,

JX o NX ,

[C(NX, C) x C U r , C')) o Q(XX') ,

H(AC) = C[Q{XA), C] O NX ,

K(AC) = C[Q(AX), C) o NX ,

{C(NX, C), H{XC')} ,

{C(NX, C), K(XC')} ,

and the resulting morphisms

C[Q(A'A), C) - C(«4', H{AC)) ,
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C{Q(AA'), C) - C(«4\ K(AC))

are isomorphisms for all A, A' (. A and C € C . The resulting monoidal

biclosed structure on C is then uniquely determined to within

isomorphism. II

When the hypotheses of Theorem 1.1 are satisfied we say that C is

the Kan extension of A o p along N . For the proof of this theorem we

refer to Day [4]. For the concept of a promonoidal category we refer to

Day [2], and for the concept of "mean" tensor product "o" and cotensor

product " { - , - } " we refer to Borceux and Kelly [/].

If M is a full subcategory of a monoidal biclosed category C which

is closed under isomorphs in C we say that M is closed under

exponentiation in C if C\M (. C and M/C € C for all C € C and

M € M . Note that this results in a "'biclosed" structure on M which, in

general, lacks an identity unless M is reflective in C (in which case

M is monoidal biclosed by Day [3]; this is actually a special instance of

Theorem 1.1).

We recall the following:

LE M M A 1 . 2 . Suppose A c B c C and A c C is dense. Then B c C

is dense.

Proof. Suppose cu, : C(BC) •*• C(BD) is natural in B € B . Then its
D

restriction a. : C(AC) •*• C(AD) is natural in A € A . By density of A ,

a. = C(A, f) for a unique morphism / € C(CD) . Thus aD = C(B, f) for a

unique morphism / € C(CD) if the diagram

C(BC) • C(Bfl)

I 1
[CUB), CUC)] • [CUB), CUZJ)]

commutes for all A € A and B € B , which it does by naturality of otD
D

i n B € B . / /

Note that this lemma can not be established over an arbitrary base

category V unless V : V -»• S is faithful.
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134 B.J. Day

Given that a monoidal biclosed category C is the Kan extension of

A P along N : A P •*• C , for some promonoidal structure on A , we can

form

A = {NA1 ® . . . ® NAn; A , . .. , A € A} u {J}

and deduce, from Theorem 1.1 and Lemma 1.2, that C is the Kan extension

of A along the dense embedding N : A -»• C .

2. Monoidal classes of ^-iden t i t i e s and ^-implications

We commence by supposing that N : A •* C is a fully faithful dense

functor from a monoidal category A to a monoidal biclosed category C ,

where C has all small limits and N preserves tensor products (including

the "empty" tensor product J ). Thus C is the Kan extension of A

along N .

A family F of ^-identities is said to be monoidal if (u>, = (ii~) € F

implies (w ® A = u„ ® A) 6 F and [A ® co = A ® to ) € F for all

A € A . Similarly a family F of ^-implications is called monoidal if

whenever

is in F then both

A W ® A = (»)„ ® A | °* li, ® A =

and

f i _

{ "l ~

are in F for all A € A .

PROPOSITION 2.1. If a full subcategory M of C is defined by a
monoidal family of ^-identities or by a monoidal family of U-implications
then M is closed under products, subobjects, and exponentiation in C .

Proof. It is straightforward to see that M is closed under products

and subobjects in C (see Diers [5], Proposition 1.1). Moreover, because

the defining family is monoidal, M is closed in C under exponentiation
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of the form NA\M and M/NA for a l l A € A . Thus, because C is the

Kan extension of A , M is closed under a l l exponentiation in C . / /

Given a family F of iV-identities we can associate with F i t s

monoidal -interior F and i t s monoidal closure F :

F° = { (a^ = u 2 ) ; u^ ® A = w2 ® A £ F and A ® (^ = A ® o>2 € F

for all 4 € A} ,

T = { (to' = to') ; (0' = 4 ' ® w ® 4 and 0)^ = A ' ® w2 ® 4

where (w = (!)„) € F} .

Similarly one can associate with any family of ^-implications its monoidal

interior and monoidal closure.

An tf-variety of C is said to be a bielosed N-variety if it is

closed under exponentiation in C . Note that if F defines the

iV-variety M then F defines a bielosed iV-variety M and F defines a

bielosed ^-variety M

3. ff-impi ications as ~s-\denti ti es

As in Diers ([5], §2), a multicokernel is a colimit of a diagram

[(/., 3.] : A . •* A ) . _ formed by pairs of morphisms having a common

domain. If |j| < a then this colimit is called an a-multicokernel.

Suppose that C has multicokernels and regular factorisations. Let

A be the full subcategory of C comprising the finite tensor products of

a-multlcokernels in C and let N denote the inclusion functor A c C >
a a

which is dense by Lemma 1.2.

PROPOSITION 3.1. If a is an infinite cardinal number then the full

aubcategories of C defined by monoidal classes of A'-implications of

length less than a are exactly the full subcategories of C defined by

monoidal classes of N -identities.

Proof. The proof is similar to that of Diers ([5], Proposition 2.0).

(a) Let F be a monoidal family of N-implications. Form the
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136 B.J. Day

monoidal family G of N -identities, where G comprises the

N -identities [k.N]i = k.N\l ) as k runs through the multicokernels of

the "codomains" of the implications in F . If X is an F-model then

(H\K)/K is an F-model for all a-multicokernels B and K because F

is monoidal (Proposition 2.1). Thus (H\X)/K is a G-model, whence X is

a G-model. Conversely, if X is a G-model, then X is a G-model, so X

is an F-model.

(b) Let G be a monoidal family of N -identities. Form a class F

of ^-implications as follows: for each (v. = v^} in G the domain

K-, ® . . . ® K is a finite tensor product of a-multicokernels, so is an

a-multicokernel. Suppose K. (1 £ j 5 n) is the multicokernel of

0
i .
u 33\ and let k be the coequaliser (v , v^) in C .

JA

2KAQ ® . . . ® /KAQ

Then q ) i s a regular epimorphism. Let (m, «) be i t s

difference kernel and, for each I in the comma category (N, D) , l e t

N\l = ml and N\i = nl . Let F be the family

7.

of a-implications, where Z- € (^, D) , and l e t F be i t s monoidal closure.

I f X i s an F-model, then X i s an F-model, so each

y : K . . . ® K •* X has the property that <?M) coequalisesK ® ® K

{ml, nl) for a l l Z (N, D) . Thus, because N i s dense,

2/(<7-, ® • • • & q ) coequalises (m, n) , so j / factors through k and X

i s a G-model. Conversely, i f X i s a G-model, then (H\X)/K i s a
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6-model for a l l cx-nmlticokernels H and K because G i s monoldal

(Proposition 2.1). Then every x : NA^ ® . . . ® Ml" -»• [H\x)/K which

factors as y[q. ® — ® q ) factors through k , as required to

coequalise (ml, nl) for a l l I € [N, D) . Thus (H\X)/K is an F-model

for a l l a-multicokernels H and K so Jf is an F-model. / /

4. Proper N-ref1ective subcategories

Let <j> : M -»• C be a full ^/-reflective embedding into C with

ff-adjoint ty : A -»• M and unit r| : N -*• (j>ijj ; this concept is due to Ulmer

[9] . Then, as in Diers ([5] , §3), the ^-reflection is called proper

(equals veritable) if X € M whenever C(r|, X) i s an isomorphism.

We recall from Diers ( [5] , §3) that an iV-reflective subcategory M

of C is proper i f M is closed under ^-absolute colimits. Also, if C

has regular factorisations, then a proper il/-reflective subcategory of C

is an ff-variety if and only if i t is closed under subobjects.

THEOREM 4 . 1 . Let <)> : M •*• C be a proper N-refleetive subeategory

of a monoidal biolosed category C with ij> —•TH <j) : M -»• C and unit

n : N •+• (f«|) . Then the following conditions are equivalent:

(1) C\$M and $M/C are in C for all C € C and M € M ;

(2) M \ # / and $M/NA are in C for all A € A and M € M ;

(3) NA\QM = #4\(j)M awd <|)Af/ffl4 = $M/W>A for all A € A and

A/ € M .

Proof. C\$M € C for a l l C (. C and J! E H i f and only i f

C ^ , C\<S>M) : C(<Jn|ttl, C\(j)W) ^C(2K4

f o r a l l A € A, C f C, M € M , i f and o n l y i f

C(C, i j iM/nJ : C(C, ())M/(t)i|)4) S C(C,

for a l l 4 ( A, C ( C, « ( M , i f and only i f <j>Af/(f>iM r^ <$>M/NA for a l l

A € A and M (. M . Also M\<j>M € C for a l l A € A and A/ € M i f and

only i f

) ^ C(NA',

for a l l / I , A' € A and Af € M , i f and only i f
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C{NA, 4>M/T)A,) : C(NA,

for a l l A, A' € A and M € M , if and only if <J>M/<j>iJi4 ^ QM/NA for a l l

A € A and M € M , since A7 is dense. / /

COROLLARY 4 . 2 . Suppose the conditions of Theorem k.l are satisfied.

If A is monoidal and N : A ->• C is monoidal, then 9 = <(HJJ : A -»• C i s

monoidal and r\ : N -*• <jn|) i s a monoi<iaZ natural transformation.

Proof. Define 6 : # 4 ® <|>i|id ' -»• # ( 4 0 ^ 1 ' ) t o tie the image of

N : M ® NA ' •* N(A ® A ') under the t rans format ion

1 , N(A ®A')) - 7 7 r* C(AJ4 ® AM ' ,
L | 1 n ® ' - 1

S C ( i M ' , AM

'^ C[NA', (j>i(i

« C(«)H|IA 0 # 4 ' ,

where the isomorphism i s easily seen to be C (ri. 0 r). , , l) . Similarly

define 6 : J -*• #X to be

N J
I - ^ NI —=-

The axioms of a monoidal functor 0 = (9, 0, 8 ) are straightforward. / /

If C has regular factorisat ions and each object of C has only a

se t of strong quotients, then each A'-variety M of C i s ref lec t ive in C

by the general adjoint functor theorem; each biclosed A'-variety i s then a

monoidal biclosed category (by the biclosed version of Day [3 ] , Theorem

1.2) . In these circumstances, i f N : A •*• C preserves tensor products, M

i s the Kan extension of A along ^ : A •+ M , noting that \p i s dense by

v i r t u e of the isomorphism C(AM, <jiM) = M(i|i4, M) and the density of N .

PROPOSITION 4.3. If C has regular factorisations, then a proper

biclosed ^-reflective subcategory of C is a biclosed N-variety if and

only if it is closed under subobjects.

Proof. The condition is necessary by Proposition 2 .1 . Conversely,

suppose M is a proper biclosed W-reflective subcategory of C which i s

closed under subobjects. Then we construct
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L 2 v 2 \ Q A ^ 4 2

This F def ines M as an iV-variety by Diers ( [ 5 ] , P ropos i t ion 3 . 2 ) .

Moreover F i s monoidal because , for example,

NA AM

AVI

^((0 ®L)

commutes ( s e e C o r o l l a r y U . 2 ) . / /

5. Monoidal density presentations

We recall (Day [4], §8) that a density presentation of A7 : A -»• C

comprises a coefficient functor K : K°P x |C| ->• S , an index functor

J : K -»• A , and a structure transformation £„ : K(k, C) ° NJk = C for

each C € |C| such that the induced transformation

K(k, C) , C)

is an isomorphism for all A € A and C € C . Here |C| denotes the

discrete category on C .

If C is the Kan extension of a monoidal structure on A along N ,

then we call a density presentation of A7 a monoidal presentation if the

induced transformation

rkl
K(k, C) x K{1, D) x A(i4, Jk ® Jl)

•+ C{NA, [K{k, C) x K(l, D)) o N(Jk ® Jl))

is an isomorphism for all A € A and C, D € C . Thus, if A7 is a full

embedding, a presentation of A7 is monoidal if and only if the expression
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C ® D = [K(k, C) x K(l, D)) o N(Jk ® Jl)

derived from the given density presentation of N i s an /IP-absolute

colimit. Thus, by Diers ( [5 ] , Theorem U.0), we have

THEOREM 5.1. For a monoidal density presentation of N : A ->• C

every biclosed N-variety is monoidal and closed under tensor products in

C . / /

PROPOSITION 5 .2 . If (K, J, O is a monoidal presentation of

N : A •*• C then, for each functor G : A p -»• S , there exists an

isomorphism

I [C(NA, C ® D), GA] <^\ [K(k, C) * K(l, D), G{Jk® Jl)]\
>A >kl

for all C, D € C .

Proof. This follows from the representation theorem. //

6. Examples

EXAMPLE 6.1. Let a be a regular cardinal number. We say that a

cartesian closed category V is ^.-cartesian if i t has a-products and the

property that

I
irA, A.

A r A

is an isomorphism for any family

: A ° P x A - V; X € A }

of V-functors with |A| < a for which each S. (4. , A.) exists.

Any cartesian closed category is |N|-cartesian closed, and probably

one should consider the corresponding notion of an a-closed category; but

we do not need i t here since we are dealing only with binary monoidal

structures.

PROPOSITION 6.1 .1 . Let a be a regular cardinal number and V be

an a-cartesian category. Let M : A -*• B be a V-functor between
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^-categories with. V-a-products. Then Ian./? : B + 1/ , whenever i t exists,

preserves a-products whenever G : A •+ V does:

A

M .V .

Proof. Let TTB be a V-a-product i n B . Then
A A

rA
j = B(M4, TTBJ X Gfl

3M irB(M4, B X ) x G4

a J ir[J B(«arA, Bx) x A (4, j j ) x GA

TTA,

J A>

by the representation theorem

because V is a-cartesian

TTAA

'= TTB(M:X, B X ) x A(yl,

= TrB(AQT B,) x G(irX,) by t h e r e p r e s e n t a t i o n theorem

TTA.
(• A

= irB(WZx, B X ) x vGX-. because G p r e se rves V-a-products

X\f
= IT B(WJXJ B.) because V is a-cartesian

Now suppose that .A is a small V-monoidal category with

V-a-coproducts where V is assumed to be a-cartesian closed with all
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small limits and colimits. Let [Aop, V] c [Aop, V] be the full sub-

category of V-functors which preserve a-products (relative to V ). Let

N : A -»• [V\ , \Q be the Yoneda embedding. Consider the convolution

structure on [A p , Vj given by

rAA'
F (& G = FA x GA' x A ( - , 4 ® A')

(see Day, [ 2 ] ) .

PROPOSITION 6.1.2. If F and G preserve V-a-produets,so does

F ® G .

Proof. F ® G : Aop •*• V is the lef t Kan extension of

F * G : Aop x AOp -»• V along ® : A x A •* A . But F x G preserves

V-a-products, since

F x G{v[Ax, A$) = F x G((itfA, TT^^)]

Thus the result follows from Proposition 6.1.1. / /

This implies that the usual Yoneda presentation of ft + [A°P, Vl is

a V-monoidal-density presentation. In particular, by Theorem 5-1 and

Diers ( [5] , Proposition 5.0.0), we have

PROPOSITION 6.1.3. A full subaategory of [Aop, S]a is a biolosed

N-variety if and only if it is closed under products, subobjects,

exponentiation, a-filtered colimits, regular quotients, and tensor

products. II

REMARK 6.1.4. In any monoidal biclosed tf-variety such as that

defined by Proposition 6.1.3 the rath tensor-power functor is described

by:
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[ r " n x x x Af

because F preserves f in i t e products

£ 1. .. .A1 n

tB

A(-, A ® ... ® A J by the representation theorem

= FB x A(-, B J by the representation theorem.

This holds for n - 1 , and similarly

F ( 0 ) as J FB x A(_, B( 0 )) = A ( _ , I) .

In par t icu lar , i f A ® A' i s taken to be A + A1 in A, then (the

0-algebra structure on) each object of A induces a ®-algebra structure

on each functor F € [A°P, S] , where y : f ® F - * j P i s given by

tt
F(A) S» fflx A(4, B ® B) -* FA

corresponding to Fv : FB -»• F(B ® B) by the representation theorem, and

similarly for n : A(-, I) -*• F . This remark still holds if S is

replaced by a suitable cartesian closed category V .

EXAMPLE 6.2. Let T = (T, n, v) ^e a monoidal monad on a

sufficiently complete and cocomplete monoidal biclosed category B .

Suppose that T : B •* B preserves coequalisers of reflective pairs of

morphisms. Then T is regular since kernel pairs are reflective, and B

is cocomplete by Linton [7].

Let A = By be the Kleisli category of T , let C = B , and let

N : A -»• C be the dense comparison functor. Then the "standard" density

presentation of N (see Day [4], §8) is generated by the usual

presentation of each algebra (C, E.) € C as a U -split coequaliser:
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TC

where U : C •*• B i s the underlying-object functor.

The presentation of C ® D derived from th is presentation of C and

D i s given as the coequaliser of the ref lect ive pair

TiTC ® TD)

\
T(T) \ ^ T ( C ® c)

T2{C ® D) • T{C ® D) ,

where the ref lec t ion i s 2"(ri ® n) ; see Day ( [4 ] , Proposition k.h).

Now suppose tha t each of the representable functors B(B, -) : B -»• S

preserves coequalisers of ref lect ive pa i r s . Then coequalisers of

re f lec t ive pairs are TV-absolute colimits and, moreover, the above

presentation of C ® D i s ^-absolute; thus the "standard" presentation

of N is now monoidal.

Thus from Theorem 5-1 and Diers ( [5 ] , Theorem ^ . 0 ) , we have

THEOREM 6.2.1. A class of "^-algebras is a bialosed N-variety of

J-algebras if and only if it is closed under products, subobjects,

exponentiation, regular quotients, and tensor products. / /
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